STG3856 # Low voltage 1.0 Ω max dual SP3T switch with break-before-make feature #### **Features** - High speed: - t_{PD} = 0.3 ns (typ.) at V_{CC} = 3.0 V - t_{PD} = 0.4 ns (typ.) at V_{CC} = 2.3 V - Ultra low power dissipation: - $I_{CC} = 0.2 \,\mu\text{A} \,(\text{max.}) \,\text{at} \,T_{A} = 85^{\circ}\text{C}$ - Low ON resistance V_{IN} = 0 V: - R_{ON} = 1.0 Ω (max. T_A = 25°C) at V_{CC} = 4.3 V - R_{ON} = 1.5 Ω (max. T_A = 25°C) at V_{CC} = 3.0 V - R_{ON} = 1.8 Ω (max. T_A = 25°C) at V_{CC} = 2.3 V - Wide operating voltage range: - V_{CC} (opr) = 1.65 V to 4.3 V single supply - 4.3 V tolerant and 1.8 V compatible threshold on digital control input at V_{CC} = 2.3 to 4.3 V - Latch-up performance exceeds 300 mA (JESD 17) - ESD performance (analog channel vs. GND): HBM > 2 kV (MIL STD 883 method 3015) #### **Description** The STG3856 is a high-speed CMOS low voltage dual analog SP3T (single pole triple throw) switch or dual 3:1 multiplexer /demultiplexer switch fabricated in silicon gate C²MOS technology. It is designed to operate from 1.65 V to 4.3 V, making this device ideal for portable applications. The device offers very low ON resistance (< 1.0 Ω) at V_{CC} = 4.3 V. The disabling and enabling of switches are done by setting the 1IN and 2IN control pins. Additional key features are fast switching speed, and ultra low power consumption. All inputs and outputs are equipped with protection circuits against static discharge, giving them ESD immunity and transient excess voltage. Table 1. Device summary | Order code | Temperature range | Package | Packaging | |------------|-------------------|-----------------------|---------------| | STG3856QTR | -40°C to +85°C | QFN12L (2.2 x 1.4 mm) | Tape and reel | ### 1 Summary description #### 1.1 Pin connections and description Figure 1. Connection diagram (top through view) Table 2. Pin description | Pin | Symbol | Name and function | |--------------|------------------------------|-------------------------| | 12, 10 | 1IN, 2IN | Controls | | 1,2,3, 9,8,7 | 1S1, 1S2, 1S3, 2S1, 2S2, 2S3 | Independent channels | | 4,6 | D1, D2 | Common channels | | 11 | V _{CC} | Positive supply voltage | | 5 | GND | Ground (0 V) | #### 1.2 Truth table Table 3. Truth table | 1IN | 2IN | Switch state | |-----|-----|----------------| | L | L | High impedance | | L | Н | D1-1S1, D2-2S1 | | Н | L | D1-1S2, D2-2S2 | | Н | Н | D1-1S3, D2-2S3 | #### 1.3 Internal schematic Figure 2. Internal schematic ### 1.4 Input equivalent circuit Figure 3. Input equivalent circuit Maximum ratings STG3856 ### 2 Maximum ratings Stressing the device above the rating listed in the "absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Table 4. Absolute maximum ratings | Symbol | Parameter | Value | Unit | |-------------------------------------|---|-------------------------------|------| | V_{CC} | Supply voltage | -0.5 to 5.5 | V | | V _I | DC Input voltage | -0.5 to V _{CC} + 0.5 | V | | V _{IC} | DC Control input voltage | -0.5 to 5.5 | V | | V _O | DC output voltage | -0.5 to V _{CC} + 0.5 | V | | I _{IKC} | DC input diode current on control pin (V _{IN} < 0 V) | - 50 | mA | | I _{IK} | DC input diode current (V _{IN} < 0 V) | ± 50 | mA | | I _{OK} | DC output diode current | ± 20 | mA | | Io | DC output current | ± 150 | mA | | I _{OP} | DC output current peak (pulse at 1 ms, 10% duty cycle) | ± 300 | mA | | I _{CC} or I _{GND} | DC V _{CC} or ground current | ± 100 | mA | | P _D | Power dissipation at T _A = 70°C ⁽¹⁾ | | mW | | T _{STG} | Storage temperature | -65 to 150 | °C | | TL | Lead temperature (10 sec) | 300 | °C | ^{1.