MITSUBISHI MICROCOMPUTERS

4520 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

DESCRIPTION

The 4520 Group is a 4-bit single chip microcomputer designed with CMOS technology. Its CPU is that of 4500 series using a simple, high-speed instruction set. The computer is equipped with serial I/O, A-D converter and an LCD control circuit, and is suitable for household appliances and consumer equipment.

The various microcomputers in the 4520 Group include variations of the built-in memory type and package as shown the table below.

APPLICATION

VCRs, televisions, audio-visual equipment, microwave ovens, rice cookers, telephones, office automation, toys

FEATURES

- Number of basic instructions 129

- Timers Timer 1 8-bit timer with a reload register Timer 3......4 bits×2 (fixed dividing frequency) Timer 4 8-bit timer with a reload register A-D converter8-bit successive comparison method X8ch Serial I/O------8-bit wide . Clock generating circui Main clock (X_{IN}) : a ceramic resonator or external clock input Sub-clock (X_{CIN}) : a quartz-crystal oscillator (32kHz) Built-in LCD controller/driver Common output Zero cross detection circuit 1 LED drive directly enabled (port D)

Product	ROM (PROM) size (X10 bits)	RAM size (×4 bits)	Package	ROM type	
M34520M6A-XXXSP/FP	6144 words	204	SP : 64P4B	Mask ROM	
M34520M8A-XXXSP/FP	8192 words	384 words	FP:64P6N-A		
M34520E8-XXXSP/FP		anna ann an Aontaine ann an Aontaine ann ann an Aontaine ann an Aontaine ann an Aontaine ann ann ann ann ann an	SP : 64P4B	0	
134520E8SP/FP * 8192 words		384 words	FP:64P6N-A	One Time PROM	
M34520E8SS/FS **	DE8SS/FS **		SS : 64S1B-E FS : 64D0	EPROM	

* : Shipped in blank ** : For program development only

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

BLOCK DIAGRAM (M34520MxA-XXXSP/FP)

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

PERFORMANCE OVERVIEW

	Paramete	31	Function		
Number of basic in			129		
Minimum instruction	F		0. 75µs (at 4MHz system clock frequency)		
System clock	Main clock		4MHz		
frequencies Sub-clock			32kHz		
Memory sizes	ROM M34520M6A		6144 words×10 bits		
		M34520M8A	8192 words × 10 bits		
	RAM	M34520M6A	384 words×4 bits (LCD RAM 27 words×4 bits included)		
		M34520M8A			
input/Output pins	D ₀ -D ₁₀	1/0	Eleven independent I/O ports; D ₂ pin is also used as real time output. D ₁₀ pin is also used as real time output or PWM output. D ₀ -D ₇ , D ₈ and D ₁₀ (10 pins) are the middle withstand voltage N-channel open-drain I/O pins and can drive directly.		
	P00-P03	1/0	4-bit I/O port; each pin is equipped with a pull-up function and a key-on wakeup function (both programmable).		
	P1 ₀ P1 ₃	1/0	4-bit I/O port; each pin is equipped with a pull-up function and a key-on wakeup function (both programmable).		
	P20-P23	Input	4-bit input port		
	P30-P33	Input	4-bit input port; each pin is also used as an analog input pin or a segment output pin.		
	P40-P43	Input	4-bit input port; each pin is also used as an analog input pin or a segment output pin.		
	SEG0-SEG18	LCD output	Seventeen LCD output pins; 10-bit expansion is enabled with ports P3, P4, V_{LC1} and V_{LC2}		
COM0-COM3 LCE		LCD output	Four LCD output pins		
	CNTR ₀	Output	Timer output; CNTR ₀ pin is also used as port D ₆ .		
	CNTR1	1/0	Timer I/O; CNTR ₁ pin is also used as port D ₇ .		
	INT _C	Input	Interrupt input; INT ₀ pin is also used as port D_8 or zero cross input pin, and is equipped with key-on wakeup function.		
	INT ₁	Input	Interrupt input; INT ₁ pin is also used as port P2 ₁ .		
	INT ₂	Input	Interrupt input, INT ₂ pin is also used as port P3 ₀ .		
Timers	Timer 1		8-bit programmable timer with a reload register		
	Timer 2		8-bit programmable timer with a reload register is also used as an event counter		
	Timer 3		4-bit fixed dividing frequency ×2		
	Timer 4		8-bit programmable timer with a reload register		
A-D converter			8-bit successive comparison method×8ch		
Serial I/O			8-bit wide		
interrupt	Source		8 (two for external, four for timer, A-D, and serial t/O)		
	Nesting		1 level		
Subroutine nesting	}		8 levels		
LCD	Selective bias vi	alue	1/2, 1/3 bias		
	Selective duty vi	alue	2, 3, 4 duty		
Common output Segment output			4		
			27		
	Internal resistor	for power supply	200κΩ(typical) ×3		
Device structure			CMOS silicon gate		
Packages	M34520MxA-XX		64-pin plastic molded SDIP		
	M34520MxA-XX	XFP	64-pin plastic molded QFP		
Operating temper	1		-20°C to 85°C (-20°C to 70°C at M34520E8SS/M34520E8FS)		
Supply voltage	$f(X_{IN}) = 1.5 MHz$		2. 2V to 5. 5V (2. 5V to 5. 5V at all built-in PROM versions)		
$f(X_{iN}) = 4.0 MHz$			4. 5V to 5. 5V		

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

PIN DESCRIPTIONS

Pin	Name	input/Output	Function
V _{DD}	Power supply		Connected to a plus power supply
V _{SS}	Ground		Connected to a 0V power supply
AV _{SS}	Analog power supply input	Input	Connected to a 0V power supply for A-D converter.
V _{REF}	Reference voltage input	Input	Reference voltage input pin for A-D converter.
RESET	Reset I/O	1/0	An N-channel open-drain I/O pin for a system reset. When the watchdog timer causes the system to be reset, the RESET pin outputs "L" level.
X _{IN}	Main clock input	Input	I/O pins of the main clock generating circuit. X _{IN} and X _{OUT} can be connected to a ceramic resonator. A feedback resistor is built-in between them.
X _{OUT}	Main clock output	Output	
X _{CIN}	Sub-clock input	Input	I/O pins of the sub-clock generating circuit. X _{CIN} and X _{COUT} are connected to a quarts-crystal oscillator. A feedback resistor is built-in between them.
X _{COUT}	Sub-clock output	Output	
D ₀ -D ₁₀	I/O port D	1/0	Each pin has an independent 1-bit wide I/O function for instructions SZD, SD, and RD. Each bit is designated for independent use by register Y of the data pointer. Each pin has an output fatch. For input use, set the latch of the specified bit to "1". All latches on port D can be set to "1" with the CLD instruction.
P0 ₀ P0 ₃	I/O port P0	1/0	Each of ports P0 and P1 serves as a 4-bit I/O port, and it can be used as inputs when the output
P10-P13	I/O port P1	1/0	latch is set to "1". Every pin of the ports has a key-on wakeup function and a pull-up function.
P2 ₀ -P2 ₃	input port P2	Input	4-bit input port
P30-P33	Input ports P3	Input	4-bil input port
P4₀P4₃	Input ports P4	Input	4-bit input port
SEG ₀ -SEG ₂₆	Segment output	Output	LCD segment output pins
COM0-COM3	Common output	Output	LCD common output pins. Pins COM_0 and COM_1 are used at 1/2 duty, pins $COM_0 - COM_2$ are used at 1/3 duty, and pins $COM_0 - COM_3$ are used at 1/4 duty.
V _{LC1} -V _{LC3}	LCD power input	Input	LCD power supply input pins. Connect V_{LC3} pin to V_{DD} pin when an internal resistor is used (connect to V_{DD} through a resistor if brightness control is necessary). Apply voltage such that $0 \leq V_{LC1} \leq V_{LC3} \leq V_{LC3} \leq V_{DD}$ when external power is used.
INTo	Interrupt input	Input	INT_0 pin accepts an external interrupt. It also accepts the input signal which releases the system from the power down state (key-on wakeup function).
INT ₁	Interrupt input	Input	INT, pin accepts an external Interrupt.
INT ₂	Interrupt input	Input	INT ₂ pin accepts an external interrupt.
ZEROX	Zero cross input	Input	ZEROX/D ₈ /INT ₀ pin is used as the zero cross input pin with software.
CNTR	Timer output	Output	CNTR ₀ pin is used to output timer 1 underflow signals.
CNTR	Timer input/output	1/0	$CNTR_1$ pin is used to output timer 2 underflow signals, and to input clock signals to the timer 3 event counter.
RTP ₀ , RTP ₁	Real time output RTP	Output	Pins RTP_0 and RTP_1 are used as the real time output pins with software.
PWM	PWM output	Output	$D_{10}/S_{OUT}/\text{RTP}_1/\text{PWM}$ pin is also used as the PWM output pin with software.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

PIN DESCRIPTIONS (continued)

Pin	Name	input/Output	Function
SIN	Serial data input	Input	P2 ₀ /S _{IN} pin is used to input serial data signals with software.
Sour	Serial data output	Output	D ₁₀ /S _{OUT} /RTP ₁ /PWM pln is used to output serial data signals with software.
Sck	Serial I/O clock input/output	1/0	$D_{\text{g}}/S_{\text{CK}}/\text{RTP}_0$ pin is used to input and output synchronous clock signals for serial data transfer with software.
AINC-AIN7	Analog input Ain	Input	Eight analog input pins

MULTIFUNCTION

Pin	Multifunction	Pin	Multifunction	Pin	Multifunction
D ₆	CNTR ₀	SEG ₁₇	V _{LC1}	CNTR₀	D ₆
D7	CNTR ₁	SEG ₁₈	VLC2	CNTR ₁	D7 .
D ₈	INT ₀ /ZEROX	SEG ₁₉	P43/AIN7	RTPo	D ₉ /S _{CK}
D ₉	SCK/RTP0	SEG ₂₀	P42/AIN6	RTP1	D10/Sout/PWM
D ₁₀	Sout/RTP1/PWM	SEG ₂₁	P41/AIN5	PWM	D10/SOUT/RTP1
P20	SIN	SEG ₂₂	P40/AIN4	SIN	P20
P21	INT ₁	SEG ₂₃	P33/AIN3	Sout	D10/RTP1/PWM
P30	SEG26/INT2/AINO	SEG ₂₄	P3 ₂ /A _{IN2}	Sck	D ₉ /RTP ₀
P31	SEG ₂₅ /A _{IN1}	SEG ₂₅	P31/AIN1	AINO	SEG26/P30/INT2
P32	SEG24/AIN2	SEG ₂₆	P30/INT2/Aine	A _{IN1}	SEG25/P31
P33	SEG23/AIN3	V _{LC1}	SEG ₁₇	A _{IN2}	SEG24/P32
P40	SEG ₂₂ /A _{IN4}	VLC2	SEG ₁₈	A _{IN3}	SEG ₂₃ /P3 ₃
P41	SEG21/AIN5	INTo	D ₈ /ZEROX	A _{IN4}	SEG22/P40
P42	SEG20/AIN6	INT,	P21	A _{IN5}	SEG21/P41
P43	SEG19/AIN7	INT ₂	SEG ₂₈ /P30/AINO	AIN6	SEG20/P42
		ZEROX	D ₈ /INT ₀	A _{IN7}	SEG19/P43

Note : Pins except above have just single function.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Pin	Connection	Pin	Connection
Xout	Open (when using external clock)	P20/SIN.	Connect to V _{SS} (Note 3)
X _{CIN}	Connect to V _{SS}	P21/INT1,	
X _{COUT}	Open	P22, P23	
AV _{SS}	Connect to Vss	SEG26/P30/INT2/AIN0.	Select the SEG pin function and open these pins. (Note 4)
VREF	Connect to V _{SS} (Note 1)	SEG25/P31/AIN1-	
D ₀ -D ₅ ,	Connect to V _{SS} , or set the output latch to "0" and open.	SEG23/P33/AIN3	
D ₆ /CNTR ₀ ,		SEG22/P40/AIN4-	Select the SEG pin function and open these pins. (Note 4)
D7/CNTR1,		SEG19/P43/AIN7	
D ₈ /INT ₀ /ZEROX,		COM0-COM3	Open
D ₉ /S _{CK} /RTP ₀ ,		SEG0-SEG16,	Open (Note 5)
D10/SOUT/RTP1/PWM		SEG17/VLC1, SEG18/VLC2	
P00-P03	Open or connect to V _{SS} (Note 2)	V _{LC3}	When not using LCD, connect to V _{DD}
P10-P13	Open or connect to V _{SS} (Note 2)		

CONNECTIONS OF UNUSED PINS

Notes 1. The 4520 Group has current flowing from the V_{REF} pin even when not using the A-D conversion. Accordingly, on systems that require low power consumption such as battery drive system, the power to the V_{REF} pin should be cut off when not using the A-D conversion. An example of a circuit to turn the power to the V_{REF} pin off by controlling the general purpose port is shown below.

2. When the P0₀-P0₃ and P1₀-P1₃ are connected to V_{ss}, turn off their pull-up transistors with software (register PU0i="0") and also invalidate the key-on wakeup functions (register K0i="0"). If the key-on wakeup functions are left valid, the system fails to return from power down. When these pins are disconnected, turn on their pull-up transistors (register PU0i="1") with software. Be sure to invalidate the key-on wakeup functions and the pull-up functions with every two bits. If only one of the two bits key-on wakeup functions is used, turn on their pull-up transistors (register PU0i="1") with software and also disconnect the other pin. (I represents 0, 1, 2, or 3.)

3. When not using the P2₃ pin of M34520E8, connect to V_{SS} through a 5k Ω resistor at the shortest distance.

- 4. When setting some of pins SEG₂₆/P3₀/INT₂/A_{IN0} SEG₁₉/P4₃/A_{IN7} to be unused, note the following. Select the SEG pin function with register L2 and open the unused pins. When selecting pins P3₂/A_{IN2} and P3₃/A_{IN3} function with the bit 2 of register L2, fix all pins (P3₂/A_{IN2} and P3₃/A_{IN3}) to be used or unused. When selecting pins P4₀/A_{IN4} and P4₃/A_{IN7} function with the bit 3 of register L2, fix all pins (P4₀/A_{IN4} and P4₃/A_{IN7}) to be used or unused.
- 5. SEG₁₈ and SEG₁₇ are also used as V_{LC2} and V_{LC1}, respectively. Clear the LCD control register (L3) to "0₂" and cut them off from the internal LCD power supply and pins open when they are not used (register L3="0₂" at reset).

(Note when the output latch is set to "0" and pins are open)

- After reset is released, port is in a high-impedance state until it is switched to an output enabled state. Accordingly, the voltage level of pins is undefined and the excess of the supply current may occur while the port is in a high-impedance state.
- To set the output latch periodically by a program is recommended because the value of output latch may change by noise or program run-away (caused by noise).

(Note when connecting to V_{DD} and V_{SS})

- Connect the unused pins to V_{DD} or V_{SS} using the thickest wire at the shortest distance.

Handling of unused LCD power supply input pins

Example of handling VREF pin at A-D conversion

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

PORT FUNCTION

Port	Pin	Input/ Output	Output structure	Control bits	Control instructions	Control registers	Remarks
Port D	D ₀ -D ₅	1/0	N-channel open-drain	1	SD		
	D ₆ /CNTR ₀	(11)			RD	W1	
	D7/CNTR1	1			SZD	W2	
	D8/INT0/ZEROX	1			CLD	11	Key-on wakeup functions
	D ₉ /S _{CK} /RTP ₀	-			SNZIO	J1	
	D10/SOUT/RTP1/PWM	1			(Note 1)	J2	
Port P0	P0 ₀ P0 ₃	1/O (4)	N-channel open-drain	4	OP0A IAP0	PU0 K0	Built-in programmable pull-up functions Key-on wakeup functions (programmable)
Port P1	P1 ₀ -P1 ₃	1/O (4)	N-channel open-drain	4	OP1A IAP1	РU0 К0	Built-in programmable pull-up functions Key-on wakeup functions (programmable)
Port P2	P2 ₀ /S _N P2 ₁ /INT ₁ P2 ₂ P2 ₃	Input (4)		4	IAP2 SNZI1 (Note 2)		
Port P3	SEG ₂₆ /P3 ₀ /INT ₂ /A _{IN0} SEG ₂₅ /P3 ₁ /A _{IN1} SEG ₂₄ /P3 ₂ /A _{IN2} SEG ₂₃ /P3 ₃ /A _{IN3}	Input (4)		4	IAP3	L2	
Port P4	SEG ₂₂ /P4 ₀ /Å _{IN4} SEG ₂₁ /P4 ₁ /Å _{IN5} SEG ₂₀ /P4 ₂ /Å _{IN8} SEG ₁₉ /P4 ₃ /Å _{IN7}	lnput (4)		4	IAP4	L2	
Power input for LCD	SEG ₁₇ /V _{LC1} SEG ₁₈ /V _{LC2} V _{LC3}	Input				L1 L3	

Notes 1. Level of D₈/INT₀ pin can be examined with the SNZI0 instruction. 2. Level of P2₁/INT₁ pin can be examined with the SNZI1 instruction. However, level of OR operation between P2₁/INT₁ pin and SEG₂₆/P3₀/INT₂/A_{INO} pin is examined when register I3₀ is "1".

MITSUBISHI MICROCOMPUTERS

4520 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

FUNCTION BLOCK OPERATIONS

ARITHMETIC LOGIC UNIT (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4-bit data addition, comparison, AND operation, OR operation, and bit manipulation.

REGISTER A AND CARRY FLAG

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.

Carry flag CY is a 1-bit flag that is set to "1" when there is a carry with the AMC instruction (it is unchanged with both A n instruction and AM instruction). The value of A_0 is stored in the carry flag CY with the RAR instruction.

Carry flag CY can be set to "1" with the SC instruction and cleared to "0" with the RC instruction.

REGISTERS B and E

Register B is a 4-bit register used for temporary storage of 4-bit data, and for 8-bit data transfer together with register A.

Register E is an 8-bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits.

REGISTER D

Register D is a 3-bit register. It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed.

Fig. 1 AMC instruction execution example

Fig. 2 RAR instruction execution example

Fig. 3 Registers A, B and register E

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

STACK REGISTERS (SKs)

Stack registers SKs are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

• branching to an interrupt service routine (referred to as an interrupt service routine),

· performing a subroutine call, or

• executing the table reference instruction (TABP p).

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together. The contents of registers SKs are destroyed when 8 levels are exceeded.

The register SK nesting level is pointed automatically by 3-bit stack pointer (SP). The contents of the stack pointer (SP) can be transferred to register A with the TASP instruction.

INTERRUPT STACK REGISTER (SDP)

Interrupt stack register (SDP) is a 1-stage register. When an interrupt occurs, this register (SDP) is used to temporarily store the contents of data pointer, carry flag, skip flag, register A, and register B just before an interrupt until returning to the original routine.

Unlike the stack registers (SKs), this register SDP is not used when executing the subroutine call instruction and the table reference instruction.

SKIP FLAG

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions. When an interrupt occurs, the contents of skip flag is stored automatically in the interrupt stack register (SDP) and the skip condition is retained.

Fig. 6 Example of operation at subroutine call

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

PROGRAM MEMORY (ROM)

The program memory is the mask ROM. 1 word of ROM is composed of 10 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127).

Table 1 ROM size and pages

Product	ROM size (×10 bits)	Pages
M34520M6A	6144 words	48(0 to 47)
M34520M8A/E8	8192 words	64(0 to 63)

A part of page 1 (addresses 0080_{16} to $00FF_{16}$) is reserved for interrupt addresses. When an interrupt occurs, the address (interrupt address) corresponding to each interrupt is set in the program counter, and the instruction at the interrupt address is executed. When using an interrupt service routine, write the instruction generating the branch to that routine at an interrupt address.

Page 2 (addresses 0100_{16} to $017F_{16}$) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1-word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.

All pages can be used as data areas with the TABP p instruction.

PROGRAM COUNTER (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which the instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to the specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.

The program counter consists of PC_H (most significant bit to bit 7) which specifies a ROM page and PC_L (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page.

