RICHTEK®

Tiny Package, High Performance, Regulated Charge Pump

General Description

The RT9394 is a high performance charge pump DC-DC converter that produces a regulated 5V output. No external inductor is required for operation. The operating voltage range is 2.8V to V_{OUT}. Internal soft-start circuitry effectively reduces the in-rush current both while start-up and mode change.

The RT9394 features very low quiescent current, overcurrent protection and short circuit protection.

The RT9394 is available in WDFN-6SL 2x2 package.

Ordering Information

RT9394

Pin 1 Orientation***
(2) : Quadrant 2, Follow EIA-481-D
Package Type
QW : WDFN-6SL 2x2 (W-Type)
Lead Plating System

G : Green (Halogen Free and Pb Free)

Note :

***Empty means Pin1 orientation is Quadrant 1

Richtek products are :

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Features

- Input Voltage Range : 2.8V to VOUT
- Internal Soft-Start Function
- 5V Fixed Output Voltage
- Over-Current Protection Function
- Short Circuit Protection Function
- RoHS Compliant and 100% Lead (Pb)-Free

Applications

- Mobile Phone, Smart Phone LED Backlight
- Camera Flash White LED
- LCD Display Supply

Pin Configuration

RT9394

Marking Information

	5QW
•	

5Q : Product Code

W : Date Code

Typical Application Circuit

Part No.	Application Configuration	C _{IN} (μF)	C _{PUMP} (μF)	С _{ОՍТ} (µF)	
DT0204	I _{OUT} < 60mA @ V _{IN} > 3.2V	1 or 2.2	0.22	1 or 2.2	
RT9394	I _{OUT} < 110mA @ V _{IN} > 3.2V	10	1	10	

Functional Pin Description

Pin Number	Pin Name	Pin Function				
1, 7 (Exposed Pad)	GND	Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.				
2	VIN	Power input voltage.				
3	VOUT	Output voltage.				
4	СР	Flying capacitor positive terminal.				
5	CN	Flying capacitor negative terminal.				
6	EN	Chip enable (active high).				

Functional Block Diagram

Absolute Maximum Ratings (Note 1)

Supply Input Voltage	0.3V to 6V
Other I/O Pin Voltages	- –0.3V to 6V
• Power Dissipation, $P_D @ T_A = 25^{\circ}C$	
WDFN-6SL 2x2	- 0.606W
Package Thermal Resistance (Note 2)	
WDFN-6SL 2x2, θ_{JA}	- 165°C/W
WDFN-6SL 2x2, θ_{JC}	- 8.2°C/W
Junction Temperature	- 150°C
Lead Temperature (Soldering, 10 sec.)	- 260°C
Storage Temperature Range	65°C to 150°C
ESD Susceptibility (Note 3)	
HBM (Human Body Mode)	· 2kV

Recommended Operating Conditions (Note 4)

Ambient Temperature Range	40°C to 85°C
Junction Temperature Range	–40°C to 125°C

Electrical Characteristics

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Operation Voltage Range	VIN	V _{IN} = 3.17V, V _{OUT} = 5V	2.8		Vout	V
Quitaut Valtaga		V_{IN} = 3.17V to 3.43V, $I_{\text{OUT}} \leq 55 \text{mA}$	4.83	5	5.2	V
Output Voltage	Vout	V _{IN} = 5V, I _{OUT} < 70mA	4.8	5	5.2	V
Quiescent Current	lq	VIN = 5V, IOUT = 0		2	4	mA
Maximum Output Current	IOUT	$V_{IN} = 3V, C_{PUMP} = 1\mu F$ (Note 5)	110			mA
OCP	IOCP	$V_{IN} = 3V$	250	350	500	mA
Short Circuit Current		V _{IN} = 3V, During start-up period		75	110	mA
Output Ripple		$V_{IN} = 3V, I_{OUT} = 60mA, C_{OUT} = 1\mu F$		30		mV
Shut Down Current	ISHDN	$V_{IN} = 5V, V_{EN} = 0.42V$		0.1	1	μA
Operation Frequency	fosc	V _{IN} = 5V	0.8	1	1.3	MHz
Digital Input High Level	VIH	V _{IN} = 3V	1.5			V
Digital Input Low Level	VIL	$V_{IN} = 5V, V_{EN} = 0.42V$			0.4	V
EN Pin Leakage Current	I _{EN}	V _{IN} = 5V			0.2	μA

 $(T_A = 25^{\circ}C)$, unless otherwise specified)

- Note 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- **Note 2.** θ_{JA} is measured under natural convection (still air) at $T_A = 25^{\circ}C$ with the component mounted on a low effective-thermalconductivity single-layer test board on a JEDEC 51-3 thermal measurement standard. θ_{JC} is measured at the exposed pad of the package.

Note 3. Devices are ESD sensitive. Handling precaution is recommended.

- Note 4. The device is not guaranteed to function outside its operating conditions.
- Note 5. Maximum Output Current ability is defined in V_{OUT} (5V) ready.