} Derate above 70°C by 18.5mW/C. ### 3 Electrical characteristics Table 5. Recommended operating conditions | Symbol | Parameter | | Value | Unit | |-----------------|----------------------------------|-----------------------------------|----------------------|------| | V _{CC} | Supply voltage (1) | | 1.4 to 4.3 | V | | V _I | Input voltage | | 0 to V _{CC} | V | | V _{IC} | Control input voltage | | 0 to V _{CC} | V | | V _O | Output voltage | | 0 to V _{CC} | V | | T _{OP} | Operating temperature | | -55 to 125 | °C | | alà/al. | Input rise and fall time control | V _{CC} = 1.65 V to 2.7 V | 0 to 20 | A/ | | dt/dv | input | V _{CC} = 3.0 to
4.3 V | 0 to 10 | ns/V | ^{1.} Truth table guaranteed: 1.2 V to 4.3 V. #### 3.1 DC electrical characteristics Table 6. DC electrical characteristics | | | | ndition | | Value | | | | | | | |-----------------|---------------|---------------------|---------|-------------------------|--------------------|------|--------------|------|--------------|------|------| | Symb
ol | Parameter | V _{CC} (V) | | T, | _λ = 25° | °C | -40 to | 85°C | -55 to 1 | 25°C | Unit | | | | VCC (V) | | Min | Тур | Max | Min | Max | Min | Max | | | | | 1.65 -
1.95 | | 0.65
V _{CC} | - | - | 0.65 V
CC | _ | 0.65 V
CC | - | | | V _{IH} | High level | 2.3 -
2.5 | | 1.4 | - | - | 1.4 | _ | 1.4 | - | v | | VIH | input voltage | 2.7 -
3.0 | | 1.4 | - | _ | 1.4 | _ | 1.4 | _ | v | | | | 3.3 -
4.3 | | 1.5 | - | - | 1.5 | _ | 1.5 | - | | | | | 1.65 -
1.95 | | - | _ | 0.40 | - | 0.40 | - | 0.40 | | | V _{IL} | Low level | 2.3 -
2.5 | | _ | - | 0.50 | - | 0.50 | - | 0.50 | v | | input voltage | 2.7 -
3.0 | | _ | - | 0.50 | - | 0.50 | - | 0.50 | v | | | | | 3.3 -
4.3 | | _ | - | 0.50 | _ | 0.50 | _ | 0.50 | | Electrical characteristics STG3856 Table 6. DC electrical characteristics (continued) | | | | ondition | • | | - | Value | | | | | |--|--|---|---|------|--------------------|------------|-----------|-----------|----------|-------|------| | Symb
ol | Parameter | V (A) | | T, | ₄ = 25° | °C | -40 to | 85°C | -55 to 1 | 125°C | Unit | | | | V _{CC} (V) | | Min | Тур | Max | Min | Max | Min | Max | | | | | 4.3 | | _ | 0.6 | 1.0 | _ | 1.2 | _ | _ | | | | | 3.0 | $V_S = 0 V$ | _ | 1.3 | 1.5 | _ | 1.8 | _ | _ | | | R _{ON} | Switch ON | 2.7 | to V _{CC} | - | 1.5 | 1.8 | _ | 2.2 | _ | - | Ω | | I ION | resistance | 2.3 | m∆ | ı | 2.0 | 2.2 | ı | 2.6 | _ | _ | 22 | | | | 1.8 | | ı | 2.5 | 3.0 | ı | 3.6 | _ | _ | | | | | 1.65 | | ı | 3.3 | 4.0 | ı | 4.8 | _ | _ | | | ΔR _{ON} | ON
resistance
match
between
channels | 2.7 | V_S at R
ON max
$I_S = 100$
MA | 1 | 0.01 | ı | 1 | _ | _ | - | Ω | | | | 4.3 | | ı | _ | - | ı | _ | _ | _ | | | | ON resistance | 3.0 | $V_S = 0 V$ to V_{CC} $I_S = 100$ mA | ı | _ | - | ı | _ | _ | _ | | | R_{FLAT} | flatness | 2.7 | | ı | 0.22 | 0.35 | ı | 0.35 | _ | _ | Ω | | | (1)(2) | 2.3 | | ı | _ | ı | ı | _ | _ | _ | | | | | 1.65 | | 1 | _ | ı | ı | _ | _ | - | | | I _{OFF} | OFF state
leakage
current
(nSN), (Dn) | 4.3 | V _S = 0.3
or 4 V | - | _ | ± 20 | - | ±10
0 | _ | _ | nA | | I _{IN} | Input
leakage
current | 0 - 4.3 | V _{IN} = 0
to 4.3 V | - | - | ± 0.1 | - | ± 1 | - | | μΑ | | I _{CC} | Quiescent
supply
current | 1.65 -
4.3 | V _{IN} = V _C
C or
GND | _ | - | ± 0.0
5 | - | ± 0.