Make sure that the PC_H does not specify after the last page of the built-in ROM.

Fig. 7 ROM map of M34520M8A

Fig. 9 Program counter structure

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB j, RB j, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers Z, X, and Y. Set a value to the data pointer certainly when executing an instruction to access RAM.

Table 2 RAM size

Product	RAM size
M34520M6A	384 words×4 bits
M34520M8A/E8	(1536 bits)

The RAM includes the area corresponding to the LCD. A segment is turned on automatically when "1" is written in the bit corresponding to the segment.

DATA POINTER (DP)

Data pointer (DP) is used to specify a RAM address and consists of registers Z, X, and Y. Register Z specifies a RAM file group, register X specifies a file, and register Y specifies a RAM digit.

Register Y is also used to specify the port D bit position. Set the value of register Y when using port D.

Fig. 10 Data pointer (DP) structure

Fig. 11 SD instruction execution example

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

INTERRUPT FUNCTION

The interrupt type is a vectored interrupt branching to an individual address (interrupt address) according to each interrupt source. An interrupt occurs when the following 3 conditions are satisfied.

- An interrupt activated condition is satisfied (interrupt request flag="1")
- Interrupt enable bit is enabled ("1")
- Interrupt enable flag is enabled (INTE="1")

Table 3 shows the interrupt sources. (Refer to each interrupt request flag for details of activated conditions)

(1) Interrupt enable flag (INTE)

The interrupt enable flag (INTE) controls whether the every interrupt enable/disable. Interrupts are enabled when INTE flag is set to "1" with the El instruction and disabled when INTE flag is cleared to "0" with the DI instruction. When any interrupt occurs, the INTE flag is automatically cleared to "0", so that other interrupts are disabled until the El instruction is executed.

(2) Interrupt enable bit

Occurrence of each interrupt can be controlled with software. When an interrupt is not used, its corresponding skip instruction examines whether the interrupt activated condition is satisfied (whether the interrupt request flag="1") or not. Use an interrupt enable bit to select the corresponding interrupt or skip instruction.

(3) Interrupt request flag

When the activated condition for each interrupt is satisfied, the corresponding interrupt request flag is set to "1". Each interrupt request flag is cleared to "0" when either:

• an interrupt occurs, or

• the next instruction is skipped with a skip instruction. Each interrupt request flag is set when the activated condition is satistied even if the interrupt is disabled by the interrupt enable flag (INTE) or its interrupt enable bit. Once set, the interrupt request flag retains set until a reset condition is satisfied.

Accordingly, an interrupt occurs when the interrupt disable state is released while the interrupt request flag is set.

If more than one interrupt request flag is set when interrupt disable state is released, the interrupt priority level is as follows shown in Table 3.

Table 3 Interrupt sources

Priority level	Interrupt name	Activated condition	Interrupt address
1	External 0 interrupt	Level change of INT ₀ pin	Address 0 in page 1
2	External 1 interrupt	Level change of INT1 pin	Address 2 in page 1
	External 2 interrupt	Level changes of pins INT_1 or INT_2 (OR of pins INT_1 and INT_2)	
3	Timer 1 interrupt	Timer 1 underflow	Address 4 in page 1
4	Timer 2 interrupt	Timer 2 underflow	Address 6 in page 1
5	Timer 3 interrupt	Timer 3 underflow	Address 8 in page 1
6	Timer 4 interrupt	Timer 4 underflow	Address A in page 1
7	A-D interrupt	Completion of A-D conversion	Address C in page 1
8	Serial I/O interrupt	Completion of se- rial I/O transfer	Address E in page 1

Table 4 Interrupt enable bit and skip instruction

Interrupt name	Request flag	Enable bit	Skip instruction
External 0 interrupt	EXF0	V1 ₀	SNZ0
External 1, 2 interrupts	EXF1	V11	SNZ1
Timer 1 interrupt	T1F	V12	SNZT1
Timer 2 interrupt	T2F	V13	SNZT2
Timer 3 interrupt	T3F	V2o	SNZT3
Timer 4 interrupt	T4F	V21	SNZT4
A-D interrupt	ADF	V22	SNZAD
Serial I/O interrupt	SIOF	V2 ₃	SNZSI

Table 5 Interrupt enable bit function

Interrupt enable bit	Occurrence of interrupt	Skip instruction
1	Enabled	Invalid
0	Disabled	Valid

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(4) Internal state during an interrupt The internal state of the microcomputer during an inter-

rupt is as follows.

• Program counter (PC)

An interrupt address is set in program counter. The address to be executed when returning to the main routine is automatically stored in the stack register (SK).

- Interrupt enable flag (INTE) INTE flag is cleared to "0" so that interrupts are disabled.
- Interrupt request flag Only the request flag for the current interrupt source is cleared to "0".
- Data pointer, carry flag, skip flag, registers A and B The contents of these registers and flags are stored in the interrupt stack register (SDP).
- (5) Interrupt processing

When an interrupt occurs, a program at an interrupt address is executed after branching a data storing sequence to stack register. Write the branch instruction to an interrupt service routine at an interrupt address. Use the RTI instruction to return from an interrupt service routine.

Interrupt enabled by executing the El instruction is performed after executing 1 instruction (just after the next instruction is executed). Accordingly, when the El instruction is executed just before the RTI instruction, interrupts are enabled after returning the main routine. (Refer to Fig.16)

Stored in the interrupt stack register (SDP) automatically

Fig. 15 Interrupt system diagram

MITSUBISHI MICROCOMPUTERS

4520 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(6) Interrupt control register

• Interrupt control register (V1) Interrupt enable bits of external 0, external 1, timer 1 and timer 2 are assigned to register V1. Set the contents of this register through register A with the TV1A instruction. The TAV1 instruction can be used to transfer the contents of register V1 to register A. Interrupt control register (V2)

Interrupt enable bits of timer 3, timer 4, A-D and serial I/O are assigned to register V2. Set the contents of this register through register A with the TV2A instruction. The TAV2 instruction can be used to transfer the contents of register V2 to register A.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

EXTERNAL INTERRUPTS

An external interrupt request occurs (edge detect) when an valid waveform is input to the interrupt input pin. The 4520 Group has 3 external interrupt functions (external 0, external 1, and external 2).

External 0 interrupt is equipped with a noise detection circuit and a zero cross detection circuit. The noise detection circuit invalidates the first edge as noise when the second valid edge is detected within a certain interval after a valid edge is detected. The zero cross detection circuit detects the point when the voltage level of an alternating waveform passes 0V. The external interrupts can be controlled with the interrupt control registers (11, 12, and 13).

Interrupt name	Input pin	pin Activated condition	
External 0 interrupt	rrupt D ₈ /INT ₀ /ZEROX When the next waveform is input to INT ₀ pin • Falling edge ("H"→"L") • Rising edge ("L"→"H") • Both rising edge and falling edge		11 ₁ 11 ₂
External 1 interrupt	P2 ₁ /INT ₁ When the next waveform is input to INT ₁ pin • Falling edge ("H"→"L") • Rising edge ("L"→"H")		122
External 2 interrupt P2 ₁ /INT ₁ , SEG ₂₆ /P3 ₀ /INT ₂ /A _{INO}		 When the next waveform is input to INT₁ pin or INT₂ pin (OR operation between INT₁ pin and INT₂ pin) Falling edge ("H"→"L") Rising edge ("L"→"H") 	

Fig. 18 External interrupt circuit structure

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(1) External 0 interrupt request flag (EXF0)

The external 0 interrupt request flag (EXF0) is set to "1" when a valid waveform is input to the INT_0 pin. The valid edge polarity can be selected from rising edge, falling edge, or rising and falling edges. An example of how to use the external 0 interrupt is shown below.

- ① Set bits 0 and 3 of register 11 to "0" and select the valid edge polarity with bits 1 and 2.
- Clear EXF0 flag to "0" with the SNZ0 instruction.
- (3) Set the external 0 interrupt enable bit $(V1_0)$ and the interrupt enable flag (INTE) to "1".

External 0 interrupt is now enabled. Now when a valid waveform is input to the INT_0 pin, the EXF0 flag is set to "1" and an external 0 interrupt occurs.

The external 0 interrupt circuit has a noise detection function and a zero cross detection function. The above usage does not involve these functions, and in this case the waveform causing the interrupt must be retained at their level for 4 periods or more of the signal used as the system clock. (Refer to Fig. 16)

The state of the EXF0 flag can be examined with the skip instruction (SNZ0). Use the interrupt control register (V1) to select the interrupt or the skip instruction.

EXF0 flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

The $D_8/INT_0/ZEROX$ pin need not be selected the external interrupt input INT_0 function or the normal I/O port D_8 function. However, the EXF0 flag is set to "1" when a valid waveform is input even if it is used as an I/O port D_8 .

(2) External 1 interrupt request flag (EXF1)

The external 1 interrupt request flag (EXF1) is set to "1" when an activated condition of either an external 1 interrupt or external 2 interrupt is satisfied. The waveforms causing external 1 interrupt and external 2 interrupt must be retained at their level for 4 periods or more of the signal used as the system clock. (Refer to Fig. 16)

The state of the EXF1 flag can be examined with the skip instruction (SNZ1). Use the interrupt control register (V1) to select the interrupt or the skip instruction. EXF1 flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

The $P2_1/INT_1$ pin need not be selected the external interrupt input INT_1 function or the input port $P2_1$ function. However, the EXF1 flag is set to "1" when a valid waveform is input even if it is used as an input port $P2_1$.

· External 1 interrupt activated condition

An external 1 interrupt activated condition is satisfied when a valid waveform is input to the INT_1 pin.

The valid edge polarity can be selected from falling edge or rising edge. An example of how to use the external 1 interrupt is shown below.

- Clear register I3 to "0"
- ② Select a valid edge polarity with the bit 2 of register |2.
- ③ Clear EXF1 flag to "0" with the SNZ1 instruction.
- ④ Set both the external 1 interrupt enable bit (V1₁) and the interrupt enable flag (INTE) to "1".

External 1 interrupt is now enabled. Now when a valid waveform is input to the $\rm INT_1$ pin, the EXF1 flag is set to "1" and an external 1 interrupt occurs.

- External 2 interrupt activated condition
- An external 2 interrupt activated condition is satisfied when a valid waveform is input to INT_1 pin or INT_2 pin (OR operation between INT_1 and INT_2). An example of how to use the external 2 interrupt is shown below.
- ① Set the bit 0 of LCD control register (L2) to "1" and register I3 to "1".

Perform steps 2 to 4 for external 1 interrupt. Then the external 2 interrupt is enabled. Now when a valid waveform is input to INT₁ pin or INT₂ pin, the EXF1 flag is set to "1" and the external 2 interrupt occurs.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(3) Noise detection circuit

The external 0 interrupt is equipped with a noise detection circuit which invalidates the first edge as noise when the second valid edge is detected within a certain interval after a valid edge is detected. (Refer to Fig. 21) This noise detection circuit consists of 4-bit shift register and a noise canceller flag (NCF).

The clock used at the noise detection circuit is $f(X_{\text{IN}})$ or $f(X_{\text{CIN}})$ selected as the system clock by register MR. The signal obtained by dividing the frequency of this clock by 24 or 96 is used as the sampling clock of the noise detection circuit.

The interrupt activated conditions (valid edge interval) for external 0 interrupt using the noise detection circuit are as follows:

 When the signal of frequency divided by 24 is selected as sampling clock: Valid edge interval is 34 machine cycles or

greater.

• When the signal of frequency divided by 96 is selected as sampling clock:

Valid edge interval is 120 machine cycles or greater.

(1 machine cycle (sec) =
$$3/f(X_{iN})$$
 or $3/f(X_{CIN})$

When the valid edge interval is less than the above, the previously detected edge is assumed to be noise and invalidated. However, the allowed values for the valid edge interval changes according to the internal state when the valid edge is input. The actual allowed values for the valid edge interval are 27 to 34 machine cycles or greater when the signal of frequency divided by 24 is selected and 99 to 120 machine cycles or greater when the signal of frequency divided by 96 is selected.

An example of how to use the external 0 interrupt using the noise detection circuit is shown below.

- ① Set the bit 0 of register 11 to "1", select the valid waveform (=valid edge) with bits 1 and 2, and the pin function with bit 3.
- ② Clear the external 0 interrupt request flag (EXF0) to "0" with the SNZ0 instruction.
- ③ Set both the external 0 interrupt enable bit (V1₀) and interrupt enable flag (INTE) to "1".
- ④ Select the sampling clock with the bit 0 of register I2 and set the bit 1 to "1".

External 0 interrupt is now enabled. Now when a valid waveform is input to the INT_0 pin, the NCF flag is set to "1" which in turn sets the EXF0 flag to "1" and an external 0 interrupt occurs.

The NCF flag is cleared to "0" when the external 0 interrupt occurs, when the SNZ0 instruction is executed, or when the zero cross input flag is set to "1".

(4) NOTES ON USING THE NOISE DETECTION CIRCUIT Note the SNZ0 instruction execution timing when using the noise detection circuit. If the SNZ0 instruction is executed at the timing when the noise canceller flag (NCF) is being set, the conditions for setting the external 0 interrupt request flag (EXF0) and zero cross input flag (ZCF) become invalid.

Even when the noise detection circuit is used, an interrupt occurs when the waveform shown in Fig. 20 is input.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Fig. 20 Precaution when using noise detection circuit

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Fig. 21 Noise detection circuit operation

「田田田

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(5) Zero cross detection circuit

The external 0 interrupt is equipped with a zero cross detection circuit which detects the point when the voltage level of the alternating waveform passes 0V. Zero cross point to be detected can be selected when changing from minus to plus, plus to minus, or both.

The zero cross detection circuit can be used together with the noise detection circuit. When using together with the noise detection circuit, the zero cross interval of the input waveform must be equal to or greater than the allowed values for the valid edge interval (refer to description of the noise detection circuit). In addition, the zero cross point detected with the zero cross detection circuit can be used as the trigger to start timer 2 count operation (refer to description of zero cross input flag).

An example of how to use the external 0 interrupt using the zero cross detection circuit is shown below.

- Set bit 3 of register 11 to "1" and select the valid edge (=zero cross point to be detected) with bits 1 and 2.
- ② Clear the external 0 interrupt request flag (EXF0) to "0" with the SNZ0 instruction.
- ③ Set both external 0 interrupt enable bit (V1₀) and interrupt enable flag (INTE) to "1".

External 0 interrupt is now enabled. Now when an alternating waveform is input to the ZEROX pin, zero cross is detected, EXF0 flag is set to "1", and an external 0 interrupt occurs. The interval between the time from zero cross is detected until the time program at the interrupt address is executed is 3 to 4 machine cycles (the allowed value of edge interval is added when the noise detection circuit is used).

- (6) Zero cross input flag (ZCF) The ZCF flag is used to start timer 2 count operation when a zero cross point is detected with the zero cross detection circuit.
 - The ZCF flag is set to "1" when the voltage level of an alternating waveform input to the ZEROX pin passes 0V. When the bit 2 of timer control register (W2) is set to "1", timer 2 starts counting when the ZCF flag is set and stops counting when the ZCF flag is cleared.
 - The ZCF flag can be controlled by the bit 2 $(W5_2)$ of timer control register (W5). It can be set (operation state) when W5₂ is set to "1". It cannot be set (stop state) because it is fixed to "0" when W5₂ is cleared to "0". Clear W5₂ to "0" when the ZCF flag is cleared. However, when the ZCF flag is to be used after reset, set W5₂ to "1" and return it to the operation state.

Fig. 22 Zero cross detection circuit operation

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

- (7) External interrupt control register
 - Interrupt control register (I1)

Register I1 controls the operation of noise detection circuit, external 0 interrupt valid edge and return level from power down (valid level of wakeup signal) and $D_{B}/INT_{0}/ZEROX$ pin function. Set the contents of this register through register A with the TI1A instruction. The TAI1 instruction can be used to transfer the contents of register I1 to register A.

• Interrupt control register (12)

Register I2 controls the sampling clock of noise detection circuit and external 1 and 2 interrupt valid edges. Set the contents of this register through register A with the TI2A instruction. The TAI2 instruction can be used to transfer the contents of register I2 to register A.

• Interrupt control register (13)

Register I3 controls the occurrence of external 2 interrupt. Set the contents of this register through register A with the TI3A instruction. The TAI3 instruction can be used to transfer the contents of register I3 to register A.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

TIMERS

The 4520 Group has a programmable timer and a fixed dividing frequency timer.

Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to n+1), a timer interrupt request flag is set to "1", new data is loaded from the reload register, and count continues (auto-reload function).

· Fixed dividing frequency timer

A fixed dividing frequency timer has a fixed frequency dividing ratio (n). The timer 3 interrupt request flag is set to "1" after every n count of the count pulse.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

The 4520 Group timer consists of the following circuits.

- Prescaler : frequency divider
- Timer 1:8-bit programmable timer
- Timer 2: 8-bit programmable timer
- Timer 3: 8-bit fixed dividing frequency timer
- Timer 4 : 8-bit programmable timer (Timers 1 to 4 have the interrupt function)

- · Watchdog timer
- · Frequency divider for LCD
- · PWM output
- Real time output

These timers can be controlled with the timer control registers (W1 to W5) and serial I/O mode registers (J1, J2). Each function is described below.

Circuit	Structure	Count source	Frequency dividing ratio	Use of output signal	Control
Prescaler	Frequency divider	• f(X _{IN}) or f(X _{CIN})	6, 12	• Timer 1, 2 and 4 count sources	W1
Timer 1	8-bit programmable binary down counter	Prescaler output (ORCLK)	1 to 256	Timer 2 count source CNTR ₀ output Timer 1 interrupt	W1
Timer 2	8-bit programmable bi∩ary down counter (Link ZCF flag)	• f(X _{IN}) • Timer 1 underflow • Prescaler output (ORCLK) • CNTR ₁ input	1 to 256	 Timer 3, 4 count source. PWM output CNTR₁ output Timer 2 interrupt 	W2 W5
Timer 3	8-bit fixed dividing frequency binary down counter	• f(X _{CIN}) • Timer 2 underflow	256	Timer 4 count source Timer 3 interrupt	wз
	(Frequency divider (divide by 16))		(16)	Frequency divider for LCD	
Timer 4	8-bit programmable binary down counter	f(X _{IN}) Timer 3 underflow Timer 2 underflow Prescaler output (ORCLK)	1 to 256	Watchdog timer PWM output Real time output Timer 4 interrupt Power down 1 return	W4 W5
Watchdog timer	1-bit flag	Timer 4 underflow		System reset	W4
Frequency divider for LCD	4-bit counter +frequency divider (divide by 2)	Timer 3 intermediate underflow Timer 3 underflow	2(n+1) [n=0 to 15]	LCD controller/driver	wз
PWM output	Flip flop	Timer 2 underflow Timer 4 underflow		PWM output	W4 J2
Real time output	Output latch + output register	Timer 4 underflow		Real time output	J1 J2

Table 7 Function related timers

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Fig. 24 Timers structure

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(1) Prescaler

Prescaler is a frequency divider. Its frequency dividing ratio can be selected. Prescaler count source is $f(X_{\text{IN}})$ or $f(X_{\text{CIN}})$ which is a signal selected as a system clock with the register MR.

Use bit 2 of the register W1 to select the prescaler dividing ratio and bit 3 to start and stop its operation. Prescaler is reset state, and the output signal (ORCLK) stops when bit 3 of the register W1 are cleared to "0".

(2) Timer 1

Timer 1 is an 8-bit binary down counter with timer 1 reload register (R1). Data can be set simultaneously in timer 1 and reload register R1 with the T1AB instruction. Timer 1 starts counting after data is set in timer 1, and bit 1 of register W1 is set to "1".

When timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes "0"), the timer 1 interrupt request flag (T1F) is set to "1", new data is loaded from the reload register R1, and count continues (auto-reload function). When a value set in reload register R1 is n, timer 1 divides the count source signal by n+1 (n=0 to 255).

Data can be read from timer 1 with the TAB1 instruction. When reading the data, stop the counter and then execute the TAB1 instruction. In addition, a signal obtained by dividing the frequency of the timer 1 underflow signal by 2 can be output from the D_{6} /CNTR₀ pin. Select the function of the D_6 /CNTR₀ pin with the bit 0 of register W1.

