

HIP4011

April 1994

Three Phase Brushless DC Motor Controller

Features

- · 3A DC. 5A Peak Output Current
- 16V Max. Rated Supply Voltage
- . Built-in "Free-Wheeling" Diodes
- · Output dv/dt Limited to Reduce EMI
- · External Dynamic Brake Control Switch With Undervoltage Sense
- . Thermal and Current Limiting Protects Against **Locked Rotor Conditions**
- Provides Analog Current Sense and Reference Inputs
- · Decode Logic with illegal Code Rejection

Applications

Pinout

- · Drive Spindie Motor Controller
- 3 Phase Brushless DC Motor Controller
- . Brushless DC Motor Driver for 12V Battery Powered **Appliances**
- Phased Driver for 12V DC Applications
- · Logic Controlled Driver for Solenoids, Relays and Lamps

Description

The HIP4011 motor driver is intended for three phase Brushless motor control at continuous output currents up to 3A. It accepts inputs from buffered Hall effect sensors and drives three motor windings, regulating the current through an external current sensing resistor, according to an analog control input. Output "freewheeling" diodes are built in and output dv/dt is limited to decrease the generated EMI. Thermal and current limiting are used to protect the device from locked rotor conditions. A brake control input forces all outputs to ground simultaneously to provide dynamic braking, and an internal voltage sensor does the same when the supply drops below a predetermined switch point. Power down braking energy is stored in an external capacitor.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HIP4011IS	-40°C to +85°C	15 Pin Plastic SIP Surface Mount

HIP4011 (SIP) TOP VIÈW SGND = SIGNAL GROUND SPD = SPEED CONTROL = SIGNAL V+ PGND PIN SV+ (TAB) MUST BE O = ISENSE OUTA = OUTPUT A ELECTRICALLY BCAP = BRAKING CAPACITOR 10 CONNECTED PV+ = POWER V+ OUTB = OUTPUT B ISEN = ISENSE FBRK = FORCED BRAKE OUTC - OUTPUT C 0 PV+ = POWER V+ SENC = SENSE INPUT C

OUTPUT TRUTH TABLE

	SENSOR INPUTS		FORCE BRAKE INPUT*	OUTPUTS		
Α	В	C	FBRK	A	В	O
0	0	0	0	OFF	OFF	OFF
1	0	0	0	1	OFF	0
0	1	0	0	0	1	OFF
1	1	0	0	OFF	1	0
0	0	1	0	OFF	0	1
1	0	1	0	1	0	OFF
0	1	1	0	0	OFF	1
1	1	1	0	OFF	OFF	OFF
х	×	Х	1	0	0	0

Undervoltage and Force Brake logic truth table entries are identical.

SENB = SENSE INPUT B

[&]quot;X" = Don't Care

Specifications HIP4011

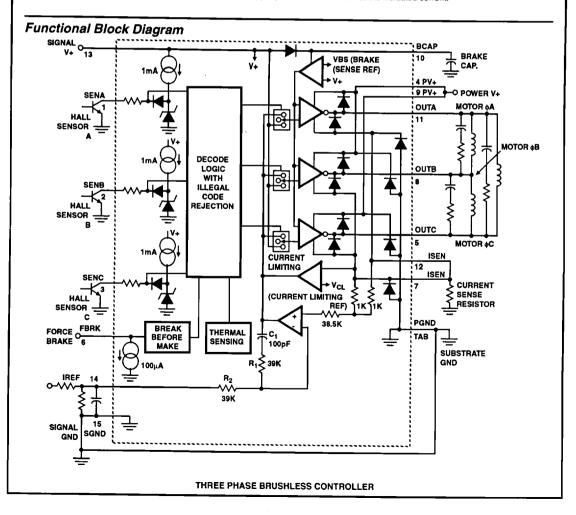
Referred to SGND or PGND (Note 1) 15 Lead SIP Power Package	Absolute Maximum Ratings	Thermal Information
Logic Input Current	Referred to SGND or PGND (Note 1)	15 Lead SIP Power Package. 45°C/W 3°C/W Power Dissipation (Note 3) . 25W Junction Temperature Range, Operating . +150°C Storage Temperature Range55°C to +150°C Power Dissipation Up to +125°C without heat sink . 0.56W Above +125°C without Heat Sink . Derate Linearly at 22mW/°C Up to +125°C with Infinite Heat Sink . 8.33W Above +125°C with Infinite Heat Sink