2 | - | ± 1 | μΑ | | Quiescent supply current low voltage driving | | V _{IN1} ,
V _{IN2} = 1
.65 V | - | ± 37 | ± 50 | - | ± 10
0 | - | _ | | | | | supply 4.3 | V _{IN1} ,
V _{IN2} = 1.
80V | _ | ± 33 | ± 40 | - | ± 50 | - | _ | μΑ | | | | | V _{IN1} ,
V _{IN2} = 2
.60V | - | ± 12 | ± 20 | - | ± 30 | - | _ | | | ^{1.} $\Delta Ron = max \ lmSN-nSNl$, where m = 1 and n = 2, N = 1..3 ^{2.} Flatness is defined as the difference between the maximum and minimum value of ON resistance as measured over the specified analog signal ranges. #### 3.2 AC electrical characteristics Table 7.AC electrical characteristics ($C_L = 35 \text{ pF}, R_L = 50 \Omega, t_r = t_f \le 5 \text{ ns}$) | | | Test co | ondition | - | · , · · · <u>L</u> | 00 14 | Value | - | | | | |--------------------|-----------------------------|---------------------|-----------------------------------|--------------|--------------------|-------|----------|------|----------|------|------| | Symbol | Parameter | v _{cc} | | TA | = 25°C | ; | -40 to 8 | 35°C | -55 to 1 | 25°C | Unit | | | | (V) | | Min | Тур | Max | Min | Max | Min | Max | | | | | 1.65 -
1.95 | | _ | 0.45 | _ | _ | _ | - | _ | | | t _{PLH} , | Propagation | 2.3 - 2.7 | | - | 0.40 | _ | _ | _ | - | - | ns | | t _{PHL} | delay | 3.0 - 3.3 | | _ | 0.30 | _ | _ | _ | - | _ | | | | | 3.6 - 4.3 | | _ | 0.30 | _ | _ | _ | - | _ | | | | | 1.65 -
1.95 | V _S = 0.8 V | - | 56 | _ | _ | _ | - | _ | | | t _{ON} | Turn-ON time | 2.3 - 2.7 | | - | 33 | 50 | _ | 60 | - | - | ns | | | ON | 3.0 - 3.3 | V _S = 1.5 V | - | 21 | 40 | _ | 50 | - | - | | | | | 3.6 - 4.3 | | _ | 19 | 40 | _ | 50 | - | _ | | | | | 1.65 -
1.95 | V _S = 0.8 | - | 24 | _ | _ | | - | _ | | | t _{OFF} | Turn-OFF time | 2.3 - 2.7 | | - | 17 | 25 | _ | 40 | - | - | ns | | | | 3.0 - 3.3 | $V_{S} = 1.5 V$ | _ | 14 | 20 | _ | 30 | I | _ | | | | | 3.6 - 4.3 | | - | 12 | 20 | _ | 30 | ı | _ | | | | Dunals hafara | 1.65 -
1.95 | V _S = 0.8 | 10 | 31 | _ | _ | _ | _ | _ | | | t _D | Break-before -
make time | 2.3 - 2.7 | | 10 | 22 | 40 | _ | 50 | - | - | ns | | | delay | 3.0 - 3.3 | V _S = 1.5 V | 10 | 18 | 30 | _ | 40 | - | - | | | | | 3.6 - 4.3 | | 10 | 7 | 25 | _ | 35 | ı | _ | | | | | 1.65 -
1.95 | C _L =100pF | - | 25 | _ | _ | _ | - | _ | | | Q Charge | 2.3 - 2.7 | R _L =1MO | - | 35 | _ | _ | _ | - | - | рС | | | | injection | 3.0 - 3.3 | $V_{GEN}=0V$