(3) Timer 2

Timer 2 is an 8-bit binary down counter with timer 2 reload register (R2). Data can be set simultaneously in timer 2 and the reload register (R2) with the T2AB instruction. Timer 2 starts counting after setting data in timer 2, when the count source is selected with bits 0 and 1 of register W2 and the bit 0 of register W5 is set to "1". However, if the bit 2 of register W2 is set to "1", the zero cross input flag (ZCF) can be used as the timer 2 count start trigger (refer to description of external interrupts).

Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes "0"), the timer 2 interrupt request flag (T2F) is set to "1", new data is loaded from the reload register R2, and count continues (auto-reload function). When the value set in reload register R2 is n, timer 2 divides the count source signal by n+1 (n=0 to 255). Data can be read from timer 2 with the TAB2 instruc-

tion. When reading the data, stop the counter and then execute the TAB2 instruction. In addition, a signal obtained by dividing the frequency of the timer 2 underflow signal by 2 can be output from the $D_7/CNTR_1$ pin. Select the function of the $D_7/CNTR_1$ pin with the bit 3 of register W2.

(4) Timer 3

Timer 3 is an 8-bit binary down counter. Timer 3 starts counting when a count source is selected with the bit 0 of register W3 and bit 1 is set to "1".

Once count is started, the timer 3 underflow flag (T3F) is set to "1" every 256 counts.

Timer 3 outputs both count source frequency by 16 (intermediate underflow) and by 256 (underflow). Timer 3 is cleared and both count source divided by 16 and 256 outputs are stopped when the bit 1 of register W3 is cleared to "0".

Timer 3 can be used as the clock counter during power down 1 state (executing the POF instruction).

(5) Timer 4

Timer 4 is an 8-bit binary down counter with timer 4 reload register (R4). Data can be set simultaneously in timer 4 and the reload register (R4) with the T4AB instruction. In addition, data can be written individually in timer 4 with the T4ABD instruction and in the reload register R4 with the TR4AB instruction. When data is written individually, count down after writing starts from the value set in timer 4, and count down after underflow starts from the value set in reload register R4.

Timer 4 starts counting after setting data in timer 4 when the count source is selected with bits 0 and 1 of register W4 and the bit 1 of register W5 is set to "1". Once count is started, when timer 4 underflows (the next count pulse is input after the contents of timer 4 become "0"), the timer 4 interrupt request flag (T4F) is set to "1", new data is loaded from the reload register R4, and count continues (auto-reload function). When the value set is n, timer 4 divides the count source signal by n+1 (n=0 to 255).

Data can be read from timer 4 with the TAB4 instruction. When reading the data, stop the counter and then execute the TAB4 instruction. In addition, timer 4 can be used as the clock counter during power down 1 state (executing the POF instruction).

Fig. 28 Timer 4 data setting

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(6) Watchdog timer

Watchdog timer consists of timer 4 and watchdog timer flag (WDF). When a timer 4 underflow signal occurs, the WDF flag is set to "1". When the timer 4 underflows once more while the WDF flag is set, the watchdog timer forces a system reset (operationally the same that power-on reset).

Whether to use watchdog timer can be set with the bit 2 of the register W4. When using watchdog timer, be sure to clear the WDF flag to "0" with the WRST instruction with a program before timer 4 underflows again. In order to effectively use watchdog timer, do not execute the WRST instruction during timer 4 interrupt.

(7) Timer interrupt request flags (T1F, T2F, T3F, and T4F) Each timer interrupt request flag is set to "1" when each timer underflows. The state of these flags can be examined with skip instructions, respectively (SNZT2, SNZT3, and SNZT4). Use the interrupt or control registers (V1, V2) to select an interrupt or a skip instruction. The interrupt request flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with a skip instruction.

(8) Frequency divider for LCD

The frequency divider for the LCD consists of timer LC and frequency divider (divide by 2). Timer LC is a 4bit programmable timer with reload latch. Data can be set simultaneously in the reload latch and timer LC with the TLCA instruction.

Timer LC starts counting when data is set in timer LC and the count source is selected with bit 2 of the register W3 and "1" is set to bit 3. When it underflows, data is loaded from the reload latch and count continues. When n is set in timer LC, the count source is divided by n+1 (n=0 to 15).

The timer LC underflow signal divided by 2 becomes the standard clock of the LCD.

Fig. 29 Watchdog timer function

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(9) PWM output

The PWM output function uses timer 2 and timer 4 to form a waveform having arbitrary frequency and duty, and outputs it from the $D_{10}/S_{OUT}/RTP_1/PWM$ pin.

Set the "L" period of PWM waveform with timer 2, and the "H" period with timer 4. The function of the $D_{10}/S_{OUT}/RTP_1/PWM$ pin can be selected with the serial I/O mode register (J2).

During the "L" period of the PWM waveform, timer 4 is stopped and timer, 2 counts the count source. When timer 2 underflows, the PWM waveform changes to "H". During the "H" period, timer 2 is stopped and timer 4 counts the count source. When timer 4 underflows, the PWM waveform changes to "L". This sequence is repeated.

An example of how to use the PWM output is shown below.

- Set bits 0 and 1 of serial I/O mode register (J2) to "1".
- ② Set the bit 3 of register W4 to "1".
- 3 Set data in timer 2 and timer 4.
- ④ Set bits 0 and 1 of register W5 to "1".

Now a PWM waveform is output from $D_{10}/S_{OUT}/RTP_1/PWM$ pin. However, do not select timer 2 underflow as the count source for timer 4 when using PWM output function.

Fig. 30 PWM waveform

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(10) Realtime output

The realtime output function uses timer 4 underflow as the trigger to output the contents of the realtime output register (RTP) from the realtime output pin.

Each time a timer 4 underflow occurs, the data set in the realtime output register is transferred to the realtime output latch and at the same time outputs from the realtime output pin. RTP0 and RTP1 can be used for realtime output.

An example of how to use the realtime output is shown below.

Table 8 Real time output pins and real time output registers

Real time sutmit sin	Corresponding bits of real
Real time output pin	time output register
D ₉ /S _{CK} /RTP ₀	Bit 0 (RTP ₀)
D10/SOUT/RTP1/PWM	Bit 1 (RTP ₁)

- Set the function of the D₉/S_{CK}/RTP₀ or D₁₀/S_{OUT}/ RTP₁/PWM pin to realtime output with the serial I/O mode registers (J1 and J2).
- ② Set the initial output value in realtime output latch (RTPL).

(The realtime output latch can be set to "1" with the RTPS instruction or cleared to "0" with the RTPR instruction. However, the timer 4 interrupt request flag (T4F) must be cleared to "0" when executing the RTPS or RTPR instruction.)

③ Set data in the realtime output register (RTP). (Set the data in the realtime output register through register A with the TRTPA instruction.)

- ④ Select the timer 4 count source with bits 0 and 1 of register W4.
- (5) Set data in timer 4 and reload register R4, and then start timer 4 count operation with the bit 2 of register W5.

Now the contents of the realtime output register is output from the realtime output pin each time a timer 4 underflow occurs.

Fig. 31 Real time output structure

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Realtime output can be used together with the zero cross detection circuit. An example of how to use the realtime output using the zero cross detection circuit is shown below.

- ① Repeat steps ① to ③ described above.
- ② Set timer 4 count source to timer 2 underflow signal with bits 0 and 1 of register W4.
- ③ Clear the bit 2 of register W5 to "0" and the bit 2 of register W2 to "1".
- ④ Set bits 0 and 3 of register 11 to "1" and select the valid edge (=zero cross point to be detected) with bits 1 and 2.
- (5) Set data in timer 2 and reload register R2, timer 4 and reload register R4, and then start timer 2 and timer 4 count operations with register W5.
- 6 Set the bit 2 of register W5 to "1".

Now the zero cross of alternating waveform input to the $D_{\theta}/INT_{0}/ZEROX$ pin is detected and timer 2 count operation starts. Timer 4 counts the timer 2 underflow signal and the contents of the realtime output latch are output from the realtime output pin each time timer 4 underflows.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

- (11) Timer control register
 - Timer control register (W1)

Register W1 controls the $D_6/CNTR_0$ pin function, timer 1 count operation, prescaler dividing ratio and prescaler count operation. Set the contents of this register with the TW1A instruction through register A. The TAW1 instruction can be used to transfer the contents of register W1 to register A.

Timer control register (W2)

Register W2 controls the timer 2 count source, count start trigger and $D_7/CNTR_1$ pin function. Set the contents of this register with the TW2A instruction through register A. The TAW2 instruction can be used to transfer the contents of register W2 to register A.

• Timer control register (W3)

Register W3 controls the count operation and count source for timer 3 and LCD frequency dividing circuit. Set the contents of this register with the TW3A instruction through register A. The TAW3 instruction can be used to transfer the contents of register W3 to register A.

• Timer control register (W4)

Register W4 controls the timer 4 count source, the operation of watchdog timer and timer 2 and 4 function. Set the contents of this register through register A with the TW4A instruction. The TAW4 instruction can be used to transfer the contents of register W4 to register A.

• Timer control register (W5)

Register W5 controls the count operation of timer 2 and 4, and the operation of zero cross input flag. Set the contents of this register through register A with the TW5A instruction. The TAW5 instruction can be used to transfer the contents of register W5 to register A. After executing the TAW5 instruction, "0" is stored in bit 3 of register A.

• Serial I/O mode register (J1)

In addition to control serial I/O, register J1 controls the D₉/S_{CK}/RTP₀ pin function. Set the contents of this register through register A with the TJ1A instruction. The TAJ1 instruction can be used to transfer the contents of register J1 to register A. After executing the TAJ1 instruction, "0" is stored in bit 3 of register A.

Serial I/O mode register (J2)

Register J2 controls the $D_{10}/S_{OUT}/RTP_1/PWM$ pin function. Set the contents of this register through register A with the TJ2A instruction. The TAJ2 instruction can be used to transfer the contents of register J2 to register A. After executing the TAJ2 instruction, "0" is stored in bits 3 and 2 of register A. (12) Precautions

Note the following for the use of timers.

- Prescaler precautions
 Stop the prescaler to change its frequency dividing ratio.
- Timer precautions

Stop timer 1, 2, 3, or 4 counting to change its count source, as well as to execute the TAB1, TAB2, or TAB4 instruction for reading the data (from timer 1, 2, or 4).

When the timer 4 write instruction (T4ABD) is executed, timer 4 count value before writing is invalid. Do not execute the timer 4 write instruction (T4ABD) just before and just after timer 4 underflow occurs.

Fully stabilize the $f(X_{CIN})$ oscillation so as to select it as a timer 3 count source.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

SERIAL I/O

The 4520 Group has a built-in clock synchronous serial I/O which can serially transmit or receive 8-bit data. Serial I/O consists of :

- Serial I/O register (H, L)
- Serial I/O mode registers (J1 and J2)
- · Serial I/O transmission/reception completion flag (SIOF)
- Serial I/O counter

Register A is used to perform data transfer with internal CPU, and the serial I/O pins are used for external data

transfer.

The pin functions of the serial I/O pins can be set with the serial I/O mode registers (J1 and J2).

Table 9 Serial I/O pins

Pin	Pin function when selecting serial I/O
D ₉ /S _{CK} /RTP ₀	Clock I/O (S _{CK})
D10/SOUT/RTP1/PWM	Serial data output (Sour)
P20/SIN	Serial data input (S _{IN})

Note : P20/SIN is no need to select the function.

Fig. 34 Serial I/O mode register

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(1) Serial I/O register (registers H and L) The serial I/O register is an 8-bit data transfer serial/ parallel conversion shift register which consists of register H and register L. Register H and register L are 4bit registers. Store the high-order 4 bits of the transmission data in register H and the low-order 4 bits in register L. Data can be set in registers H and L through register A with the THA and TLA instructions, respectively.

During transmission, each bit data is transmitted LSB first from the lowermost bit (bit 0) of register L, and during reception, each bit data is received LSB first to register H starting from the topmost bit (bit 3). When registers H and L are used as work registers without using serial I/O, pull up the S_{CK} pin or set its function to other than S_{CK} .

Fig. 35 Serial I/O register state when transferring

(2) Serial I/O transmission/reception completion flag (SIOF) SIOF flag is set to "1" when serial data transmission or reception completes. The state of this flag can be examined with the skip instruction (SNZSI). Use the interrupt control register (V2) to select the interrupt or the skip instruction.

SIOF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

- (3) Serial I/O start instruction (SST instruction) When the SST instruction is executed, the SIOF flag is cleared and then serial I/O transmission/reception is started.
- (4) Serial I/O mode register
 - Serial I/O mode register (J1)

Register J1 controls the synchronous clock and $D_9/S_{CK}/RTP_0$ pin function. Set the contents of this register through register A with the TJ1A instruction. The TAJ1 instruction can be used to transfer the contents of register J1 to register A. After executing the TAJ1 instruction, "0" is stored in the bit 3 of register A.

Serial I/O mode register (J2)

Register J2 controls the $D_{10}/S_{OUT}/RTP_1/PWM$ pin function. Set the contents of this register through register A with the TJ2A instruction. The TAJ2 instruction can be used to transfer the contents of register J2 to register A. After executing the TAJ2 instruction, "0" is stored in bits 3 and 2 of register A.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(5) How to use serial I/O

The connection example in Fig. 36 is used to show the data transfer timing and data transfer sequence. Serial

I/O interrupt is not used in this example. In the actual wiring, pull up the wiring between each pin with a resistor.

Fig. 36 Serial I/O connection example

MITSUBISHI MICROCOMPUTERS

4520 Group

Fig. 37 Serial I/O data transfer timing

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Table 10 Processing sequence of data transfer from master to slave

Master (transmission)	Slave (reception)
 (Initial setting) Setting serial I/O mode registers J1 and J2, and interrupt control register V2 shown in Fig. 36. 	[Initial setting] • Setting serial I/O mode registers J1 and J2, and interrupt control register V2 shown in Fig. 36.
TJ1A, TJ2A and TV2A instructions	TJ1A, TJ2A and TV2A instructions
- Setting the port received enable signal ($\overline{S_{RDY}}$) to input mode. (Port D_5 is used in this example)	• Setting the port transmitted enable signal $(\overline{S_{HDY}})$ and outputting "H" level. (reception impossible)(Port D ₅ is used in this example)
SD instruction	SD instruction
 * [Transmission enable state] Storing transmission data in serial I/O registers H and L. 	* {Reception enable state} • SIOF flag is cleared to "0"
THA, TLA instructions	SST instruction
	• "L" level is output from port D_5 . (Reception possible)
	RD instruction
[Transmission] • Check port D ₅ is "L" level.	[Reception]
SZD instruction	
Starting the serial transfer	
SST instruction	
Check transmission completes	Check reception completes
SNZSI instruction	SNZSI instruction
Wait (timing when continuously transferring)	• "H" level is output from port $D_{\mathfrak{s}}.$
	SD instruction
	[Data processing]

1-byte data is serially transferred on this process. Subsequently, data can be transferred continuously by repeating the process from *. When an external clock is selected as synchronous clock, control the clock externally because serial transfer is performed as long as clock is externally input (Unlike an internal clock, an external clock is not stopped when serial transfer is completed.) However, the SIOF flag is set to "1" when the clock is counted 8 times after executing the SST instruction. Be sure to set the initial level of the external clock to "H".

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

LCD FUNCTION

The 4520 Group has a built-in LCD (Liquid Crystal Display) controller/driver. When proper voltage is applied to the LCD power supply input pins, and data is set in timer control registers (W2, W3), timer LC, LCD control registers (L1 to L3), and LCD RAM, the controller/driver automatically reads the display data, controls the LCD display by setting dufy and bias.

4 common signal output pins and 27 segment signal output pins can be used to drive the LCD to control the display of up to 108 segments (when 1/4 duty and 1/3 bias are selected). When the required number of segment pins is 27 or less, SEG_{17} -SEG₂₆ can be used as I/O ports.

(1) Duty and bias

There are three combinations of duty and bias for displaying data on the LCD. Use bits 0 and 1 of the LCD control register (L1) to select the proper display method for the LCD panel being used.

- 1/2 duty, 1/2 bias
- 1/3 duty, 1/3 bias
- 1/4 duty, 1/3 bias

Table 11 Duty and maximum number of displayed pixels

Duty	Maximum number of displayed pixels	Used COM pins
1/2	54 segments	COM ₀ , COM ₁ (Note)
1/3	81 segments	COM ₀ -COM ₂ (Note)
1/4	108 segments	COMo-COM3

Note : Leave unused COM pins open.

(2) LCD clock control

The LCD clock is determined by the setting values of the timer 2 count source selection bits $(W2_0 \text{ and } W2_1)$, timer 3 count source selection bit $(W3_0)$, LCD frequency dividing circuit count source selection bit $(W3_2)$, and timer LC. Accordingly, the frequency (F) of the LCD clock is obtained by the following formula. The number (1 to 5) under formula corresponds to Fig. 38.

• When using the timer 2 underflow output as timer 3 count source $(W3_0=0)$

$$F = Frequency of timer 2 count source \times \frac{1}{T2+1}$$

$$\times \frac{1}{T3} \times \frac{1}{LC+1} \times \frac{1}{2}$$

$$3 \quad (4) \quad (5)$$

• When using $f(X_{CIN})$ as timer 3 count source (W3₀=1)

$$F=f(X_{CIN})\times \frac{1}{T3}\times \frac{1}{LC+1}\times \frac{1}{2}$$

T2: Timer 2 setting value (0 to 255)

T3: Timer 3 frequency dividing ratio (16 or 256)

LC : Timer LC setting value (0 to 15)

The frame frequency for each display method can be obtained by the following formula :

Frame frequency = $\frac{F}{n}$ (Hz) Frame cycle = $\frac{n}{F}$ (S)

Fig. 38 LCD clock control circuit structure

Fig. 39 LCD controller/driver structure

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(3) LCD RAM

The RAM contains areas corresponding to the liquid crystal display. When "1" is written to this LCD RAM,

the display pixel corresponding to the bit is displayed automatically.

Z							1					
X			6				7				3	
Bit	З	2	1	0	3	2	1	0	3	2	1	0
8	SEG ₀	SEGo	SEG ₀	SEG ₀	SEG ₈	SEG ₈	SEG ₈	SEG ₈	SEG ₁₆	SEG ₁₆	SEG ₁₆	SEG16
9	SEG1	SEG ₁	SEG ₁	SEG1	SEGg	SEG ₉	SEG ₉	SEG ₉	SEG ₁₇	SEG ₁₇	SEG ₁₇	SEG17
10	SEG ₂	SEG ₂	SEG ₂	SEG ₂	SEG ₁₀	SEG10	SEG ₁₀	SEG ₁₀	SEG ₁₈	SEG ₁₈	SEG ₁₈	SEG ₁₈
11	SEG ₃	SEG ₃	SEG3	SEG ₃	SEG11	SEG ₁₁	SEG ₁₁	SEG ₁₁	SEG ₁₉	SEG ₁₉	SEG ₁₉	SEG ₁₉
12	SEG₄	SEG₄	SEG₄	SEG ₄	SEG ₁₂	SEG ₁₂	SEG ₁₂	SEG ₁₂	SEG ₂₀	SEG ₂₀	SEG ₂₀	SEG ₂₀
13	SEG₅	SEG₅	SEG ₅	SEG ₅	SEG ₁₃	SEG13	SEG ₁₃	SEG ₁₃	SEG ₂₁	SEG ₂₁	SEG ₂₁	SEG21
14	SEG ₆	SEG ₆	SEG∉	SEG ₆	SEG ₁₄	SEG14	SEG ₁₄	SEG14	SEG ₂₂	SEG ₂₂	SEG ₂₂	SEG ₂₂
15	SEG7	SEG7	SEG7	SEG7	SEG ₁₅	SEG15	SEG ₁₅	SEG ₁₅	SEG ₂₃	SEG ₂₃	SEG ₂₃	SEG23
COM	COM ₃	COM ₂	COM	COMo	COM ₃	COM ₂	COM	COMo	COM ₃	COM ₂	COM	COM

z		1				
х		(Э			
Y Bit	3	2	1	0		
8	SEG ₂₄	SEG ₂₄	SEG ₂₄	SEG ₂₄		
9	SEG ₂₅	SEG ₂₅	SEG ₂₅	SEG ₂₅		
10	SEG ₂₆	SEG ₂₆	SEG ₂₆	SEG ₂₆		
11						
12				ļ		
13						
14						
15						
COM	COMa	COM ₂	COM ₁	COM		

Fig. 41 LCD RAM map

- (4) LCD control register
 - LCD control register (L1)

Register L1 controls the combinations of duty and bias, LCD on/off, and internal dividing resistor connection. Set the contents of this register with the TL1A instruction through register A. The TAL1 instruction can also be used to transfer the contents of register L1 to register A.