Typical Operating Characteristics

(C_{IN} = C_{OUT} = 2.2 μ F, C_{PUMP} = 0.22 μ F, T_A = 25°C, unless otherwise specified)

Copyright ©2022 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

RICHTEK

Copyright ©2022 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

RT9394

Time (400ns/Div)

Time (400ns/Div)

8

Copyright @2022 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Application Information

Capacitor Selection

Careful selection of the three external capacitors C_{IN} , C_{OUT} and C_{PUMP} is very important because they will affect rampup time, output ripple and transient performance. Optimum performance will be obtained when low ESR (<100m Ω) ceramic capacitors are used for C_{IN} and C_{OUT} and C_{PUMP} . In general, low ESR may be defined as less than 100m Ω . In all cases, X7R or X5R dielectric are recommended. For particular application, low ESR Tantalum capacitors may be substituted; however optimum output ripple performance may not be realized. Aluminum electrolytic capacitors are not recommended for using with the RT9394 due the their inherent high ESR characteristic.

In general, lower values for C_{IN}, C_{OUT} and C_{PUMP} may be utilized for light load current applications (<60mA). Drawing a load current of 60mA or less may use a C_{IN} and C_{OUT} capacitor value as low as 2.2µF and a C_{PUMP} value of 0.22µF. C_{IN} and C_{OUT} may range from 1µF for light loads to 10µF for heavy output load conditions (<110mA). C_{PUMP} may range from 0.22µF for light loads to 1µF for heavy output load conditions. If C_{PUMP} is increased, C_{OUT} should also be increased by the same ratio to minimize output ripple. As a basic rule, the ratio between C_{IN}, C_{OUT} and C_{PUMP} should be approximately 10 to 1. Lowering the C_{IN}, C_{OUT} and C_{PUMP} value can decrease the ramp-up time of V_{OUT}, but it will increase the output ripple oppositely.

Figure 1. Application Circuits for Backlight Dimming

Figure 2. Application Circuits for Constant Load

Figure 3. Application Circuits for Doubling the Output Current

Efficiency

The efficiency of the charge pump regulator varies with the output voltage version, the applied input voltage, the load current, and the internal operation mode of the device.

The approximate efficiency is given by :

Efficiency (%) =
$$\frac{P_{OUT}}{P_{IN}} \times 100 = \frac{V_{OUT} \times I_{OUT}}{V_{IN} \times 2I_{OUT}} \times 100$$

= $\frac{V_{OUT}}{2V_{IN}} \times 100 - - - (\times 2 \text{ Charge Pump Operating Mode})$

For a charge pump with an output of 5 volts and a nominal input of 3 volts, the theoretical efficiency is 83.33%. Due to internal switching losses and IC quiescent current consumption, the actual efficiency can be measured as 82.72%.

Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature $T_{J(MAX)}$, listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula :

$\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = \left(\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}\right) / \theta_{\mathsf{JA}}$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance, θ_{JA} , is highly package dependent. For a WDFN-6SL 2x2 package, the thermal resistance, θ_{JA} , is 165°C/W on a standard JEDEC 51-3 low effective-thermal-conductivity single-layer test board. The maximum power dissipation at $T_A = 25$ °C can be calculated as below :

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (165^{\circ}C/W) = 0.606W \text{ for a}$ WDFN-6SL 2x2 package.

The maximum power dissipation depends on the operating ambient temperature for the fixed $T_{J(MAX)}$ and the thermal resistance, θ_{JA} . The derating curves in Figure 4 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

Figure 4. Derating Curve of Maximum Power Dissipation

PCB Board Layout

The RT9394 is a high-frequency switched-capacitor converter, and therefore large transient currents will flow in V_{IN} and V_{OUT}. For best performance and to minimize ripple, place all of the components as close to IC as possible. Besides a solid ground plane is recommended on the bottom layer of the PCB. The ground of C_{IN} and C_{OUT} should be connected together and as close to the IC as possible. Figure 5 and Figure 6 shows the typical PCB layout of RT9394 EVB board.

Figure 5

RICHTEK

Figure 6

Outline Dimension

DETAIL A Pin #1 ID and Tie Bar Mark Options

Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

Symbol	Dimensions	n Millimeters	Dimensions In Inches		
	Min	Max	Min	Max	
А	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A3	0.175	0.250	0.007	0.010	
b	0.200	0.350	0.008	0.014	
D	1.900	2.100	0.075	0.083	
D2	1.550	1.650	0.061	0.065	
E	1.900	2.100	0.075	0.083	
E2	0.950	1.050	0.037	0.041	
е	0.6	50	0.026		
L	0.200	0.300	0.008	0.012	

W-Type 6SL DFN 2x2 Package

Footprint Information

Package	Number of	Footprint Dimension (mm)							Tolerance	
	Pin	Р	А	В	С	D	Sx	Sy	М	TOIEIance
V/W/U/XDFN2x2-6S	6	0.65	2.80	1.40	0.70	0.40	1.60	1.00	1.70	±0.05

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

RICHTEK

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.