

Inverting High-Speed Operational Amplifier

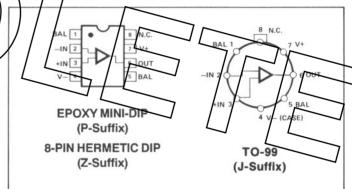
OP-01

FEATURES

•	Fast Settling Time $\dots 1 \mu$ s to 0.1% Ma	X
•	High Slew Rate 12V/μs Mi	n
•	Power Bandwidth 150kHz Mi	n
•	Low Power Consumption 90mW Ma	X

- Low Power Consumption
 Excellent DC Specifications
- Internally Compensated
- Ideal DAC Output Amplifier
- MIL STD 883 Processing Available
- Fits Standard 741 Sockets

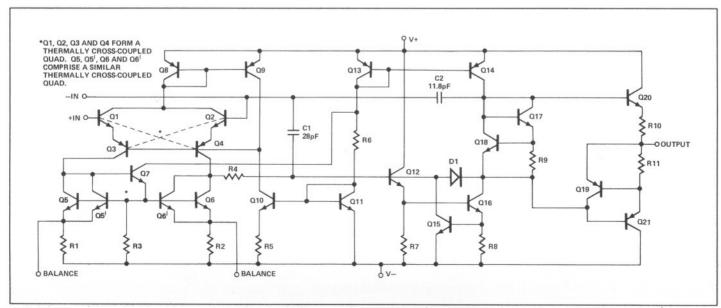
Low Cost
 Available in Die Form


and excellent DC input characteristics. An internal feed-forward frequency compensation network provides simplicity of application — no external capacitors are required for stable, high-speed performance. The fast output response is achieved without sacrifice of input bias current or power consumption. A 250kHz typical power bandwidth is attained with a small-signal bandwidth of only 2.5MHz, thus board layout is non-critical. The OP-01 is completely protected at both input and output, fits standard 741 sockets, and is offset nulled with a $10k\Omega$ potentiometer.

The fast output response combined with excellent settling time makes the OP-01 ideal for use as a D/A converter output amplifier.

OHDERI	NG INFUR	MALION		
T _A = 25°C		PACKAGE		ORERATING
V _{OS} MAX (mV)	TO-99	CERDIP 8-PIN	PLASTIC 8-PIN	TEMPERATURE RANGE
0.7	OP01J*	_	_	ML
0.7		_	OP01HP	COM
5.0	OP01GJ	_	_	MIL
5.0	OP01CJ	OP01CZ	OP01CP	СОМ

- For devices processed in total compliance to MIL-STD-883, add /883 after part number. Consult factory for 883 data sheet.
- † Burn-in is available on commercial and industrial temperature range parts in CerDIP, plastic DIP, and TO-can packages.


PIN CONNECTIONS

GENERAL DESCRIPTION

The OP-01 series of monolithic inverting high-speed operational amplifiers combines high slew rate, fast settling time

SIMPLIFIED SCHEMATIC

OP-01

ABSOLUTE MAXIMUM RATINGS	
Total Supply Voltage, OP-01, OP-01H,	OP-01N, OP-01N1,
OP-01G, OP-01GT	
OP-01G, OP-01C, OP-01GR	±20V
Differential Input Voltage	±30V
Input Voltage (Note 2)	±15V
Short-Circuit Duration	Indefinite
Operating Temperature Range	
OP-01, OP-01G	5°C to +125°C
OP-01H, OP-01C	
Junction Temperature (T _I)	65°C to +150C
Storage Temperature	
J and Z Packages	65°C to +150°C
P Packages	65°C to +150°C

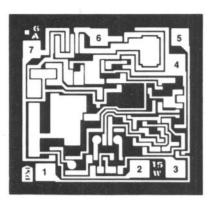
Lead Temperature	(Soldering,	60 sec)	+300°C
------------------	-------------	---------	--------

PACKAGE TYPE	Θ _{JA} (NOTE 3)	Θ _{JC}	UNITS
TO-99 (J)	170	24	°C/W
8-Pin Hermetic DIP (Z)	162	26	°C/W
8-Pin Plastic DIP (P)	110	50	°C/W

NOTES:

- 1. Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.
- 2. For supply voltages less than $\pm 15 \text{V}$, the maximum input voltage is the supply voltage.
- Θ_{jA} is specified for worst case mounting conditions, i.e., Θ_{jA} is specified for device in socket for TO, CerDIP and P-DIP packages.

ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $T_A = 25^{\circ}$ C, unless otherwise noted.


ARAMETER SYMBOL SONDITIONS				OP-01 OP-01H MIN TYP MAX			OP-01G OP-01C MIN TYP MAX		
PARAMETER	SYMBOL	$R_S \le 10 k\Omega$	-	0.3	0.7		2.0	5.0	UNITS
Input Offset Voltage	Vos (S = 40KII	_	0.5	2.0	_	2.0	20	nA
Input Offset Current Input Bias Current	OS		1 7 -	18	30		25	100	nA
Input Voltage Range	IVR) / /	±12	± 13	<u> </u>	±12	±13	_	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 10V$ $R_S \le 20kQ$	85	110		80	100	7~	dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 5V \text{ to } \pm 20V$ $R_S \le 20k\Omega$		7 /10	60		100	150	μVV
Output Voltage Swing	V _O	$R_L \ge 5k\Omega$ $R_L \ge 2k\Omega$	± 12.5 ± 12.0	±13.5 ±13.0		± 12.5 ± 12.0	± 13.5 ± 13.0		
Large-Signal Voltage Gain	A _{VO}	$R_L \ge 2k\Omega$ $V_O = \pm 10V$	50	100	_	25	75		V/mV
Power Consumption	P _d	$V_{OUT} = 0$	_	50	90		50	90	mW
Settling Time to 0.1% (Summing Node Error)	t _S	A _V = -1 (Notes 1, 2) V _{IN} = 5V	_	0.7	1.0	_	0.7	1.0	μ8
Slew Rate (Notes 2, 3)	SR	$A_V = -1$, $R_S = 3k \text{ to } 5k\Omega$	12	18	_	12	18	_	V/µs
Large-Signal Bandwidth (Notes 3, 4)		3	150	250	_	150	250	_	kHz
Small-Signal Bandwidth (Notes 3, 4)			1.5	2.5	_	1.5	2.5	-	MHz
Risetime	t _r	$A_V = -1$ $V_{IN} = 50 \text{mV}$	_	150	_	_	150	-	ns
Overshoot	OS		_	2	_	_	2	-	%

- 1. $R_L = 25k\Omega$; $C_L = 50pF$. See Settling Time Test Circuit.
- Sample tested.
 See applications information.
- 4. Guaranteed by design.

ELECTRICAL CHARACTERISTICS at $V_S = \pm\,15V$, $-55^{\circ}\,C \le T_A \le +\,125^{\circ}\,C$ for OP-01, OP-01G and $0^{\circ}\,C \le T_A \le +\,70^{\circ}\,C$ for OP-01H, OP-01C, unless otherwise noted.

				OP-01			OP-010		
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	Vos	$R_S \le 20k\Omega$	section	0.4	1.0	Name of the last o	3.0	6.0	mV
Input Offset Current	Ios		_	1	4		4	40	nA
Input Bias Current	IB		_	30	50		50	200	nA
Input Voltage Range	IVR		± 10	±13	_	± 10	±13		٧
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 10V$ $R_S \le 20k\Omega$	85	110	_	80	100	_	dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 5V \text{ to } \pm 20V$ $R_S \le 20k\Omega$	_	10	60	_	100	150	$\mu V/V$
Large-Sign al Voltage Gain	Ave	$\begin{aligned} R_L &\geq 2k\Omega \\ V_O &= \pm 10V \end{aligned}$	30	60	_	15	50	_	V/mV
Outpu Voltage Swing	$\left(\begin{array}{c} v_{o} \end{array}\right)$	$R_L \ge 5k\Omega$ $R_L \ge 2k\Omega$	±12.5 ±12.0	±13.5 ±13.0	-	± 12.5 ± 12.0	±13.5 ±13.0	_	٧
Offset Voltage Drift (Note 1)	Tovos	R _S ≥5kΩ	1	2	8	_	5	20	μV/° C
NOTE: 1. Sample tested.		\mathcal{O}))//	/					
					/			/ ,	
							7	L	