LCD control register (L2)

Register L2 controls pins SEG_{19} — SEG_{26} function. After set this register, select analog input A_{IN} by register Q1. Set the contents of this register with the TL2A instruction through register A.

• LCD control register (L3)

Register L3 controls pins SEG_{17}/V_{LC1} and D_{18}/V_{LC2} function. Set the contents of this register with the TL3A instruction through register A.

(5) LCD drive waveform

Fig. 42 shows the drive waveform example for each display method. When "1" is written in the LCD RAM data, the voltage difference between the corresponding common pin and segment pin becomes $|V_{LC3}|$ and the display pixel at the cross section turns on. When returning from reset and being the power down 2 state, display pixel turns off because every segment

state, display pixel turns off because every segment output pin and common output pin becomes V_{LC3} level.

MITSUBISHI MICROCOMPUTERS

4520 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Fig. 42 Drive wave example

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(6) LCD power supply

The 4520 Group has the built-in LCD dividing resistor that can be disconnected with software. Select whether to connect this internal dividing resistor or not, and select the LCD power supply circuit appropriate for the LCD panel being used according to the combination of 3 items in the following Table 12. LCD power supply control.

Table 12	LCD	power	supply	control
----------	-----	-------	--------	---------

Control Item	Control Bit		
	L13		
Connect/disconnect internal dividing	Connecting	0	
resistor to/from LCD power supply.	Disconnecting	1	
Connect/disconnect pins SEG17/VLC1	L3 _o		
and SEG ₁₈ /V _{LC2} to/from LCD power	Disconnecting	0	
supply.	Connecting	1	
	L11		
Use 1/2 or 1/3 bias.	1/2 bias	0	
	1/3 bias	1	

• When connecting the internal dividing resistor and disconnecting pins SEG₁₇/V_{LC1} and SEG₁₈/V_{LC2} [$L1_3=0, L3_0=0$]

In this case, 0 to $V_{LC3}~(V)$ voltage is applied to the LCD panel. Apply voltage between 2.2V and V_{DD} to the V_{LC3} pin. (circuit example a)

• When connecting the internal dividing resistor and connecting pins SEG₁₇/V_{LC1} and SEG₁₈/V_{LC2} [L1₃=0, L3₀=1]

In this case, internally generated divided voltage is output from pins SEG₁₇/V_{LC1} and SEG₁₈/V_{LC2}. Accordingly, the impedance of the LCD power can be reduced by externally connecting a capacitor to the pins SEG₁₇/V_{LC1} and SEG₁₈/V_{LC2}. Apply voltage between 2.2V and V_{DD} to the V_{LC3} pin.

(1/3 bias : circuit example b, 1/2 bias : circuit example c)

- When disconnecting the internal dividing resistor and connecting pins SEG_{17}/V_{LC1} and SEG_{18}/V_{LC2}

 $[L1_3=1, L3_0=1]$

This is the external power input mode. Apply the following voltage to each LCD power supply input pins. When using 1/3 bias : $(2.2V \le V_{LC3} \le V_{DD})$

$$V_{LC2} = \frac{2}{3} V_{LC3}, V_{LC1} = \frac{1}{3} V_{LC3}$$

When using 1/2 bias : $(2.2V \le V_{LC3} \le V_{DD})$

 $V_{LC2} = V_{LC1} = \frac{1}{2} V_{LC3}$

(1/3 bias : circuit example d, 1/2 bias : circuit example e)

Fig. 43 LCD power circuit example

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Fig. 44 LCD power circuit example (continued)

(7) LCD display method

The connection example in Fig. 45 shows the display method, how to set the LCD control register, and the drive waveform when displaying the character "9".

- 1. Select the duty and bias combinations with bits 0 and 1 of the register L1.
- 2. Set the internal resistor with bit 3 of the register L1, and register L3.
- Switch pins SEG₂₆/P3₀/INT₂/A_{IN0} and SEG₂₅/P3₁/A_{IN1} to segment output ports with bits 0 and 1 of the register L2.
- 4. Write (1011)₂ and (0111)₂ to addresses M (Z, X, Y) =(1, 9, 9) and M (Z, X, Y)=(1, 9, 10) in RAM as shown in Fig. 47.
- 5. Character "9" is displayed by setting bit 2 of the register L1 to "1".

Fig. 45 LCD connection example

Fig. 46 Setting registers (before LCD on)

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

A-D CONVERSION CIRCUIT

The 4520 Group has a built-in A-D conversion circuit that performs conversion by 8-bit successive comparison method. Table 13 shows the characteristics of this A-D conversion circuit.

Table 13 A-D conversion circuit function

Parameter	Characteristics
Conversion format	Successive comparison method
Resolution	8 bits
Absolute accuracy	±2LSB
Conversion speed	25.5µs (at 4MHz system clock frequency)
Analog input pin	8 (selecting from AINO-AINZ)

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Fig. 49 A-D control register

(1) Successive comparison register (HA, LA)

Successive comparison register consists of register HA and register LA. Register HA and register LA are 4-bit registers. The high-order 4 bits of the 8-bit digital data which is the A-D conversion result of analog input is stored in register HA, and the low-order 4 bits are stored in register LA. The contents of these registers can be transferred to register A with the TAHA instruction and TALA instruction, respectively. However, do not execute these instructions during A-D conversion.

When the contents of successive approximation register is n, the logic value of the reference voltage V_{REF} and comparison voltage V_{ref} can be obtained by the following formula.

Logic value of comparison voltage V_{ref} • When n=0, V_{ref}=0 • When n=1 to 255 $V_{ref} = \frac{V_{REF}}{256} \times (n-0.5)$ n : The value of A-D register (Decimal expression) (2) A-D conversion completion flag (ADF)

The ADF flag is set to "1" when A-D conversion completes. The state of this flag can be examined with the skip instruction (SNZAD). Use the interrupt control register (V2) to select the interrupt or the skip instruction. The ADF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

- (3) A-D conversion start instruction (ADST instruction) A-D conversion starts when the ADST instruction is executed. However, be sure to execute the SNZAD instruction and clear the ADF flag to "0", and then execute A-D conversion with the ADST instruction. The conversion result is automatically stored in the successive approximation register.
- (4) A-D control register (Q1)

Register Q1 is used to select one of the 8 analog input pins. After set the pin function with the LCD control register (L2), select the analog input with this register.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(5) Operating description

A-D conversion is started with the A-D conversion start instruction (ADST). The internal operation during A-D conversion is as follows:

- 1 . When A-D conversion starts, the successive comparison register is cleared to "0016".
- 2 Next, the topmost bit of the successive comparison register is set to "1", and the comparision voltage Vref is compared with the analog input voltage VIN.
- 3 When the comparison result is V_{ref} < V_{IN}, the topmost bit of the successive comparison register re-

mains set to "1". When $V_{\text{ref}}\!>\!V_{\text{iN}}$, it is cleared to "0".

The M34520 repeats this operation to the lowermost bit of the successive comparison register to convert an analog value to a digital value. A-D conversion stops after 102 clock cycles (25.5 μ s when f(X_{IN}) = 4MHz) from the start and the conversion result is stored in the successive comparison register. An A-D interrupt activated condition is satisfied and the A-D interrupt request flag (ADF) is set to "1" as soon as A-D conversion completes.

	Change of successive comparison register Comparison voltage (Vref) va	lue
At starting conversion	0 0 0 0 0 0 0 0 0	
First comparison	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Second comparison	*1 1 0 0 0 0 0 0 *1 1 0 0 0 0 0 0 0	
Third comparison	*1 *2 1 0 0 0 0 0 VREF 2 $\frac{V_{REF}}{4} \pm \frac{V_{REF}}{8} - \frac{V_{REF}}{512}$	
After eighth comparison A-D conversion result	A-D conversion result	
completes	*1 *2 *3 *4 *5 *6 *7 *8	

Table 14 Change of successive comparison register during A-D conversion

*1 : First comparison result

*2 : Second comparison result *4 : Fourth comparison result

*3 : Third comparison result *5 : Fifth comparison result

- *7 : Seventh comparison result
- *6 : Sixth comparison result
- *8 : Eighth comparison result

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(6) A-D converter equivalent connection diagram Fig. 50 shows the A-D converter equivalent connection diagram. Fig. 51 shows the A-D conversion timing diagram.

- (7) How to use A-D conversion How to use A-D conversion is explained using as example in which the analog input from the $SEG_{26}/P3_0/$ INT_2/A_{IN0} pin is A-D converted and the high-order 4 bits of the converted data are stored in address M (0, 0, 0) in RAM and the low-order 4-bits are stored in address M (0, 0, 1). The A-D interrupt is not used in this example.
 - (1) Select the $P3_0/INT_2/A_{IN0}$ function with the bit 0 of LCD control register (L2) and then select the A_{IN0} pin with the A-D control register (Q1) (refer to Fig. 52).
 - ② Execute the SNZAD instruction and clear the ADF flag to "0".
 - ③ Execute the ADST instruction and start A-D conversion.
 - ④ Examine the state of the ADF flag with the SNZAD instruction to determine the end of A-D conversion.
 - (5) Transfer the high-order 4 bits of the converted data to M (0, 0, 0) from register HA through register A (TAHA instruction).
 - (6) Similarly, transfer the low-order 4 bits of the converted data to M (0, 0, 1) from register LA through register A (TALA instruction).

Fig. 52 Register setting example

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

RESET FUNCTION

System reset is performed by applying "L" level to the RESET pin for 1 machine cycle or more when the following condition is satisfied;

of the recommended operating conditions Then when "H" level is applied to the RESET pin, the program starts from address 0 in page 0.

. the value of supply voltage is the minimum value or more

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

 Power-on reset
 Reset can be performed automatically at power on (power-on reset) by connecting resistors, a diode, and a capacitor to the $\overrightarrow{\text{RESET}}$ pin. Connect the $\overrightarrow{\text{RESET}}$ pin and the external circuit at the shortest distance.

Fig. 55 Power-on reset circuit example

(2) Internal state at reset

Table 15 shows port state at reset, and Fig. 56 and Fig. 57 show internal state at reset (they are the same after reset is released).

The contents of timers, registers, flags and RAM except shown in Fig. 56 and 57 are undefined, so set the initial value to them.

Table 15 Port state at reset state

Name	Function at reset	State at reset		
D ₀ -D ₅	D ₀ -D ₅			
De/CNTRo, D7/CNTR1,				
D8/INT0/ZEROX,	D ₆ -D ₁₀			
D ₉ /S _{CK} /RTP ₀ ,	56 510	High impedance (Note)		
D10/SOUT/RTP1/PWM		r Martin M979		
P00 P03	P00-P03			
P10-P13	P10-P13			
P20/SIN. P21/INT:	P2 ₀ , P2 ₁	High impedance		
P22, P23	P2 ₂ , P2 ₃	righ impedation		
SEG0-SEG16	SEG0-SEG16			
SEG17/VLC1, SEG18/VLC2	SEG ₁₇ , SEG ₁₈			
SEG19/P43/AIN7	SEG ₁₉ -SEG ₂₂			
SEG22/P40/AiN4		V _{i C3} Level		
SEG23/P33/AIN3	SEG ₂₃ -SEG ₂₅			
SEG25/P31/AINT				
SEG26/P30/INT2/AIN0	SEG ₂₆			
COM ₀ -COM ₃	COM0-COM3			

Note : Output latch is set to "1".

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Program counter (PC) Address 0 in page 0 in pat	
Address 0 in page 0 is set.	
Interrupt enable flag (INTE)	
• Power down flag (P)	
External 0 interrupt request flag (EXF0) ······	Management of the second se
External 1 interrupt request flag (EXF1)	
Zero cross input flag (ZCF)	
Noise canceller flag (NCF)	house and the second
Interrupt control register (V1) ······	
Interrupt control register (V2)	
Interrupt control register (11)	hannen ander an
Interrupt control register (12)	l sur an
Interrupt control register (13)	
Clock control register (MR)	0 0 0 (X _{IN} selected)
Timer 1 interrupt request flag (T1F)	0
Timer 2 interrupt request flag (T2F) ······	0
Timer 3 interrupt request flag (T3F) ·······	0
Timer 4 interrupt request flag (T4F) ·······	
Watchdog timer flag (WDF) ······	0
Timer control register (W1)	(Prescaler and timer 1 stop)
Timer control register (W2)	
Timer control register (W3)	
Timer control register (W4)	0 0 0 0 (Watchdog timer stop)
Timer control register (W5)	0 0 0 (Timer 2 and timer 4 stop)
Real time output register (RTP)	0 0
Serial I/O transmission/reception completion	n flag (SIOF)0
Serial I/O mode register (J1)	0 0 0 (External clock selected)
Serial I/O mode register (J2)	0 0
• Serial I/O register (H)	······ X X X X
• Serial I/O register (L)	······ X X X X
LCD control register (±1)	0 0 0 0 (LCD OFF)
LCD control register (L2)	0 0 0 0 (Segment driver selected)
LCD control register (L3)	
	"X" represents undefined.
Note Since timers registers flags and the conte	ents of RAM other than the above are undefined, set the initial value after returning.

Fig. 56 Internal state at reset

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

POWER DOWN FUNCTION

The 4520 Group has two power down functions.

- Power down 1 (clock operating mode) POF instruction
- · Power down 2 (RAM back-up mode) POF2 instruction
- Note : Be sure to disable interrupts by executing the DI instruction before the POF (power down 1) or POF2 (power down 2) instruction is executed.

Power down is performed by executing each instruction. The start condition is different between these power downs and normal reset.

Return from power-down state

· Return from reset state

..... Cold start condition

- (1) Power down 1 (clock operating mode) The following functions and states are retained at a power down with the POF instruction.
 - RAM
 - Reset circuit
 - X_{CIN}-X_{COUT} oscillation
 - · LCD display
 - Timer 3, timer 4
- (2) Power down 2 (RAM back-up mode) The following functions and states are retained at a power down with the POF2 instruction.
 - RAM
 - · Reset circuit

Unlike power down 1, all oscillations stop with power down 2.

(3) Warm start condition

The system returns from the power-down state when :

- · external wakeup signal is input, or
- · timer 4 interrupt request flag is set
- in power down 1 state, or when 1
- · external wakeup signal is input
- in power down 2 state. In either case, the CPU starts executing the program from address 0 in page 0 after returning. In this case, the P flag is set to "1".
- (4) Cold start condition

The CPU starts executing the program from address 0 in page 0 when :

- · reset pulse is input, or
- reset by watchdog timer.

In this case, the P flag is cleared to "0".

Table 16 Functions and states retained at power down

	Power down	
Function	Mode 1	Mode 2
Program counter (PC) Registers A, B Carry flag (CY) Stack pointer (SP)(Note 2)	×	×
Contents of RAM	0	0
Port level	0	0
Clock control register (MR)	0	0
Timer control register (W1)	×	×
Timer control registers (W2 to W5)	0	0
Interrupt control registers (V1, V2)	×	×
Interrupt control registers (11 to 13)	0	0
LCD display function	0	(Note 3)
LCD control registers (L1 to L3)	0	0
Timer LC	0	(Note 4)
Timer 1 function	×	×
Timer 2 function	(Note 4)	(Note 4)
Timer 3 function	0	(Note 4)
Timer 4 function	0	(Note 4)
A-D function	×	×
Serial I/O function	×	×
Serial I/O mode registers (J1, J2)	0	0
A-D control register (Q1)	0	0
Pull-up control register (PU0)	0	0
Key-on wakeup control register (K0)	0	0
Real time output register (RTP)	0	0
External 0 interrupt request flag (EXF0)	×	×
External 1 interrupt request flag (EXF1)	×	×
Noise canceller flag (NCF)	×	×
Zero cross input flag (ZCF)	×	×
Timer 1 interrupt request flag (T1F)	×	×
Timer 2 interrupt request flag (T2F)	(Note 4)	(Note 4)
Timer 3 interrupt request flag (T3F)	0	(Note 4)
Timer 4 interrupt request flag (T4F)	0	(Note 4)
Watchdog timer flag (WDF)	0	(Note 5)
A-D conversion completion flag (ADF)	×	×
Serial I/O transmission/reception completion flag (SIOF)	×	×
Interrupt enable flag (INTE)	×	×

Notes 1, "O" represents that the function can be retained, and "X" represents that the function is initialized. Registers and flags other than the above are undefined

- at power down, and set an initial value after returning. 2. The stack pointer (SP) points the level of stack register and is initialized to "7" at power down.
- 3. The LCD is turned off.
- 4. The state of the timer is undefined. 5. Stop the watchdog timer with software, and then ex-
- ecute the POF2 instruction.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(5) Identification of the start condition The start condition (warm start or cold start) can be identified by examining the state of P flag with the SNZP instruction. The warm start condition (timer 4 or external wakeup signal) can be identified by examining the state of the T4F flag.

Fig. 59 Start condition identification example with the SNZP instruction

- (6) State transition
 - State transition is described using Fig. 60.

 - ② Transition from state A to low-speed mode state C via state B

First set MR_0 to "1" (state B) to switch the system clock, and then set MR_1 to "1" (state C) to stop $f(X_{1N})$ oscillation.

However, after a cold start, do not use $f(X_{CIN})$ as system clock and count source until $f(X_{CIN})$ oscillation sufficiently stabilizes (same as when returning from state E to state A).

③ Transition from state D (power down 1) or state E (power down 2)

The power down 1 (state D) or power down 2 (state E) state can be entered from state A, B, or C with the POF or POF2 instruction. When returning, the state returns to the state before executing the POF or POF2 instruction, but stabilizing time is generated automatically according to the state as shown in the Fig. 60 because the oscillation stabilizing time depends on the state of $f(X_{IN})$ or $f(X_{CIN})$.

④ Transition from state C to state A

First clear MR₁ to "0" to go to state B, generate sufficient time for $f(X_{IN})$ oscillation to stabilize with software, and then clear MR₀ to "0" to go to state A. Also generate sufficient time for $f(X_{IN})$ oscillation to stabilize with software, and then clear MR₀ to "0" to go to state A from state B after the transition to state D from state B with the POF instruction (State transition $: B \rightarrow D \rightarrow B \rightarrow A$).

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(7) Return signal

An external wakeup signal or timer 4 interrupt request flag is used to return from power down 1. External wakeup signal is used to return from power down 2 because the oscillation is stopped. Table 17 shows the return condition for each return source.

(8) Ports P0, P1 control register

• Key-on wakeup control register (K0) Register K0 controls the ports P0 and P1 key-on

Table 17 Return source and return condition

wakeup functions. Set the contents of this register through register A with the TK0A instruction. In addition, the TAK0 instruction can be used to transfer the contents of register K0 to register A.

 Pull-up control register (PU0) Register PU0 is used to control the ON/OFF of the ports P0 and P1 pull-up transistors. Set the contents of this register through register A with the TPU0A instruction.

		Return Condition	Remarks
wakeup signal	Ports P0, P1	Return by an external falling edge input ("H"→"L").	Set the port using the key-on wakeup function selected with regis- ter K0 to "H" level before going into power down state because the falling edge detection circuit is also used as ports P0 and P1.
External wa	Port D ₈ /INT _o	Return by an external "H" level or "L" level input. The EXF0 flag is not set.	Select the return level ("L" level or "H" level) with bit 2 of the inter- rupt control register (11) before going into the power down state according to the external state.
•		Return when the timer 4 underflows and the T4F flag is set to "1".	Allowed only when returning from power down 1 (executing the POF instruction). However, when the POF or POF2 instruction is executed with $T4F = "1"$, return condition is recognized and return is performed.