$R_{GEN}=0\Omega$ | - | 40 | _ | _ | _ | ı | _ | | | | | 3.6 - 4.3 | GLIV | _ | 55 | _ | _ | _ | - | _ | | Electrical characteristics STG3856 ### 3.3 Analog switch **Table 8.** Analog switch characteristics ($C_L = 5p \text{ F}, R_L = 50 \Omega, T_A = 25^{\circ}\text{C}$) | | | Те | st condition | , <u>L</u> | | | Value | | | | | |----------------------|--|-----------------|--|------------|--------------------|-----|--------|------|--------|-------|------| | Symbol | Parameter | V _{cc} | | T, | _A = 25° | C | -40 to | 85°C | -55 to | 125°C | Unit | | | | (V) | | Min | Тур | Max | Min | Max | Min | Max | | | O _{IRR} | Off Isolation (1) | 1.65 - 4.3 | $V_S = 1V_{RMS}$
f = 100 kHz | - | -82 | - | - | _ | _ | - | dB | | X _{talk} | Crosstalk | 1.6 - 4.3 | $V_S = 1 V_{RMS}$
f = 100 kHz | - | -84 | - | - | _ | - | - | dB | | T _{HD} | Total harmonic distortion | 2.3 - 4.3 | $R_{L} = 600 \ \Omega$ $V_{IN} = 2 \ V_{PP}$ $f = 20 \ Hz \ to \ 20 \ kHz$ | - | 0.03 | - | _ | - | - | - | % | | BW | -3dB bandwidth | 1.65 - 4.3 | $R_L = 50 \Omega$ | _ | 100 | _ | _ | _ | _ | _ | MHz | | C _{IN} | Control pin input capacitance | | | _ | 5 | _ | _ | _ | _ | - | | | C _{Sn(OFF)} | Sn port OFF capacitance | 3.3 | f = 1 MHz | - | _ | - | - | - | - | - | | | C _{Sn(ON)} | Sn port ON capacitance | 3.3 | f = 1 MHz | - | _ | - | - | - | - | - | pF | | C _D | D port
capacitance
when switch is
enabled | 3.3 | f = 1 MHz | - | - | - | - | - | - | - | | ^{1.} OFF Isolation = 20 Log_{10} (V_D/V_S), V_D = output, V_S = input at off switch ### 4 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark. Figure 4. QFN12L (2.2 x 1.4 mm) package outline Table 9. FN12L (2.2 x 1.4 mm) mechanical data | Symbol | | Millimeters | | | Inches | | |--------|------|-------------|------|-------|--------|-------| | Symbol | Min | Тур | Max | Min | Тур | Max | | Α | 0.50 | 0.55 | 0.60 | 0.019 | 0.021 | 0.023 | | A1 | 0 | 0.02 | 0.05 | 0 | 0.001 | 0.002 | | b | 0.15 | 0.20 | 0.25 | 0.006 | 0.007 | 0.010 | | D | 1.30 | 1.40 | 1.50 | 0.051 | 0.055 | 0.059 | | Е | 2.10 | 2.20 | 2.30 | 0.082 | 0.086 | 0.090 | | е | | 0.40 | | | 0.015 | | | L | 0.35 | 0.40 | 0.45 | 0.013 | 0.015 | 0.017 | Figure 5. Footprint recommendation Figure 6. QFN12L (2.2 x 1.4 mm) reel for carrier tape information Figure 7. QFN12L (2.2 x 1.4 mm) reel for carrier tape information Figure 8. QFN12L (2.2 x 1.4 mm) carrier tape information Revision history STG3856 ## 5 Revision history Table 10. Document revision history | Date | Revision | Changes | |-------------|----------|---| | 22-Dec-2005 | 1 | First draft. | | 23-Dec-2005 | 2 | Few changes. | | 15-Mar-2010 | 3 | The document has been reformatted, added tape and reel information. | #### Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2010 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com