DICE CHARACTERISTICS (125°C TESTED DICE AVAILABLE)

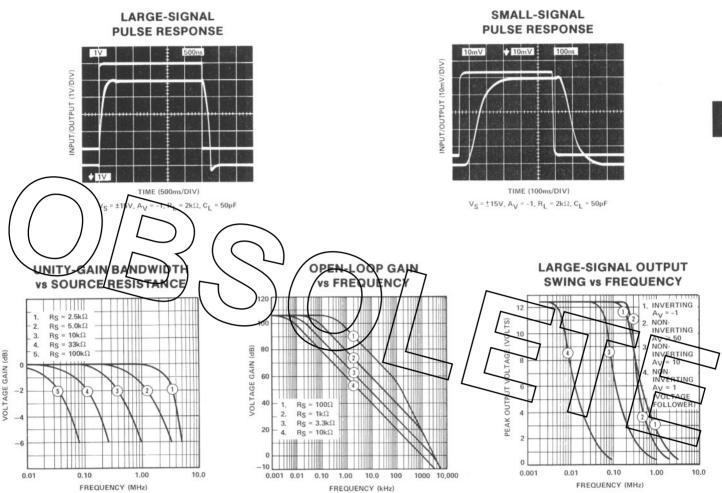
DIE SIZE 0.047×0.043 inch, 2021 sq. mils $(1.19 \times 1.09 \text{ mm}, 1.30 \text{ sq. mm})$

- 1. NULL
- 2. INVERTING INPUT
- 3. NONINVERTING INPUT
- 4. V-
- 5. NULL
- 6. OUTPUT
- 7. V+

WAFER TEST LIMITS at V_S = ±18V, T_A = 25°C for OP-01N, OP-01G and OP-01GR devices; T_A = 125°C for OP-01NT and

PARAMETER	SYMBO	CONDITIONS	OP-0/NT LIMIT	OR-01N IMIT	OP-01GT LIMIT	OP-01G	OP-01GR	UNITS
Input Offset Voltage	Vos	$R_S \le 20 k\Omega$	1.0	0.7	3.0	2.0	5.0	mV MAX
Input Offset Current	Ios		4	/ / /2 /	10	5	20	nA MAX
Input Bias Current	IB		50	30	100	50	100	nA MAX
Input Voltage Range	IVR		±10	± 12	±10 /	±12	± 12	V MIN
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 10V$ $R_S \le 20k\Omega$	85	85	80	80	89	dB MIN
Power Supply Rejection Ratio	PSRR	$V_S = \pm 5V \text{ to } \pm 20V$ $R_S \le 20k\Omega$	60	60	100	100	150 1	μV/V MAX
Output Voltage	V _{OM}	$R_L \ge 5k\Omega$	±12.5	±12.5	±12.5	±12.5	±12.5	
Swing	МО	$R_L \ge 2k\Omega$	±12.0	±12.0	±12.0	±12.0	±12.0	VMIN
Large-Signal Voltage Gain	A _{VO}	$R_L \ge 2k\Omega$ $V_O = \pm 10V$	30	50	25	50	25	V/mV MIN
Power Consumption	P _d	V _{OUT} = 0	_	90	_	90	90	mW MAX

NOTES:


For 25°C characteristics of NT & GT devices, see N & G characteristics respectively.

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

TYPICAL ELECTRICAL CHARACTERISTICS at $V_S=\pm\,15$ V, $T_A=25^{\circ}$ C, unless otherwise noted.