Note : When the POF or POF2 instruction is executed with T4F=1, return condition is recognized and return is immediately performed after going into power down state.

Fig. 61 Ports P0 and P1 control registers

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

CLOCK CONTROL

The clock control circuit consists of the following circuits.

- f(X_{IN}) clock generating circuit
- f(X_{CIN}) clock generating circuit
- · Control circuit to stop the clock oscillation
- · Control circuit to return from power down state

System clock selection and clock oscillation start/stop are

controlled with the clock control register (MR).

The f(X_{IN}) clock is selected just after a cold start. The instruction clock can be switched to the f(X_{CIN}) clock with the system clock selection bit (MR₀). At a warm start, the clock selected just before power down is used. The instruction clock is the signal divided by 3 of the selected clock (f(X_{IN})/3 or f(X_{CIN})/3).

Fig. 63 Registers related clock control

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

 f(X_{IN}) clock generating circuit Clock oscillation (f(X_{IN})) is obtained by externally connecting a ceramic resonator. Connect this external circuit to pins X_{IN} and X_{OUT} at the shortest distance. A feedback resistor is built in between pins X_{IN} and X_{OUT}. When external clock signal is input, connect the clock source to X_{IN} and leave X_{OUT} open. When using an external clock, the maximum value of external clock oscillation frequency is shown in Table 18.

Table 18 Maximum value of external clock oscillation frequency

Supply voltage	Oscillation frequency (duty ratio)
4.5V to 5.5V	3.0MHz (40% to 60%)
2.2V to 5.5V	800kHz (30% to 70%)

Note 2.5V to 5.5V for One Time and EPROM version

(2) f(X_{CIN}) clock generating circuit

Clock oscillation (f (X_{CIN})) is obtained by externally connecting a quartz-crystal oscillator. Connect this external circuit to pins X_{CIN} and X_{COUT} at the shortest distance. A feedback resistor is built-in between pins X_{CIN} and X_{COUT}.

Unlike the $f(X_{IN})$ clock generating circuit, external clock signal cannot be used for this circuit.

ROM ordering method

Please submit the information described below when ordering Mask ROM.

- (1) M34520M6A-XXXSP/FP ROM Order Confirmation Form or M34520M8A-XXXSP/FP ROM Order Confirmation Form 1
- (2) Data to be written into mask ROM EPROM (three sets containing the identical data)
- (3) Mark Specification Form1

Fig. 64 Ceramic resonator external circuit

Fig. 66 Quartz-crystal oscillator external circuit

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

LIST OF PRECAUTIONS

(1) Noise and latch-up prevention

Connect a capacitor (approx. 0.1 μ F) between pins V_{DD} and V_{SS} at the shortest distance using the thickest wire and equalizing its width and length to prevent noise and latch-up.

In the built-in PROM versions, P2₃ pin is also used as V_{PP} pin. Accordingly, when using this pin, use this pin through a resistor about 5k Ω in series at the shortest distance. When not using the P2₃ pin of M34520E8, connect to V_{SS} through a 5k Ω resistor at the shortest distance.

The V_{PP} pin functions as the power supply input pin for the internal EPROM, and the impedance is lowered to enable current for writing to flow when writing a program to the EPROM. Accordingly, unless it is connected as shown in Fig. 67, noise may be collected into the internal EPROM from the V_{PP} pin and this may cause program run-away because instruction or data from the EPROM cannot be read correctly.

The location of the bypass capacitor is significant in guarding against the strong noise from the V_{SS} and V_{DD} lines. As shown in Fig. 68, after connecting the bypass capacitor to V_{DD} and V_{SS} lines, connect at equal distance to the pins V_{SS} and V_{DD} of the microcomputer.

Fig 67 Wiring example when using P23/VPP pin

Fig. 68 Noise prevention for VDD and Vss lines

This will significantly reduce the effect of noise.

- (2) Prescaler
 - Stop the prescaler to change its frequency dividing ratio.
- (3) Timer 1, 2, 3, 4

Stop timer 1, 2, 3, or 4 counting to change its count source, as well as to execute the TAB1, TAB2, or TAB4 instruction for reading the data (from timer 1, 2, or 4) When timer 4 write instruction (T4ABD) is executed, count value of timer 4 is invalid. Do not execute the timer 4 write instruction (T4ABD) just before or after timer 4 underflow signal occurs.

Fully stabilize the $f(\boldsymbol{X}_{CIN})$ oscillation so as to select it as a timer 3 count source.

(4) Notes on unused pins

When the $P0_0 - P0_3$ and $P1_0 - P1_3$ are connected to V_{SS} , turn off their pull-up transistors with software (PU0_j = "0"), and also invalidate key-on wakeup functions $(K0_j$ ="0").

If the key-on wakeup functions are left valid, the system fails to return from power down. When these pins are disconnected, turn on their pull-up transistors (register $PUO_i = "1"$) with software. Be sure to invalidate the key-on wakeup functions and the pull-up functions with every two bits. If only one of the two bits key-on wakeup functions is used, turn on their pull-up transistors with software and also disconnect the other pin. (i represents 0, 1, 2, or 3.)

(5) Built-in PROM version precautions

The operating supply voltage of the built-in EPROM version (M34520E8SS, M34520E8FS) and the One Time PROM version (M34520E8-XXXSP/FP, M34520E8SP/FP) is 2.5V to 5.5V.

The operating temperature range of the built-in EPROM version is -20° C to 70° C.

Built-in EPROM version is the microcomputer for program development. Use this microcomputer only for program development and prototype test.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(6) Notes on INT₀ pin

When the input edge polarity of the INT_0 pin is changed with the bit 2 of the register 11 in a program, be careful about the following notes.

- Clear the bit 0 of the register V1 to "0" before the input edge polarity of the interrupt input pin INT_0 is changed with the bit 2 of the register I1 (refer to Fig. 69(1)).
- Depending on the input state of the INT₀ pin, the external 0 interrupt request flag EXF0 may be set when the input edge polarity is changed. Accordingly, set a value to register 11, and execute the SNZ0 instruction after executing at least one instruction (refer to Fig. 692), and then clear the EXF0 flag.

:		
	4;(XXX0 ₂)
TV1A	; -	The SNZ0 instruction is valid $\cdots \cdots $
LA -	4	
TI1A		Change of the input polarity
NOP		2
SNZO	; '	The SNZ0 instruction is executed
NOP		
:		

Fig. 69 External 0 interrupt program example

(7) Notes on pins INT₁ and INT₂

When the input edge polarity of pins INT_1 and INT_2 are changed with the bit 2 of the register I2 in a program, be careful about the following notes.

- Clear the bit 1 of the register V1 to "0" before the input edge polarity of the interrupt input pins INT_1 and INT_2 are changed with the bit 2 of the register 12 (refer to Fig. 70(3)).
- Depending on the input state of pins INT₁ and INT₂, the external 1 interrupt request flag EXF1 may be set when the input edge polarity is changed.

Accordingly, set a value to register I2, and execute the SNZ1 instruction after executing at least one instruction (refer to Fig. 70 (4)), and then clear the EXF1 flag.

(8) Note on noise detection circuit

Be careful about the following note when using the noise detection circuit without using the zero cross detection function.

- Clear the bit 2(W5₂) of timer control register (W5) to "0" and fix the ZCF flag to reset state because the noise canceller flag (NCF) is cleared to "0" when the zero cross input flag (ZCF) is set to "1".
- (10) Note on $f(X_{CIN})$ clock generating circuit

When using $f(X_{CIN})$ clock, connect the quarts-crystal oscillator external circuit to pins X_{CIN} and X_{COUT} at the shortest distance.

Unlike the f (X_{IN}) clock generating circuit, external clock signal cannot be used for this circuit.

(11) Note on A-D conversion

A-D conversion circuit is equipped with a capacitor which is used to compare the analog voltage. Accordingly, when the analog voltage is input from the circuit with high-impedance and, charge/discharge noise is generated and the sufficient A-D accuracy may not be obtained. Therefore, reduce the impedance or, connect a capacitor $(0.01\mu F to 1\mu F)$ to analog input pins.

When the overvoltage applied to the A-D conversion circuit may occur, connect an external circuit in order to keep the voltage within the specifications as shown the Fig. 72. In addition, test the application products sufficiently.

Fig. 71 Analog input external circuit example-1

Fig. 72 Analog input external circuit example-2

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

- Note on interrupt
 Be sure to disable interrupts by executing the DI instruction before the POF (power down 1) or POF2 (power down 2) instruction is executed.
- Note on program counter Make sure that the PC_H does not specify after the last page of the built-in ROM.

(14) Note on LCD

The 4520 Group has the LCD dividing resistor that can be disconnected by software. Select whether to connect this internal dividing resistor or not, the LCD power supply circuit appropriate for the LCD panel being used, and test sufficiently.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

LIST OF INSTRUCTION FUNCTION

Grouping	Mnemonic	Function	Grauping	Mnemonic	Function	Grauping	Mnemonic	Function
	ТАВ	(A)←(B)		XAMI j	$(A) \longleftrightarrow (M(DP))$ $(X) \longleftrightarrow (X) EXOR(j)$	5	SZB j	(Mj(DP))←0? j=0 to 3
	тва	(B)←(A)	ster		j=0 to 15 (Y)←(Y)+1	operation		
	ΤΑΥ	(A)←(Y)	register transfer	TMA	(M(DP))⊷(A)	Bito		
	τγα	(Y)←(A)	regist		(X)←(X)EXOR(j) j=0 to 15	5	SEAM	(A)=(M(DP))?
ster	TEAB	$(E_7 - E_4) \leftarrow (B)$ $(E_3 - E_0) \leftarrow (A)$	RAM to			Comparison operation	SEA n	(A)=n? However, n=0 to 15
ister tran	TABE	$(B) \leftarrow (E_7 - E_4)$ $(A) \leftarrow (E_3 - E_0)$		1.4.7	(A)+-n	ŏ °	Ва	(PC _L)+-a ₆ a ₀
to regi	TDA	(DR ₂ -DR ₀)←(A ₂ -A ₀)		LAn	(A) ←n However, n≕0 to 15	c		(PC _H)←p
Register to register transfer	TAD	$(A_2 - A_0) \leftarrow (DR_2 - DR_0)$ $(A_3) \leftarrow 0$		TABP p	(SP)←(SP)+1 (SK(SP))←(PC)	operation		(PC _L)←a ₆ −a ₀
	TAZ	$(A_1, A_0) \leftarrow (Z_1, Z_0)$ $(A_3, A_2) \leftarrow 0$			$(PC_{H}) \leftarrow p$ $(PC_{L}) \leftarrow (DR_{2} \leftarrow DR_{0}, A_{3} \leftarrow A_{0})$ $(B) \leftarrow (ROM(PC))_{7 \text{ to } 4}$ $(A) \leftarrow (BOM(PC))$	Branch	BLA p	(PC _H)←p (PC _L)←(DR₂−DR₀, A₃−A₀)
	TAX	(X)→(A)			(A)←(ROM(PC)) _{3 to 0} (PC)←(SK(SP)) (SP)←(SP)−1			
	TASP	$(A_2-A_0) \leftarrow (SP_2-SP_0)$ $(A_3) \leftarrow 0$		АМ	(A)←(A)+(M(DP))		ВМ а	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$
	ļ		eration	АМС	(A)←(A)+(M(DP))+(CY) (CY)←Carry			$(PC_{H}) \leftarrow 2$ $(PC_{L}) \leftarrow a_{6} - a_{0}$
se	LXY X, Y	(X)←x, x=0 to 15 (Y)←y, y=0 to 15	Arithmetic operation	An	(A)←(A)+n However, n=0 to 15	e operation	BML p, a	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PC_H) \leftarrow p$ $(PC_L) \leftarrow a_6 \leftarrow a_0$
RAM addresses	LZ z	(Z)←z, z=0 to 3	Ar	AND	(A)+(A)AND(M(DP))	Subroutine	BMLA	(SP)⊷(SP)+1
RAM 8	INY	(Y)←(Y)+1		OR	(A)⊷(A)OR(M(DP))	งี	р	(SK(SP))←(PC) (PC _H)←p
	DEY	(Y)+(Y)−1		SC	(CY)←1			$\left \begin{array}{c} (PC_{L}) \leftarrow (DR_2 - DR_0, A_3 - A_0) \\ \end{array} \right $
			-	RC	(CY)←0			
	TAM j	(A)←(M(DP)) (X)←(X)EXOR(j)		SZC	(CY) = 0?		RTI	(PC)←(SK(SP)) (SP)←(SP)−1
nster		j=0 to 15		CMA	$(\mathbf{A}) \leftarrow (\overline{\mathbf{A}})$	R	RT	(SP)→(SP)→1
ster tra	XAM j	$(A) \leftarrow \rightarrow (M(DP))$ (X) $\leftarrow (X) \in XOR(j)$		RAR	$\rightarrow CY \rightarrow A_3A_2A_1A_0$	peratic		(SP)←(SP)−1
RAM to register transfer	XAMD		operation	SB j	(Mj(DP))←1 j=0 to 3	Return operation	RTS	(PC)←(SK(SP)) (SP)←(SP)−1
RAM		$(x) \leftarrow (x) EXOR(j)$ j=0 to 15 $(y) \leftarrow (y) - 1$	Bit oper	RB j	(Mj(DP))←0 j=0 to 3	œ		

Grouping	Mnemonic	Function	Grouping	Mnemonic	Function	Grouping	Mnemonic	Function
	DI	(INTE)←0		TW5A	$(W5_2-W5_0)\leftarrow (A_2-A_0)$	-	IAP3	(A)←(P3)
	EI	(INTE)←1		TAB1	(B)←(T1 ₇ −T1₄) (A)←(T1 ₃ −T1₀)		IAP4	(A)←(P4)
	SNZ0	(EXF0)=1?		7140			CLD	(D)←1
		After skipping (EXF0)←0		T1AB	(R1 ₇ -R1 ₄)⊷(B) (T1 ₇ -T1 ₄)⊷(B)		RD	(D(Y))←0
	SNZ1	(EXF1)=1?			$(R1_3 - R1_0) \leftarrow (A)$ $(T1_3 - T1_0) \leftarrow (A)$	operation		(Y)=0 to 10
		After skipping (EXF1)⊷0		TAB2	(R). (T2 - T2)		SD	(D(Y))←1 (Y)=0 to 10
	SNZ10	$H_2 = 1$: (INT ₀) = "H" $H_2 = 0$: (INT ₀) = "L"		TADZ	$(B) \leftarrow (T2_7 - T2_4)$ $(A) \leftarrow (T2_3 - T2_0)$	nput/Output		
	SNZI1	$12_2 = 1$: (INT ₁)="H"		T2AB	(R2 ₇ R2₄)(B)	put/C	SZD	(D(Y))=0? (Y)=0 to 10
ation		$12_2 = 0$: (INT ₁) = "L"	1		$(T2_7 - T2_4) \leftarrow (B)$ $(R2_3 - R2_0) \leftarrow (A)$	5	TKOA	(K0)⊷(A)
oper	TAV1	(A)⊷(V1)			$(T2_3 - T2_0) \leftarrow (A)$			
Interrupt operation	TV1A	(V1)⊷(A)		TAB4	(B)←(T4 ₇ ←T4 ₄)		TAK0	A+-(K0)
Inte			ion		(A) ← (T4 ₃ − T4 ₀)		TPU0A	(PU0)←(A)
	TAV2	(A)←(V2)	operation	т4АВ	$(R4_7 - R4_4) \leftarrow (B)$ $(T4_7 - T4_4) \leftarrow (B)$	loi	TL1A	(L1)⊷(A)
	TV2A	(V2)←(A)	Timer o		$(R4_3 - R4_0) - (A)$	operation	TAL1	(A)←(L1)
	TAI1	(A)←(I1)	1		(T4 ₃ T4 ₀)⊷(A)		TL2A	(L2)←(A)
	TI1A	(I1)←(A)		T4ABD	(T4 ₇ —T4₄)←(B) (T4 ₃ —T4 ₀)←(A)	control	TL3A	(L3)←(A₀)
	TAI2	(A)←(I2)		TR4AB	(R4 ₇ R4₄)←(B)	LCD	TLCA	(LC)←(A)
	TI2A	(12)←(A)			$(R4_3 - R4_0) \leftarrow (A)$		ТАН	(A)←(H)
	TAI3	(A ₀)←(13)		SNZT1	(T1F)=1?			
		(A ₃ −A ₁)←0			After skipping (T1F)⊷0		THA	(H)⊷(A)
	тіза	(I3)←(A ₀)		SNZT2	(T2F)=1? After skipping (T2F)←0		TAL	(A)←(L)
	TAW1	(A)←(W1)		SNZT3	(T3F)=1?	operation	TLA	(L)←(A)
	TW1A	(W1)←(A)		SNZIJ	After skipping (T3F)+-0		TAJ1	$(A_2 - A_0) \leftarrow (J1_2 - J1_0)$ $(A_3) \leftarrow 0$
	TAW2	(A)←(W2)		SNZT4	(T4F)=1? After skipping (T4F)←0) control	TJ1A	(J1 ₂ −J1 ₀)←(A ₂ −A ₀)
ition	TW2A	(W2)←(A)				1/0	TAJ2	(A ₁ , A ₀)←(J2 ₁ , J2 ₀)
opera	TAW3	(A)←(W3)	Ę	IAP0	(A)⊷(P0)	Serial	5	(A ₃ , A ₂)←0
Timer operation	түза	(₩3) (A)	Input/Output operation	OP0A	(P0)+-(A)		TJ2A	$(J2_1, J2_0) \leftarrow (A_1, A_0)$
	TAW4	(A)←(W4)	put o	IAP1	(A)⊷(P1)		SST	(SIOF)⊷0, Serial I/O starts
	TW4A	(₩4)+-(A)	t/Out	OP1A	(P1)←(A)		CN 751	
	TAW5	$(A_2 - A_0) \leftarrow (W5_2 - W5_0)$ $(A_3) \leftarrow 0$	lnpu	IAP2	(A)⊷(P2)		SNZSI	(SIOF)=1? After skipping, (SIOF)←0

Grouping	Mnemonic	Function
	тана	(A)⊷(HA)
tion	TALA	(A)←(LA)
A-D conversion operation	TAQ1	(A ₂ -A ₀)⊷(Q1 ₂ -Q1 ₀) (A ₃)⊷0
onversi	TQ1A	$(Q1_2-Q1_0) \leftarrow (A_2-A_0)$
A-D CC	ADST	A-D conversion starts
	SNZAD	(ADF)=1? After skipping, (ADF)⊷0
	NOP	(PC)←(PC)+1
	POF	Power down 1
	POF2	Power down 2
	SNZP	(P)=1?
Other operation	TAMR	$(A_2 - A_0) \leftarrow (MR_2 - MR_0)$ $(A_3) \leftarrow 0$
ther o	TMRA	$(MR_2 - MR_0) \leftarrow (A_2 - A_0)$
	WRST	(WDF)+-0
	RTPS	(RTPL1)←1 (RTPL0)←1
	RTPR	(RTPL ₁)←0 (RTPL ₀)←0
	TRTPA	(RTP)←(A)

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

K										-			· · · ·				· · · - · · · · · · · · · · · · · · · ·		,
ſ) ₉ −D₄	000000	000001	000010	000011	000100	000101	000110	000111	001000	001001	001010	001011	001100	001101	001110	001111		011000
D3 D0	Hexa- deci- mai nota- tion	0 0	01	0 2	03	04	05	06	07	08	09	0 A	0 B	0 C	0 D	0 E	0 F	10 to 17	18 to 1F
0000	0	NOP	BLA	SZB 0	BMLA		TASP	A 0	LA	TABP 0	ТАВР 16	TABP	TABP 48*	BML	BML	BL	BL	вм	в
0001	1		CLD	SZB	_	_	TAD	A 1	LA 1	f	TABP	33	TABP 49*	BML	BML	BL	BL	вм	в
0010	2	POF		SZB 2	-	_	тах	, A 2	LA 2	TABP	TABP	TABP	TABP	BML	BML	BL	BL	вм	в
0011	3	SNZP	INY	SZB		_	TAZ	A	LA	тавр	ТАВР	TABP	тавр	BML	BML	BL	BL	вм	в
0100	4	DI	RD	3 SZD		RT	TAV1	3 A	3 LA	3 TABP	19 TABP	35 TABP	51 * TABP	BML	BML	BL	BL	ВМ	в
0101	5	EI	SD	SEAn		RTS	TAV2	4 A	4 LA	4 TABP	20 TABP	36 TABP	52* TABP	BML	BML	BL	BL	ВМ	в
							17.42	5 A	5 LA	5 TABP	21 TABP	37 TABP	53* TABP						
0110	6	RC		SEAM		RTI		6 A	6 LA	6 TABP	22 TABP	38 TABP	54* TABP	BML	BML	BL	BL	ВМ	в
0111	7	sc	DEY	-	-	-		7 A	7 LA	7	23	39	55*	BML	BML	BL	BL	ВМ	в
1000	8	POF2	AND		SNZ0	LZ 0		8	8	TABP 8	ТАВР 24	ТАВР 40	TABP 56*	BML	BML	BL	BL	ВМ	в
1001	9	-	OR	TDA	SNZ1	LZ 1		А 9	LA 9	тавр 9	ТАВР 25	ТАВР 41	TABP 57*	BML	BML	BL	BL	вм	в
1010	A	АМ	TEAB	TABE	SNZIO	LZ 2	-	A 10	LA 10	TABP	TABP	TABP	TABP 58*	BML	BML	BL	BL	вм	в
1011	в	АМС		-	SNZII	LZ 3	_	A 11	LA 11	TABP		TABP	TABP	BML	BML	BL	BL	вм	в
1100	с	τγά	СМА	-		RB	SB	A	LA	тавр	TABP	ТАВР	TABP	BML	BML	BL	BL	ВМ	в
1101	D		RAR			0 RB	0 SB	12 A	12 LA		28 TABP		60* TABP	BML	BML	BL	BL	ВМ	в
1110	E	тва	ТАВ	-	TV2A	1 RB	1 SB	13 A	13 LA	13 TABP	29 TABP	45 TABP	61 * TABP	BML	BML	BL	BL	ВМ	в
						2 RB	2 SB	14 A	14 LA	14 TABP	30 TABP	46 TABP	62* TABP					ļ	
1111	F	-	ΤΑΥ	szc	TV1A	3	3	15	15	15	31	47	63*	BML	BML	BL	BL	вм	в

INSTRUCTION CODE TABLE

The above table shows the relationship between machine language codes and machine language instructions. $D_3 \rightarrow D_0$ show the low-order 4 bits of the machine language code, and $D_9 \rightarrow D_4$ show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use the code marked "-".