NOTES:

- 1. PV+ and SV+ are to be tied together, as are PGND and SGND.
- 2. Operating above the continuous current rating causes a decrease in operating life.
- 3. Derate power dissipation above case temperature of +75°C at 0.33 Watts/°C.

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications T_A = +25°C and SV+ = PV+ = 10.4V to 13.2V, Unless Otherwise Specified


PARAMETERS	TEST CONDITION	MIN	TYP	MAX	UNITS
SUPPLY (SV+) CURRENT			-		
No Drive	Outputs Off	1 -	-	10	mA
With Drive	Outputs On	•	-	15	mA
LOGIC INPUT CURRENT	· · · · · ·				
Sensor Inputs	SENA, SENB & SENC = 0V to 3V	-0.5	-	-1.5	mA
Brake Input	FBRK = 0.8V to 2.4V	50	·	150	μА
LOGIC INPUT THRESHOLDS					
Sensor Inputs	Logic "0" Input Voltage	•	-	1.8	V
Sensor Inputs	Logic "1" Input Voltage	3	-	-	V
Brake Input	Logic "0" Input Voltage	-	•	0.8	V
Brake Input	Logic "1" Input Voltage	2.4	-	•	V
AMPLIFIER INPUT (SPD)	•				
Bias Current		•	•	700	nA
Offset Voltage		-	-	3	m∨
Input Range (Linear)		0	-	1	V
Input Impedance		1	-	-	MΩ
System Bandwidth	(Note 1)	· ·	35	-	kHz
Current Limit	Rsense = 0.20Ω	· ·	5	-	A
THERMAL LIMIT			• • • • • • • • • • • • • • • • • • • •		•
Threshold		•	155		°C
Hysteresis		-	40		°C
OUTPUT DRIVERS				•	•
On Saturation (See Note 5)	I _{OUT} = 3A, V _{PMOS} + V _{NMOS}	· · ·	-	2.2	V
On Saturation (See Note 5)	I _{OUT} = 0.6A, V _{PMOS} + V _{NMOS}	-	-	0.44	V
Off Leakage	PV+ > V _{OUT} > PGND or I _{SEN}	- -		1	mA
Slew Rate	(See Note 2)	· ·	0.5	<u> </u>	V/µS

Electrical Specifications T_A = +25°C and SV+ = PV+ = 10.4V to 13.2V, Unless Otherwise Specified (Continued)

PARAMETERS	TEST CONDITION	MIN	TYP	MAX	UNITS
FREEWHEEL DIODES					
Forward Drop	I _{OUT} = 1A			1.5	V
INTERNAL BRAKE DRIVER			L	<u> </u>	
Undervoltage Trip Point, PV+	(See Note 3)	2.7		3.3	T v
Hysteresis	(See Note 4)	40		60	%
On Saturation	Each N _{MOS} , I _{OUT} = 3A	-		0.4	V
BRAKE CAPACITOR (BCAP)				·	
Discharge Leakage	SV+ = PV+ = 3V to 12V, BCAP = 10V			5	μА

NOTES:

- 1. The system bandwidth is fixed by an internal RC network around the amplifier.
- 2. Internal limiting of turn on and turn off drive is used to limit output dv/dt.
- 3. The braking action starts at the given trip point with a falling supply voltage.
- 4. Hysteresis causes the brake to be removed at a higher trip point with a rising supply voltage.
- 5. This value includes the combined voltage drops of one upper plus one lower switch at the indicated current.