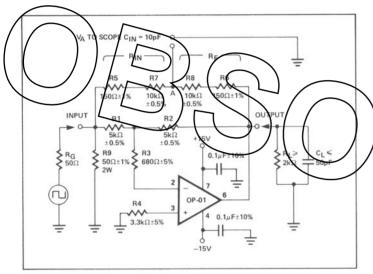
PARAMETER	SYMBOL	CONDITIONS	ALL GRADES TYPICAL	UNITS
Slew Rate	SR	$A_{VCL} = -1$, $R_S = 3k\Omega$ to $5k\Omega$	18	V/µs
Settling Time to 0.1% (Summing Node Error)	t _S	$V_{IN} = 5V$ $A_V = -1$ $R_L = 2k\Omega \; (\text{See Settling Time Test Circuit})$ $C_L = 50 \text{pF}$	1.0	μ8
Large-Signal Bandwidth			250	kHz
Small-Signal Bandwidth			2.5	MHz
Risetime	^t r	$V_{IN} = 50 \text{mV}$ $A_V = -1$	150	ns

TYPICAL PERFORMANCE CHARACTERISTICS

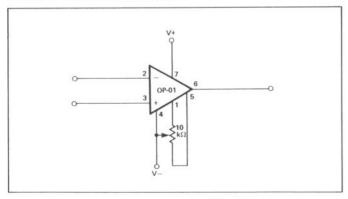
APPLICATIONS INFORMATION

The OP-01 incorporates an internal feed-forward compensation network to provide fast slewing and settling times in all inverting and moderate-to-high-gain noninverting applications. Unity-gain bandwidth is a function of the total equivalent source resistance seen by the inverting terminal. Proper choice of this resistance will allow the user to maxmize bandwidth while assuring proper stability. The equivalentinverting-terminal-resistance is defined as RIN || RF, and it must be greater than $3.3k\Omega$ to assure stability in all closedloop gain configurations including unity gain. Should $R_{IN} || R_F \le 3.3 k\Omega$, a resistor (R_S) may be placed between the inverting input and the sum node to provide the required resistance. (See Fast Inverting Amplifier Diagram.) Lower values of total equivalent resistance may be used to improve bandwidth in higher closed-loop gain configurations, as indicated by the Open-Loop Gain vs. Frequency plot.

FAST INVERTING AMPLIFIER

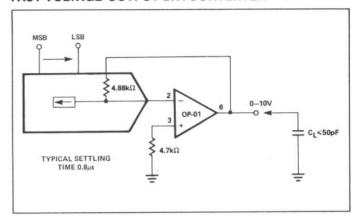

VIN O

REQ = RS + RIN || RF
FOR AV = -1, REQ
$$\geqslant$$
 3.3k Ω
Rp = REQ

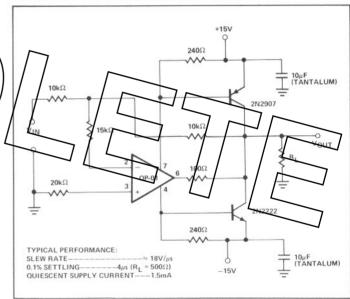

OP-01

SETTLING-TIME TEST CIRCUIT

Settling time may be measured using the circuit shown below. This circuit incorporates the "false sum node" technique to produce accurate, repeatable results. For a 5V input step, 0.1% settling will be achieved when the false sum node settles to within $\pm 2.5 \text{mV}$ of its final value. The oscilloscope used for observation of the false sum node should have wide bandwidth, fast overload recovery time, and be used with a low capacity probe ($\leq 10 \text{pF}$, including strays). A Tektronix 7504 scope with a 7A11 probe or equivalent is suggested. The pulse generator should have a 50Ω output impedance and be capable of a 5V rise time in $\leq 20 \text{ns}$ with ringing less than 2.5mV after 0.5 μs . Measurements to 0.1% require R_{IN} to equal R_{F} within 0.01%; R_{5} and R_{6} are used as trimming resistors to achieve this matching.



OFFSET NULLING CIRCUIT



TYPICAL APPLICATIONS

FAST VOLTAGE-OUTPUT D/A CONVERTER

PRECISION POWER-BOOSTER CIRCUIT