The codes for the second word of a two-word instruction are described below.

	The second word
BL	10 paaa aaaa
BML	10 paaa aaaa
BLA	10 PP00 PPPP
BMLA	10 PP00 PPPP
SEA	00 0111 плпл
SZD	00 0010 1011

* cannot be used at M34520M6A-XXXSP/FP.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

/ [D ₉ D₄	100000	100001	100010	100011	100100	100101	100110	100111	101000	101001	101010	101011	101100	101101	101110	101111	110000 111111
D ₃ - D ₀	Hexa- deci- mai nota- tion	20	2 1	22	23	24	2 5	26	27	28	29	2 A	2 B	2 C	2 D	2 E	2 F	30 to 3F
0000	0	тна	түза	OP0A	T1AB	тан	-	IAPO	TAB1	SNZT1		WRST	ТМА 0	TAM 0	XAM 0	XAMI 0	XAMD 0	LXY
0001	1	TLA	TW4A	OP1A	T2AB	TAL	_	IAP1	TAB2	SNZT2	_	RTPS	ТМА 1	TAM	XAM 1	XAMI 1	XAMD	LXY
0010	2	TJ1A	TW5A		-	TAJ1	TAMR	IAP2		SNZT3	-	RTPR	ТМА 2	ТАМ 2	ХАМ 2	2 XAMI	XAMD	LXY
0011	3	TJ2A		_	T4AB	TAJ2	TAI1	IAP3	ТАВ4	SNZT4		-	ТМА 3	TAM 3	XAM 3	ХАМI З	XAMD 3	LXY
0100	4	TQ1A		_		TAQ1	TAI2	IAP4					ТМА 4	ТАМ 4	XAM 4	ХАМІ 4	XAMD	LXY
0101	5	_	_	-		_	TAI3	_	_		_	_	Т М А 5	ТАМ 5	XAM 5	XAMI 5	XAMD	LXY
0110	6	4	TMRA	-	T4ABD		тако				-		ТМА 6	TAM 6	XAM 6	XAMI 6	XAMD 6	LXY
0111	7		TI1A	-			-		-	SNZAD	_		тма 7	TAM	ХАМ 7	XAMI 7	XAMD	LXY
1000	8	-	TI2A			тана	-		_	SNZSI	-		ТМА 8	TAM 8	XAM 8	XAMI 8	XAMD 8	LXY
1001	9		TRTPA	_		TALA	-			_	_	_	ТМА 9	ТАМ 9	ХАМ 9	XAMI 9	XAMD 9	LXY
1010	A	TL1A	тіза	_		TAL1	-		-	_	_	-	ТМА 10	ТАМ 10	ХАМ 10	XAMI 10	XAMD	LXY
1011	в	TL2A	TKOA	-		TAW1	_	_	-		-		тма 11	TAM 11	XAM 11	XAMI 11	XAMD	LXY
1100	С	TL3A		-	TR4AB	TAW2	_	_	_	_	_	-	т ма 12	ТАМ 12	ХАМ 12	XAMI 12	XAMD	LXY
1101	D	TLCA	-	TPUOA	-	TAW3	-	-	_	_	_	-	тма 13	ТАМ 13	XAM 13	ХАМІ 13	XAMD 13	LXY
1110	E	TW1A	_			TAW4	_		-	_	SST	-	тма 14	TAM	ХАМ 14	XAMI 14	XAMD	LXY
1111	F	TW2A	-	_		TAW5				-	ADST		ТМА 15	ТАМ 15	ХАМ 15	XAMI 15	XAMD	LXY

The above table shows the relationship between machine language codes and machine language instructions. $D_3 - D_0$ show the low-order 4 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use the code marked "-"

The codes for the second word of a two-word instruction are described below.

	Γ		Th	es	ec	ond	wor	d		
BL	1	0	p	a	a	a	а	a	a	а
BML	1	0	р	a	а	а	а	а	а	а
BLA	1	0	р	p	0	0	р	p	p	р
BMLA	, 1	0	р	р	0	0	р	р	р	р
SEA	0	0	0	1	1	1	n	n	n	n
SZD	0	0	0	0	1	0	1	0	1	1

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

MACHINE INSTRUCTIONS

Parameter						I	nstruc	tion c	ode						r of Is	r of	
Type of	Mnemonic	D ₉	D ₈	D7	D ₆	D ₅	D₄	D ₃	D ₂	D ₁	Do	Hexa	adeo otati	cimal on	Number of words	Number of cycles	Functions
instructions																1	
	TAB	0	0	0	0	0	1	1 1	1	1 1	0	0 0	1 0	E		1	(A)←(B) (B)←(A)
er	TBA	0	Ø	0	0	0	0 1	1	1	1	1	0	1	F	1	1	(A)←(Y)
ust	TAY	0	0	0 0	0 0	0	0	1	1	0	0	o	0	c	1	1	$(\mathbf{Y}) \leftarrow (\mathbf{A})$
Register to register transfer	ΤΥΑ ΤΕΑΒ	0	0 0	0	0	0	1	1	.0	1	õ	0	1	A	1	1	$(E_7 - E_4) \leftarrow (B), (E_3 - E_0) \leftarrow (A)$
iter	TABE	0	0	0	0	1	0	1	õ	1	0	0	2	Α	1	1	$(B) \leftarrow (E_7 - E_4), (A) \leftarrow (E_3 - E_0)$
gis	TDA	0	ŏ	0	õ	1	0	1	0	0	1	0	2	9	1	1	$(DR_2 - DR_0) \leftarrow (A_2 - A_0)$
e v	TAD	0	0	õ	1	0	1	0	0	0	1	0	5	1	1	1	$(A_2 - A_0) \leftarrow (DR_2 - DR_0), (A_3) \leftarrow 0$
er to	TAZ	0	ő	0	1	0	1	0	0	1	1	0	5	3	1	1	$(A_1, A_0) \leftarrow (Z_1, Z_0)$
iste	1.1.1			•													$(A_3, A_2) \leftarrow 0$
feg	ТАХ	0	0	0	1	0	1	0	0	1	0	0	5	2	1	1	(A)→(X)
u	TASP	0	0	0	1	0	1	0	0	0	0	0	5	0	1	1	$(A_2 - A_0) \leftarrow (SP_2 - SP_0)$ $(A_3) \leftarrow 0$
S S S S S S S S S S S S S S S S S S S	LXY x, y	1	1	x ₃	x ₂	X1	xo	Уз	¥2	y 1	Уo	3	x	у	1	1	$(x) \leftarrow x, x = 0 \text{ to } 15$ (Y) $\leftarrow y, y = 0 \text{ to } 15$
addresses	LZ z	0	0	0	1	0	0	1	0	Z1	z _o	0	4	8 + z	1	1	$(Z) \leftarrow z, z = 0$ to 3
Σ	INY	0	0	0	0	0	1	0	0	1	1	0	1	3	1	1	$(\mathbf{Y}) \leftarrow (\mathbf{Y}) + 1$
RAM	DEY	0	0	0	0	0	1	0	1	1	1	0	1	7	1	1	(Y)←(Y)-1
	02.																
															+		
	TAM j	1	0	1	1	0	0	1	j	i	j	2	С	j	1	1	$(A) \leftarrow (M(DP))$ (X) \leftarrow (X) EXOR(j), j= 0 to 15
nsfer	XAM j	1	0	1	1	0	1	i	j	Ĵ	j	2	D	i	1	1	$(A) \longleftrightarrow (M(DP))$ (X) $\leftarrow (X) EXOR(j), j=0 \text{ to } 15$
jister tra	XAMD j	1	0	1	1	1	1	j	j	i	j	2	F	j	1	1	$(A) \longleftrightarrow (M(DP))$ (X) \leftarrow (X) EXOR(j), j= 0 to 15 (Y) \leftarrow (Y) $-$ 1
RAM to register transfer	XAMI j	1	0	1	1	1	0	j	i	j	i	2	E	i	1	1	$\begin{array}{l} (A) \longleftrightarrow (M(DP)) \\ (X) \leftarrow (X) EXOR(j), j=0 \text{ to } 15 \\ (Y) \leftarrow (Y)+1 \end{array}$
R,	тма ј	1	0	1	0	1	1	j	j	j	j	2	E	3 j	1	1	(M(DP))←(A) (X)←(X)EXOR(j), j= 0 to 15
	LA n	0	0	0	1	1	1	n	n	n	n	0	7	7 n	1	1	(A)←n, However, n=0 to 15
	TABP p	0	0	1	0	ps	, p₄	p3	p ₂	p ₁	Pa	0	8			3	
Arithmetic operation	F													÷.			$(SK(SP))\leftarrow(PC)$ $(PC_{H})\leftarrow DR_{2}\leftarrow DR_{0}, A_{3}\leftarrow A_{0})$ $(B)\leftarrow(ROM(PC))_{7 \text{ to } 4}$ $(A)\leftarrow(ROM(PC))_{3 \text{ to } 0}$ $(PC)\leftarrow(SK(SP))$ $(SP)\leftarrow(SP)-1$ $(Note)$
Ä	АМ	C) () C) (0	0	1	0	1	0	C) +	0	A 1	1	(A)←(A)+(M(DP))

Note : p is 0 to 63 for M34520M8A.

p is 0 to 47 for M34520M6A.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Skip condition	Carry Ilag CY	Detailed description
	_	Transfers the contents of register B to register A.
	_	Transfers the contents of register A to register B.
		Transfers the contents of register Y to register A. Transfers the contents of register A to register Y.
		Transfers the contents of registers A and B to register E.
	-	Transfers the contents of registers A and B to register L.
_		Transfers the contents of register A to register D.
		Transfers the contents of register D to register A.
-	-	Transfers the contents of register Z to register A.
-	-	Transfers the contents of register X to register A.
-	-	Transfers the contents of stack pointer (SP) to register A.
Continuous description	-	Loads the value x in the immediate field to register X, and the value y in the immediate field to register Y. When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instruc-
-	-	tions coded continuously are skipped. Loads the value z in the immediate field to register Z.
(Y) = 0 (Y) = 15	-	Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped.
		After transferring the contents of $M(DP)$ to register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. After exchanging the contents of $M(DP)$ with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. After exchanging the contents of $M(DP)$ with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. After exchanging the contents of $M(DP)$ with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. After exchanging the contents of $M(DP)$ with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped.
(Y) = 0	-	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. After transferring the contents of register A to M(DP), an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
Continuous description		Loads the value n in the immediate field to the register A. When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped.
		Transfers bits 7 to 4 to register B and bits 3 to 0 to register A. These bits 7 to 0 are the ROM pattern in address (DR ₂ DR ₁ DR ₀ A ₃ A ₂ A ₁ A ₀) specified by registers A and D in page p. When this instruction is executed, 1 stage of stack register is used.
		Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY remains unchanged.

•

.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

/						1	Instruc	ction o	ode						er of ds	es of	
Type of	Mnemonic	Dg	D ₃	D7	D ₆	D ₅	D₄	D ₃	D ₂	D1	D ₀	1	adeo otatio		Number of words	Number o cycles	Functions
	АМС	0	0	0	0	0	0	1	0	1	1	0	0	в	1	1	(A)←(A)+(M(DP))+(CY) (CY)←Carry
U	An	0	0	0	1	1	0	n	n	n	n	0	6	n	1	1	$(A) \leftarrow (A) + n$ However, $n = 0$ to 15
Arithmetic operation	AND	0	0	0	0	0	1	1	0	0	0	0	1	8	1	1	(A)⊷(A) AND (M(DP))
ŏ	OR	0	0	0	0	0	1	1	0	0	1	0	1	9	1	1	(A)←(A) OR (M(DP))
Jet	SC	0	0	0	0	0	0	0	1	1	1	0	0	7	1	1	(CY)←1
ţ	RC	0	0	0	0	0	0	0	1	1	0	0	0	6	1	1	(CY)←0
Ā	SZC	0	0	0	0	1	0	1	1	1	1	0	2	F	1	1	(CY)=0 ?
	CMA	0	0	0	0	0	1	1	1	0	0	0	1	С	1	1	(A) ← (Ā)
	RAR	0	0	0	0	0	1	1	1	0	1	0	1	D	1	1	\rightarrow CY \rightarrow A ₃ A ₂ A ₁ A ₀
tion	SB j	0	0	0	1	0	1	1	1	I	j	o	5	C + j	1	1	(Mj(DP))← 1 j= 0 to 3
operation	RB j	0	0	0	1	0	0	1	1	j	i	0	4	C + 	1	1	(Mj(DP))← 0 j= 0 to 3
Bit	SZB j	0	0	0	0	1	0	0	0	j	ł	0	2	i	1	1	(Mj(DP)) = 0? j= 0 to 3
Comparison operation	SEAM	0	0	0	0	1	0	0	1	1	0	0	2	6	1	1	(A)=(M(DP))?
era	SEA n	0	0	0	0	1	0	0	1	0	1	0	2	5	2	2	(A)=n?
ы do Co		0	0	0	1	1	1	n	n	n	n	0	7	n			However, n= 0 to 15
	Ва	0	1	1	a ₆	a ₅	84	a ₃	a ₂	a1	a ₀	1	8	a + a	1	1	(PC _L)←a ₆ a ₀
eration	BLp,a	0	0	1	1	1	p₄	p ₃	p ₂	p1	ρo	0	E	р + р	2	2	(PC _H)⊷p (PC _L)⊷a ₆ —a ₀ (Note)
Branch operation		1	0	р ₅	a ₆	a ₅	a₄	a ₃	a ₂	aı	a ₀	2	р	a + a			
Bra	BLA p	0	0	0	0	0	1	0	0	0	0	0	1	0	2	2	(PC _H)←p (PC _L)←(DR ₂ −DR ₀ , A ₃ −A ₀) (Note)
		1	0	₽₅	p₄	0	0	р ₃	p2	p ₁	p ₀	2	р	р			
	BM a	0	1	0	a ₆	a ₅	a₄	a ₃	a ₂	aı	a ₀	1	a	a	1	1	$(SP) \leftarrow (SP) + 1$ (SK(SP)) $\leftarrow (PC)$ (PC _H) $\leftarrow 2$, (PC _L) $\leftarrow a_6 - a_0$
eration	BML p,a	0	0	1	1	0	p₄	₽₃	₽2	P1	Po	0	С	р + р	2	2	$\begin{array}{l} (SP) \leftarrow (SP) + 1 \\ (SK(SP)) \leftarrow (PC) \\ (PC_{H}) \leftarrow p, (PC_{L}) \leftarrow a_{6} \leftarrow a_{0} \\ (Note) \end{array}$
Subroutine operat		1	0	p₅	a ₆	a 5	a₄	a 3	a2	a,	a _o	2	þ	a + a			
Subrot	BMLA p	0	0	0	0	1	1	0	0	0	0	0	3	0	2	2	(SP)←(SP)+1 (SK(SP))←(PC)
0		1	0	р ₅	P₄	0	0	р₃	₽₂	p1	po	2	Ρ	p			(PC _H)←p (PC _L)←(DR ₂ ←DR ₀ , A ₃ ←A ₀) (Note)

Note : p is 0 to 63 for M34520M8A. p is 0 to 47 for M34520M6A.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

	,	
Skip condition	Carry flag CY	Detailed description
	0/1	Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.
Overflow= 0	-	Adds the value n in the immediate field to register A.
		The contents of carry flag CY remains unchanged.
		Skips the next instruction when there is no overflow as the result of operation.
		Takes the AND operation between the contents of register A and the contents of M(DP), and stores the result in register A.
	1	Takes the OR operation between the contents of register A and the contents of M(DP), and stores the result in register A. Sets (1) to carry flag CY.
	1	Clears (0) to carry flag CY.
(CY) = 0		Skips the next instruction when the contents of carry flag CY is 0.
-	-	Stores the one's complement for register A's contents in register A.
	0/1	Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.
	-	Sets (1) to the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
_	_	Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
(Mj(DP))=0, j=0 to 3	-	Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of M(DP) is "0".
(A)=(M(DP))	_	Skips the next instruction when the contents of register A is equal to the contents of M(DP).
(A)=n	-	Skips the next instruction when the contents of register A is equal to the value n in the immediate field.
	-	Branch within a page . Branches to address a in the identical page.
-		Branch out of a page ? Branches to address a in page p.
-		Branch out of a page : Branches to address (address $DR_2 DR_1 DR_0 A_3 A_2 A_1 A_0)_2$ specified by registers D and A in page p.
_	-	Call the subroutine in page 2 : Calls the subroutine at address a in page 2.
·	-	Call the subroutine : Calls the subroutine at address a in page p.
		. Call the subroutine : Calls the subroutine at address $(DR_2 DR_1 DR_0 A_3 A_2 A_1 A_0)_2$ specified by registers D and A in page p.

•

MITSUBISHI MICROCOMPUTERS

4520 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Parameter						1	nstruc	tion c	ode						er of s	er of	
Type of instructions	Mnemonic	D9	D ₈	D7	D ₆	D ₅	D4	D ₃	D2	D1	D ₀	1	ade	cimal on	Number	Number of cycles	Functions
Return operation	RTI	0	0	0	1	0	0	0	1	1	0	0	4	6	1	1	(PC)←(SK(SP)) (SP)←(SP)− 1
ırı ope	RT	0	0	0	1	0	0	0	1	0	0	0	4	4	1	2	(PC)←(SK(SP)) (SP)←(SP)−1
Retu	RTS	0	0	0	1	0	0	0	1	0	1	Ö	4	5	1	2	(PC)←(SK(SP)) (SP)←(SP)−1
	DI	0	0	0	0	0	0	0	1	0	0	0	0	4	1	1	(INTE) ← 0
	EI SNZO	0	0 0	0 0	0 0	0 1	0 1	0 1	1 0	0 0	1 0	0	0 3	5 8	1	1	(INTE)← 1 (EXF0)=1 ?, After skipping (EXF0)← 0
	SNZ1	0	0	0	0	1	1	1	0	0	1	0	3	9	1	1	(EXF1)=1 ?, After skipping (EXF1)←0
	SNZ10	0	0	0	0	٦	1	1	0	1	0	0	3	A	1	1	11 ₂ =1 : (INT ₀)="H" ?
											*						11 ₂ =0:(INT ₀)="L" ?
	SNZI1 (Note)	0	0	0	0	1	1	1	0	1	1	0	3	в	1	1	l2 ₂ =1 : (INT ₁)="H" ?
																	12 ₂ =0:(INT ₁)="L" ?
Б	TAV1	0	0	0	1	0	1	0	1	0	0	0	5	4	1	1	(A)←(V1)
perati	τνια	0	0	0	0	1	1	1	1	1	1	0	3	F	1	1	(V1)←(A)
Interrupt operation	TAV2	0	0	0	1	0	1	0	1	Ó	1	0	5	5	1	1	(A)⊷(V2)
Inter	TV2A	0	0	0	0	1	1	1	1	1	0	0	3	E	1	1	(V2)←(A)
	TAI1	1	0	0	1	0	1	0	0	1	1	2	5	3	1	1	(A)←(I1)
	TI1A	1	0	0	0	0	1	0	1	1	1	2	1	7	1	1	(I1)⊷(A)
	TAI2	1	0	0	۱	0	1	0	1	0	0	2	5	4	1	1	(A)←(12)
	TI2A	1	0	0	0	0	1	1	0	0	0	2	1	8	1	1	(12)←(A)
	TAI3	1	0)	(A ₀)←(I3), (A ₃ −A,)←0
	TI3A	1	0	0	0	0	1	1	0	1	0	2	1	Α	1	1	(13)←(A ₀)
1																	
i																	

Note : OR operation between INT1 pin and INT2 pin when "1" is set to register I3.

Skip condition	Carry flag CY	Detailed description
	-	Returns from interrupt service routine to main routine.
		Returns each value of data pointer (X, Y, Z), carry flag, skip status, NOP mode status by the continuous description of the LA/LXY
_	_	instruction, registers A and B to the states just before interrupt. Returns from subroutine to the routine called the subroutine.
Skip at uncondition		Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition.
_		Clears (0) to the interrupt enable flag INTE, and disables the interrupt.
	-	Sets (1) to the interrupt enable flag INTE, and enables the interrupt.
(EXF0)= 1	-	Skips the next instruction when the contents of EXF0 flag is "1".
<i>.</i>		After skipping, clears the EXFO flag.
(EXF1)=1	-	Skips the next instruction when the contents of EXF1 flag is "1".
(1) 17)		After skipping, clears EXF1 flag.
(INT ₀)="H" I1 ₂ =1		When bit 2 of register 11 (11_2) is "1" : Skips the next instruction when the level of INT ₀ pin is "H".
-		
(INT ₀)="L" I1 ₂ =0	-	When bit 2 of register if (11_2) is "0" : Skips the next instruction when the level of INT ₀ pin is "L".
(INT ₁)="H" 2 ₂ =1	-	When bit 2 of register I2 (I2 ₂) is "1" : Skips the next instruction when the level of INT ₁ pin is "H".
(INT ₁)="L" I2 ₂ =0	-	When bit 2 of register I2 $(I2_2)$ is "0" : Skips the next instruction when the level of INT ₁ pin is "L".
_	-	Transfers the contents of interrupt control register V1 to register A.
-		Transfers the contents of register A to interrupt control register V1.
-	-	Transfers the contents of interrupt control register V2 to register A.
	-	Transfers the contents of register A to interrupt control register V2.
-	-	Transfers the contents of interrupt control register I1 to register A.
	-	Transfers the contents of register A to interrupt control register 11.
	-	Transfers the contents of interrupt control register I2 to register A.
	-	Transfers the contents of register A to interrupt control register I2.
	-	Transfers the contents of interrupt control register I3 to register A.
	-	Transfers the contents of register A to interrupt control register I3.

	Marca - 1					1	nstruc	tion c	ode						oer of rds	ber of cles	Functions
e of ructions	Mnemonic	D9	D ₈	D7	D ₆	D5	D₄	D3	D2	D1	Do	Hex	adec static	imal m	Numt	Number o cycles	
	TAW1	1	0	0	1	0	0	1	0	1	1	2	4	в	1	1	(A)←(W1)
	TW1A	1	0	0	0	0	0	1	1	1	0	2	0	E	1	1	(W1)←(A)
	TAW2	1	'n	0	1	0	0	1	1	0	0	2	4	с	1	1	(A)⊷(W2)
	TW2A	1	0	0	0	0	0	1	1	1	1	2	0	F	1	1	(W2)←(A)
	таwз	1	0	0	۱	0	0	1	1	0	1	2	4	D	1	1	(A)↔(W3)
	түза	1	0	0	0	0	1	0	0	0	0	2	1	0	1	1	(W3)(A)
	TAW4	1	0	0	1	0	0	1	1	1	0	2	4	E	1	1	(A)←(W4)
	TW4A	1	0	0	0	0	1	0	0	0	1	2	1	1	1	1	(₩4)←(A)
	TAW5	1	0	0	1	0	0	1	1	1	1	2	4	F	1	1	$(A_2-A_0) \leftarrow (W5_2-W5_0), (A_3) \leftarrow 0$
	TW5A	1	0	0	0	0	1	0	0	1	0	2	1	2	1	1	$(W5_2-W5_0) \leftarrow (A_2-A_0)$
	TAB1	1	0	0	1	1	1	0	0	0	0	2	7	0	1	1	$(B) \leftarrow (T1_7 - T1_4), (A) \leftarrow (T1_3 - T1_0)$
-	T1AB	1	0	0	0	1	1	0	0	0	0	2	3	0	1	1	$(R1_7 - R1_4) \leftarrow (B), (T1_7 - T1_4) \leftarrow (B)$ $(R1_3 - R1_0) \leftarrow (A), (T1_3 - T1_0) \leftarrow (A)$
Timer operation	TAB2	1	0	0	1	1	1	0	0	0	1	2	7	1	1	1	$(B) \leftarrow (T2_7 - T2_4), (A) \leftarrow (T2_3 - T2_0)$
ner op	T2AB	1		0	0	1	1	0	0	0	1	2	3	1	1	1	(R2 ₇ -R2 ₄)←(B), (T2 ₇ -T2 ₄)←(B)
Ē																	$(R2_3 - R2_0) \leftarrow (A), (T2_3 - T2_0) \leftarrow (A)$
	TAB4	1	0	0	1	1	1	0	0	1	1	2	7	3	1	1	$(B) \leftarrow (T4_7 - T4_4), (A) \leftarrow (T4_3 - T4_0)$
	T4AB	1	0	0	0	1	1	0	0	. 1	1	2	3	3	1	1	$(R4_7 - R4_4) \leftarrow (B), (T4_7 - T4_4) \leftarrow (B)$ $(R4_3 - R4_0) \leftarrow (A), (T4_3 - T4_0) \leftarrow (A)$
	T4ABD	1	0	0	0	1	1	0	1	1	0	2	3	6	1	1	(T4 ₇ −T4 ₄)←(B), (T4 ₃ −T4 ₀)←(A)
	TR4AB	1	0	0	0	1	1	1	1	0	0	2	3	С	: 1	1	$(R4_7 - R4_4) \leftarrow (B), (R4_3 - R4_0) \leftarrow (A)$
	SNZT1	1	0	1	0	0	0	0	0	0	0	2	8	0	1	1	$(T1F) = 1$? After skipping, $(T1F) \leftarrow 0$
	SNZT2	1	0	1	0	0	0	0	0	0	1	2	8	1	1	1	(T2F)=1 ? After skipping, (T2F)←0
	SNZT3	1	0	1	0	0	0	0	0	1	C	2	8	2	2 1	1	(T3F)=1 ? After skipping, (T3F)←0
	SNZT4	1	C) 1	C) 0	0	0	0	1	۱	2	2 8	3	3 1	1	(T4F)=1 ? After skipping, (T4F)← 0

Skip condition Skip Condition	Detailed description
	Transfers the contents of timer control register W1 to register A.
	Transfers the contents of register A to timer control register W1.
	Transfers the contents of timer control register W2 to register A.
	Transfers the contents of register A to timer control register W2.
	Transfers the contents of timer control register W3 to register A.
	Transfers the contents of register A to timer control register W3.
	Transfers the contents of timer control register W4 to register A.
	Transfers the contents of register A to timer control register W4.
	Transfers the contents of timer control register W5 to register A.
	Transfers the contents of register A to timer control register W5,
	Transfers the contents of timer 1 to registers A and B.
	Transfers the contents of registers A and B to timer 1 and timer 1 reload register.
	Transfers the contents of timer 2 to registers A and B. Transfers the contents of registers A and B to timer 2 and timer 2 reload register.
	Transfers the contents of timer 4 to registers A and B. Transfers the contents of registers A and B to timer 4 and timer 4 reload register.
	Transfers the contents of registers A and B to timer 4.
	Transfers the contents of registers A and B to timer 4 reload register.
(T1F)=1 -	Skips the next instruction when the contents of T1F flag is "1". After skipping, clears the T1F flag.
(T2F)=1 —	Skips the next instruction when the contents of T2F flag is "1". After skipping, clears T2F flag.
(T3F)=1 –	Skips the next instruction when the contents of T3F flag is "1". After skipping, clears the T3F flag.
(T4F)=1 -	Skips the next instruction when the contents of T4F flag is "1". After skipping, clears T4F flag.

MITSUBISHI MICROCOMPUTERS

4520 Group

Parameter						1	nstruc	tion c	ode						ls of	ar of	
Type of instructions	Mnemonic	D9	D ₈	D7	D ₆	D5	D4	D ₃	D ₂	D1	D ₀		adec otatio	imal on	Number (words	Number of cycles	Functions
	IAP0	1	0	0	1	1	0	0	0	0	0	2	6	0	1	1	(A)←(P0)
	OP0A	1	0	0	0	1	0	0	0	0	0	2	2	0	1	1	(P0)←(A)
	IAP1	1	0	0	1	1	0	0	0	0	1	2	6	1	1	1	(A)←(P1)
	OP1A	1	0	0	0	1	0	0	0	0	1	2	2	1	1	1	(P1)←(A)
	IAP2	1	0	0	1	1	0	0	0	ł	0	2	6	2	1	1	(A)←(P2)
	IAP3	1	0	0	1	1	0	0	0	1	1	2	6	3	1	1	(A)←(P3)
eration	IAP4	1	C	0	1	1	0	0	1	0	0	2	6	4	1	1	(A) ⊷ (P4)
out ope	CLD	0	0	0	0	0	1	0	0	0	1	0	1	1	1	1	(D)← 1
Input/Output operation	RD	0	0	0	0	0	1	0	1	0	0	0	1	4	1	1	$ \begin{array}{l} (D(Y)) \leftarrow 0 \\ (Y) = 0 \text{ to } 10 \end{array} $
ndul	SD	0	0	0	0	0	1	0	1	0	1	0	1	5	1	1	$(D(Y)) \leftarrow 1$ (Y)= 0 to 10
	SZD	0	0	0	0	1	0	0	1	0	0	0	2	4	2	2	(D(Y)) = 0? (Y) = 0 to 10
		0	0	0	0	1	0	1	0	1	۱	0	2	в			
	ткоа	1	0	0	0	0	1	1	0	1	1	2	1	в	1	1	(K0)←(A)
	ТАКО	1	0	0	1	0	1	0	1	1	0	2	5	6	1	1	(A)←(K0)
	TPU0A	1	0	0	0	1	0	1	1	0	1	2	2	D	1	1	(PU0)+-(A)
LCD control operation	TL1A TAL1 TL2A TL3A TLCA	1 1 1 1	0 0 0 0	0 0 0 0	0 1 0 0	0 0 0 0	0 0 0 0	1 1 1 1	0 0 1 1	1 1 0 0	0 0 1 0 1	2 2 2 2 2	0 4 0 0 0	A B C D	1 1 1 1	1 1 1 1	$(L1) \leftarrow (A)$ $(A) \leftarrow (L1)$ $(L2) \leftarrow (A)$ $(L3) \leftarrow (A_0)$ $(LC) \leftarrow (A)$
Serial I/O operation	TAH THA TAL TAJ1 TJ1A TAJ2 TJ2A SST SNZSI	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 0 0 0 0 0 1 1	1 0 1 0 1 0 0		0 0 0 0 0 0 0 1 0	0 0 0 0 0 0 1 1	0 0 0 0 0 0 1 0	0 0 1 1 1 1 0		2	0 9	0 0 1 2 2 3 3 E 8	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$(J_{2_1}, J_{2_0}) \leftarrow (A_1, A_0)$ (SIOF) $\leftarrow 0$, serial I/O starts

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Skip condition	Carry flag CY	Detailed description
	-	Transfers input of port P0 to register A.
_	-	Outputs the contents of register A to port P0.
_	-	Transfers input of port P1 to register A.
-	-	Outputs the contents of register A to port P1.
_	-	Transfers input of port P2 to register A.
_	_	Transfers input of port P3 to register A.
—	_	Transfers input of port P4 to register A.
-	_	Sets (1) to port D.
_	-	Clears (0) to a bit of port D specified by register Y.
_	_	Sets (1) to a bit of port D specified by register Y.
(D(Y)) = 0 (Y) = 0 to 10		Skips the next instruction when a bit of port D specified by register Y is "0".
	-	Transfers the contents of register A to key-on wakeup control register K0. Transfers the contents of key-on wakeup control register K0 to register A.
		Transfers the contents of register A to pull-up control register PU0.
	-	Transfers the contents of register A to LCD control register L1.
—		Transfers the contents of LCD control register L1 to register A.
	-	Transfers the contents of register A to LCD control register L2.
	-	Transfers the contents of register A to LCD control register L3. Transfers the contents of register A to timer LC and reload register.
		Transfers the contents of register H to register A.
<u> </u>	-	Transfers the contents of register A to register H.
	-	Transfers the contents of register L to register A.
	-	Transfers the contents of register A to register L.
	-	Transfers the contents of serial I/O mode register J1 to register A.
	—	Transfers the contents of register A to serial I/O mode register J1.
—	-	Transfers the contents of serial I/O mode register J2 to register A.
-	-	Transfers the contents of register A to serial I/O mode register J2.
-	-	Clears (0) to SIOF flag and starts serial I/O.
(SIOF)= 1	-	Skips the next instruction when SIOF flag is "1". After skipping, clears (0) to SIOF flag.

•

Parameler						. 1	nstruc	tion c	ode						er of rds	ier of les	Functions
ype of structions	Mnemonic	D9	D ₈	D7	D ₆	D5	D₄	Da	D2	D,	Do	Hexi	adec otatic		Number words	Number o cycles	Functions
	ТАНА	1	0	0	1	0	0	1	0	0	0	2	4	8	1	1	(A)←(HA)
A-D conversion operation	TALA	1	0	0	1	0	0	1	0	0	1	2	4	9	1	1	(A)←(LA)
ers	TAQ1	1	0	0	1	0	0	0	1	0	0	2	4	4	1	1	$(A_2 - A_0) \leftarrow (Q1_2 - Q1_0), (A_3) \leftarrow 0$
operation	TQ1A	.1	0	0	0	0	0	0	1	0	0	2	0	4	1	1	$(Q_{1_2}-Q_{1_0}) \leftarrow (A_2-A_0)$
5 dd	ADST	1	0	1	0	0	1	1	1	1	1	2	9	F	1.	1	A-D conversion starts
	SNZAD	1	0	1	0	0	0	0	1	1	1	2	8	7	1	1	(ADF)=1 ?,
																	After skipping, (ADF)0
	NOP	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	(PC)←(PC)+1
	POF	0	0	0	0	0	0	0	0	11	0	0	0	2	1	1	Power down 1
	POF2	0	0	0	0	0	0	1	0	0	0	0	0	8	1	1	Power down 2
tion	SNZP	0	0	0	0	0	0	0	0	1	1	0	0	3	1	1	(P)=1 ?
Other operation	TAMR	1	0	0	1	0	1	0	0	1	0	2	5	2	1	1	$(A_2 - A_0) \leftarrow (MR_2 - MR_0), (A_3) \leftarrow 0$
ō	TMBA	1	0	0	0	0	1	0	1	1	0	2	1	6	1	1	$(MR_2 - MR_0) \leftarrow (A_2 - A_0)$
the	WRST	1	0	1	0	1	0	0	0	0	0	2	Α	0	1	1	(WDF)⊷0
õ	RTPS	1	0	1	0	1	0	0	0	0	1	2	Α	1	1	1	(RTPL ₁)←1,
																	(RTPL ₀)← 1
	RTPR	1	0	1	0	1	0	0	0	1	0	2	А	2	1	1	(RTPL ₁)← 0,
																1	$(RTPL_{o}) \leftarrow 0$
	TRTPA	1	0	0	0	0	1	1	0	0	1	2	1	9	1	1	(RTP)+-(A)

Skip condition	Carry flag CY	Detailed description
-	—	Transfers the contents of register HA to register A.
-		Transfers the contents of register LA to register A.
-	-	Transfers the contents of A-D control register Q1 to register A.
	-	Transfers the contents of register A to A-D control register Q1.
-	-	Starts A-D conversion.
(ADF)= 1		Skips the next instruction when ADF flag is "1".
		After skipping, clears (0) to ADF flag.
-	_	No operation
	_	Puts the system in power down 1 state (clock operating mode).
		t(X _{CIN}) oscillation, LCD, timer 3 and timer 4 can be used.
	-	Puts the system in power down 2 state (RAM back-up mode).
		Oscillations are all stopped.
(P)=1	-	Skips the next instruction when the contents of P flag is "1".
		After skipping, the contents of P flag remains unchanged.
-		Transfers the contents of clock control register MR to register A.
-	-	Transfers the contents of register A to clock control register MR.
-		Clears watchdog timer flag WDF.
-	-	Sets (1) to both real time output latch $RTPL_1$ and $RTPL_0$.
-		Clears (0) to both real time output latch RTPL ₁ and RTPL ₀ .
-	_	Transfers the contents of register A to real time output register RTP.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

SYMBOL

The symbols shown are used in the following instruction function table and instruction list.

Symbol	Contents	Symbol	Contents
A	Register A (4 bits)	T1	Timer 1
в	Register B (4 bits)	T2	Timer 2
DR	Register D (3 bits)	Т3	Timer 3
ε	Register E (8 bits)	T4	Timer 4
Q1	A-D control register Q1 (3 bits)	LC	Timer LC
HA	Successive comparison register HA (4 bits)	T1F	Timer 1 interrupt request flag
LA	Successive comparison register LA (4 bits)	T2F	Timer 2 interrupt request flag
J1	Serial I/O mode register J1 (3 bits)	T3F	Timer 3 interrupt request flag
J2	Serial I/O mode register J2 (2 bits)	T4F	Timer 4 interrupt request flag
н	Serial I/O register H (4 bits)	WDF	Watchdog timer flag
L	Serial I/O register L (4 bits)	INTE	Interrupt enable flag
L1	LCD control register L1 (4 bits)	EXF0	External 0 interrupt request flag
L2	LCD control register L2 (4 bits)	EXF1	External 1 interrupt request flag
L3	LCD control register L3 (1 bit)	ZCF	Zero cross input flag
MR	Clock control register MR (3 bits)	NCF	Noise canceller flag
V1	Interrupt control register V1 (4 bits)	P	Power down flag
V2	Interrupt control register V2 (4 bits)	ADF	A-D conversion completion flag
11	Interrupt control register (1 (4 bits)	SIOF	Serial I/O transmission/reception completion flag
12	Interrupt control register I2 (4 bits)		
13	Interrupt control register I3 (1 bit)	D	Port D (11 bits)
w1	Timer control register W1 (4 bits)	PO	Port P0 (4 bits)
W2	Timer control register W2 (4 bits)	P1	Port P1 (4 bits)
w3	Timer control register W3 (4 bits)	P2	Port P2 (4 bits)
W4	Timer control register W4 (4 bits)	P3	Port P3 (4 bits)
W5	Timer control register W5 (3 bits)	P4	Port P4 (4 bits)
RTP	Real time output register RTP (2 bits)		
к0	Key-on wakeup control register (4 bits)	×	Hexadecimal variable
PU0	Pull-up control register PU0 (4 bits)	У	Hexadecimal variable
		z	Hexadecimal variable
x	Register X (4 bits)	p	Hexadecimal variable
Y	Register Y (4 bits)	n	Hexadecimal constant
z	Register Z (2 bits)	i	Hexadecimal constant
DP	Data pointer (10 bits)		Hexadecimal constant
	(It consists of registers X, Y and Z)	A3A2A1A0	Binary notation of hexadecimal variable A
PC	Program counter (14 bits)		(same for others)
PCH	High-order 7 bits of program counter		
PCL	Low-order 7 bits of program counter	→	Direction of data movement
SK	Stack register (14 bits×8)	()	Contents of registers and memories
SP	Stack pointer (3 bits)		Negate, Flag unchanged after executing instruction
CY	Carry flag	M(DP)	RAM address specified by the data pointer
R1	Timer 1 reload register	a	Label indicating address $a_6 a_5 a_4 a_3 a_2 a_1 a_0$
R2	Timer 2 reload register	p, a	Label indicating address $a_6 a_5 a_4 a_3 a_2 a_1 a_0$ in page $p_5 p_1$
R4	Timer 4 reload register	,	P3 P2 P1 P0
		с	Hex. C + Hex. number X (also same for others)
		+	
		l x	

Note: The 4520 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if a skip is not performed. However, the cycle count becomes "1" when the TABP p, RT, or RTS instruction is skipped.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

CONTROL REGISTERS

	Interrupt control register V1		at reset : 0000 ₂	at power down : 0000 ₂	R/W						
1/1	Timer 2	0	Interrupt disabled (SNZT2 in	nstruction is valid)							
V13	interrupt enable bit	1	Interrupt enabled (SNZT2 in	struction is invalid)							
	Timer 1	0	Interrupt disabled (SNZT1 in	nstruction is valid)							
V12	interrupt enable bit	1	Interrupt enabled (SNZT1 in	struction is invalid)							
	External 1	0	Interrupt disabled (SNZ1 ins	struction is valid)							
V1,	interrupt enable bit	1	Interrupt enabled (SNZ1 ins	truction is invalid)							
	External 0	0	Interrupt disabled (SNZ0 ins	and a second state of the state of the second							
V10	interrupt enable bit	1	Interrupt enabled (SNZ0 ins	truction is invalid)							
	Interrupt control register V2		at reset : 00002 at power down : 00002								
	Serial I/O	0	Interrupt disabled (SNZSI in	struction is valid)							
V2 ₃	interrupt enable bit	1	Interrupt enabled (SNZSI in:								
	A-D	0	Interrupt disabled (SNZAD i								
V22	interrupt enable bit	1	Interrupt enabled (SNZAD in		·····						
	Timer 4	0	Interrupt disabled (SNZT4 in								
V21	interrupt enable bit	1	Interrupt enabled (SNZT4 in	······································							
		0									
V20	Timer 3	1	Interrupt disabled (SNZT3 in Interrupt enabled (SNZT3 in								
	interrupt enable bit										
	Clock control register MR (Note 2)		at reset : 0002	at power down i state retained	R/W						
MR ₂	Not used	0	This bit has no function, but	read/write is enabled							
MB ₁	f(X _{IN}) clock oscillation circuit control bit	0	Oscillation enabled								
		1	Oscillation stop								
MBa	System clock selection bit	0	f(X _{IN})								
Win0	System clock selection bit	1	f(X _{CIN})								
	Interrupt control register I1		at reset : 0000 ₂	at power down : state retained	R/W						
	D ₈ /INT ₀ /ZEROX pin	0	D ₈ /INT ₀								
113	function selection bit	1	ZEROX								
	INT ₀ pin interrupt valid edge/	0	Falling edge (SNZI0 instruction re	ecognizes that level of INTo pin is "L" level)/"	L' level						
112	return level selection bit	1	Rising edge (SNZI0 instruction re	ecognizes that level of INTo pin is "H" level)/"	H" level						
	Edge detection circuit	0	One-sided edge detected								
11,	control bit	1	Both edges detected								
	Noise detection circuit	0	Disabled								
110	control bit	1	Used		·····						
	Interrupt control register 12	<u> </u>	at reset : 0000 ₂	at power down : state retained	R/W						
		0	•								
123	Not used	1	This bit has no function, but	read/write is enabled.							
122	Pins INT1 and INT2 interrupt valid edge selection bit	0		n recognizes that level of INT_1 pin is "L" le							
		1	Rising edge (SNZI1 instruction	n recognizes that level of INT1 pin is "H" le	evel)						
12,	Noise detection circuit sampling clock control bit	0	Stop								
.21	Holde detection on our sampling clock condor bit	1	Operating								
10		0	$f(X_{\text{IN}})$ or $f(X_{\text{CIN}})$ divided by	24 (Note 2)							
120	Noise detection circuit sampling clock selection bit	1	$f(X_{IN})$ or $f(X_{CIN})$ divided by	96 (Note 2)							
	Interrupt control register I3 (Note 3)		at reset : 02	at power down : state retained	R/W						
10	External 2	0	Disabled								
13 ₀	interrupt enable bit	1	Enabled (Note 4)								

Notes 1. "R" represents read enabled, and "W" represents write enabled.

After executing the TAMR instruction, "O" is stored in the bit 3 of register A.
 After executing the TAI3 instruction, "O" is stored in bits 3, 2 and 1 of register A.
 External interrupt activated condition is OR operation between INT₁ and INT₂.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

	Timer control register W1		at rese	at: 00002	at power down 0000 ₂	R/W		
	Descuries sectors hit	0	Stop (re	eset state)				
W1 ₃	Prescaler control bit	1	Operati	ng				
		0	f(X _{IN}) o	r f(X _{CIN}) divided b	by 6 (Note 2)			
W12	Prescaler dividing ratio selection bit	1	f(X _{IN}) o	r f(X _{CIN}) divided b	by 12 (Note 2)			
414	Times 1 control bit	0	Stop (s	tate retained)				
W11	Timer 1 control bit	1	Operati	ng				
	D ₆ /CNTR ₀ pin	0	I/O por	t D ₆				
W1 ₀	function selection bit	1	CNTR ₀	output				
	Timer control register W2		at rese	et : 0000 ₂	at power down : state retained	R/W		
W23	D ₇ /CNTR ₁ pin	0	have a second					
**23	function selection bit	1	CNTR ₁	output				
W22	Timer 2	0	Timer 2	control bit (bit 0 d	of register W5)			
****2	count start trigger selection bit	1	Timer 2	control bit and ze	ro cross input flag (ZCF)			
	Timer 2	W21	W20		Count source			
W21	count source selection bits	0	0	f(X _{IN})				
		0	1	Timer 1 underflo	w signal			
W20		1	0	Prescaler output (ORCLK)				
		1	1	CNTR ₁ input				
	Timer control register W3		at rese	et : 0000 ₂	at power down : state retained	R/W		
M3.	LCD frequency dividing circuit	0	Stop					
	V33 count source control bit		1 Operating					
W32	LCD frequency dividing circuit	0						
	count source selection bit	1	Timer 3	underflow signal (F	requency divided by 256 output)			
W31	Timer 3	0	Stop (re	set state)				
	control bit	1	Operatir	ng				
W3o	Timer 3	0	Timer 2	underflow signal	·			
	count source selection bit	1	$f(X_{CIN})$					
	Timer control register W4		at rese	et : 0000 ₂	at power down : state retained	R/W		
	Timer 2 and 4	0	Normal	mode				
W4 ₃	function selection bit	1	PWM m	ode				
A/A	Watchdog timer	0	Watchde	og timer stop				
W42	control bit	1	Watchde	og timer operating				
	Timer 4	W41	W40		Count source			
W41	count source selection bits	0	0	f(X _{IN})	-			
		0	1	Timer 3 underflow	signal			
W40		1	0	Timer 2 underflow	a provide the second			
-		1	1	Prescaler output (ORCLK)			
	Timer control register W5 (Note 3)		at res	et ≑ 000₂	at power down : state retained	R/W		
W52	Zero cross input flag control bit	0	Stop		-			
¥¥32	Zero cross input hag control bit	1	Operati	ng				
	Timer 4	0	Stop (st	ate retained)	-			
W51	control bit	1	Operatio	ng				
1 8/5	Timer 2	0	Stop (st	tate retained)				
W50	control bit	1	Operati	na				

Notes 1. "A" represents read enabled, and "W" represents write enabled. 2. The signal in $f(X_{IN})$ or $f(X_{CIN})$ selected as a system clock is used. 3. After executing the TAW5 instruction, "D" is stored in bit 3 of register A.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

	Serial I/O mode register J1 (Note 2)		at res	et : 000₂	at power down : state retained	R/W	
	D ₉ /S _{CK} /RTP ₀ pin	J12	J11		Function	L	
J12	function selection bits	0	0	I/O port D ₉			
		0 1 Serial I/O clock input/output S _{CK}					
J11		1	0	Real time output F	ητρ _ο		
		1	1	Not available			
J1o	Serial I/O	0	Externa	al clock			
.	synchronous clock selection bit	1	f(X _{tN}) a	or f(X _{CIN}) divided by	/ 24		
	Serial I/O mode register J2 (Note 3)		at re	set : 00 ₂	at power down i state retained	R/W	
	D ₁₀ /S _{OUT} /RTP ₁ /PWM pin	J21	J20		Function	L	
J21	function selection bits		0	I/O port D ₁₀			
			1	Serial data output S	τυο		
J20		1	0	Real time output RT	۲ Ρ ,		
		1	1 1 PWM output PWM				
	LCD control register L1		at res	et : 0000 ₂	at power down : state retained	R/W	
.13	LCD power supply dividing	0	Connec	ting internal dividing	resistor to LCD power circuit	L	
. • 3	resistor control bit	1	Disconr	ecting internal dividir	ng resistor from LCD power circuit		
12	LCD ON/OFF bit	0	OFF				
- *2		1	ON		-		
	LCD duty and bias	L11	L1 ₀	Duty	Bias		
_1 1	selection bits	0	-		Not available		
		0		1/2	1/2		
L10		1		1/3	1/3		
		1	1	1/4	1/3	r	
	LCD control register L2 (Note 4)		at res	et : 00002	at power down : state retained	w	
-23	SEG ₁₉ /P4 ₃ /A _{IN7} -SEG ₂₂ /P4 ₀ /A _{IN4} pin		SEG19-				
	function switch bit			7-P40/AIN4			
L22	SEG ₂₃ /P3 ₃ /A _{IN3} , SEG ₂₄ /P3 ₂ /A _{IN2} pin	p	SEG ₂₃ ,				
	function switch bit			3, P3 ₂ /A _{IN2}			
21	SEG ₂₅ /P3 ₁ /A _{IN1} pin		SEG ₂₅				
•	function switch bit		P3 ₁ /A _{IN}	1			
20	SEG ₂₈ /P3 ₀ /INT ₂ /A _{IN0} pin		SEG ₂₆				
	function switch bit	1	P30/IN1	2/AIN0			
	LCD control register L3		at re	eset:0 ₂	at power down : state retained	w	
2	SEG ₁₇ /V _{LC1} . SEG ₁₈ /V _{LC2} pin	0	SEG ₁₇ ,	SEG18			
L30	function switch bit	1	VLC1. VL	<u>^</u> 2			

Notes 1. "R" represents read enabled, and "W" represents write enabled.

After executing the TAJI instruction, "O" is stored in bit 3 of register A.
 After executing the TAJ2 instruction, "O" is stored in bits 3 and 2 of register A.

4. After setting the register L2, select AINO-AIN7 with register Q1.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

	A-D control register Q1 (Note 4)		at re	set : 000 ₂	at power down : state retained	R/W	
		Q12 Q	11 Q10		Selective pin		
Q12	Analog input pin selection bits	0	0 0	AINO			
	selection bits	0	01	A _{IN1}			
		0	10	A _{IN2}			
Q11		0	1 1	A _{iN3}			
		1	0 0	A _{IN4}			
		1	01	A _{IN5}			
Q10		1	10	AIN6			
		1	1 1	A _{IN7}			
	Key-on wakeup control register K0		at res	set : 00002	at power down : state retained	R/W	
	Pins P1 ₂ and P1 ₃	0	Key-on	wakeup not used			
К0 ₃	key-on wakeup control bit	1	1 Key-on wakeup used				
10	Pins P10 and P11	0	0 Key-on wakeup not used				
K02	key-on wakeup control bit	1	1 Key-on wakeup used				
	Pins PO ₂ and PO ₃	0	Key-or	wakeup not used			
K01	key-on wakeup control bit	1	Key-or	wakeup used			
10	Pins P0 ₀ and P0 ₁	0	Key-or	wakeup not used			
к0 ₀	key-on wakeup control bit	1	Key-or	wakeup used			
	Pull-up control register PU0		at res	set : 00002	at power down : state retained	w	
	Pins P1 ₂ and P1 ₃	0	Pull-up	transistor OFF			
PU03	pull-up transistor control bit	1	Pull-up	transistor ON			
DUO	Pins P1 ₀ and P1 ₁	0	Pull-up	transistor OFF			
PU02	pull-up transistor control bit	1	Pull-up	transistor ON			
DUO	Pins PO ₂ and PO ₃	0	Pull-up	transistor OFF			
PU01	pull-up transistor control bit	1	Pull-up	transistor ON			
000	Pins P0 ₀ and P0 ₁	0	Pull-up	transistor OFF			
PU00	pull-up transistor control bit	1	Pull-ur	transistor ON			

Notes 1. "R" represents read enabled, and "W" represents write enabled. 2. After executing the TAQ1 instruction, "0" is stored in bit 3 of register A.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Symbol	Parameter		Conditions	Rating	Unit
VDD	Supply voltage			0.3 to 7	v
V ₁	Input voltage P0, P1, P2, P3, P4, RESET, XIN, XCIN, VREF			-0.3 to Vpp+0.3	v
V,	Input voltage D ₀ -D ₇ , D ₉ , D ₁₀			0.3 to 13	V
Vi	Input voltage VLC1, VLC2, VLC3			-0.3 to Vpp+0.3	V
V ₁	Input voltage D ₈ /INT ₀ /ZEROX			-0.7 to V _{DD} +0.7	V
ŧ,	Input current D ₈ /INT ₀ /ZEROX			-100 to 100	μA
Vo	Output voltage F0, P1, RESET	Output transistors in the cut-off state		-0.3 to V _{DD} +0.3	V
Vo	Output voltage De	Output trans	istors in the cut-off state	-0.7 to V _{DD} +0.7	v
Vo	Output voltage D ₀ -D ₇ , D ₉ , D ₁₀	Output transistors in the cut-off state		-0.3 to 13	v
Vo	Output voltage Xout, Xcout			-0.3 to V _{DD} +0.3	v
Vo	Output voltage SEG, COM			-0.3 to V _{LC3} +0.3	V
		m	M34520MxA-XXXSP	1100	
Pd	Power dissipation	Ta=25℃	M34520MxA-XXXFP	300	mW
Topr	Operating temperature range (Note 1)			-20 to 85	°C
Tstg	Storage temperature range		· · · · · · · · · · · · · · · · · · ·	-40 to 125	Ĵ

ABSOLUTE MAXIMUM RATINGS

Note1. Operating temperature range for built-in EPROM version (M34520E8FS, M34520E8SS) is -20°C to 70°C.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

RECOMMENDED OPERATING CONDITIONS (Ta=-20°C to 85°C, Vpp=2.2V to 5.5V, unless otherwise noted)

Symbol	Parameter	Test conditions		Unit			
			Min.	Тур.	Max.		
	Supply voltage (Note 1)	f(X _{IN})=4.0MHz	4.5	5.0	5.5	v	
		$f(X_{iN}) = 1.5 MHz$	2.2		5.5	•	
	RAM back-up voltage (at RAM back-up mode)		2.0		5.5	V	
V _{SS}	Supply voltage			0		V	
AV _{SS}	Analog supply voltage (Note 2)			Vss		v	
V _{LC3}	Supply voltage for LCD (Note 3)		2.2		5.5	V	
VIH	"H" level input voltage P0, P1, P2, P3, P4, D ₈		0. 7V _{DD}		V _{DD}	v	
V _{tH}	"H" level input voltage D0-D7, D9, D10		0.7Vpp		12	٧	
VIH	"H" level input voltage X _{IN}		0.7V _{DD}		VDD	v	
ViH	"H" level input voltage RESET		0.85Vpp		V _{DD}	v	
V _{IH}	"H" level input voltage CNTR ₁ , S _{IN} , S _{CK} , INT ₀ , INT ₁ , INT ₂		0.8V _{DD}		VDD	v	
V _{IL}	"L" level input voltage P0, P1, P2, P3, P4, D ₀ D ₁₀		0		0. 3V _{DD}	v	
VIL	"L" level input voltage XIN		0		0.3V _{DD}	v	
VIL	"L" level input voltage RESET		0		0.1Vpp	v	
VIL	"L" level input voltage CNTR ₁ , S _{IN} , S _{CK} , INT ₀ , INT ₁ , INT ₂		0		0. 2V _{DD}	v	
lou(peak)	"L" level peak output current P0, P1, RESET				10	mA	
OL(peak)	"L" level peak output current D4, D5	H			40	mA	
oL(peak)	"L" level peak output current D ₀ -D ₃ , D ₆ -D ₁₀				24	mA	
	"L" level average output current P0, P1, RESET (Note 4)	V _{D0} =4.5V to 5.5V			5	mA	
IOL(avg)	"L" level average output current D ₄ , D ₅ (Note 4)				20	mA	
IOL(avg)	"L" level average output current D ₀ -D ₃ , D ₆ -D ₁₀ (Note 4)	-			12	mA	
	f(XiN) clock frequency	V _{DD} =4.5V to 5.5V			4.0		
f(X _{IN})	(with a ceramic resonator) (Note 5)	V _{DD} =2.2V to 5.5V			1.5	мн	
	1(X _{IN}) clock frequency (Note 5)	V _{PD} =4.5V to 5.5V			3.0		
f(X _{IN})	(with external clock input) (Note 6)	V _{DD} =2.2V to 5.5V			0.8	MH	
f(X _{CIN})	f(X _{CIN}) clock frequency (with a quartz-crystal oscillator) (Note 7)	V _{DD} =2.2V to 5.5V			50	kH	
	Serial I/O external clock cycle	Vpp=4.5V to 5.5V	750			ns	
tw(S _{CK})	("H" level or "L" level pulse width)	$V_{\rm DD} = 2.2V$ to 5.5V	2.0			μs	
	Timer external input cycle	$V_{DD} = 4.5V$ to 5.5V	750			ns	
w(CNTR1)	("H" level or "L" level pulse width)	$V_{\rm PD} = 2.2V$ to 5.5V	2.0			μs	

Notes 1. Supply voltage at Mask ROM version is 2.2V to 5.5V.

Supply voltage at built-in PROM version is 2.5V to 5.5V.

- When using zero cross detection circuit
 - VDD=3.0V to 5.5V (Mask ROM version)
 - V_{DD}=4.0V to 5.5V (Built-in PROM version)

· When using A-D converter

V_{DD}=2.7V to 5.5V (Mask ROM version, built-in PROM version)

2. Use AV_{ss} and V_{ss} at the same voltage level.

3. When using 1/2 blas : $V_{LC1} = V_{LC2} = 1/2 \cdot V_{LC3}$

- When using 1/3 bias : $V_{LC1}=1/3 \cdot V_{LC3}$, $V_{LC2}=2/3 \cdot V_{LC3}$
- 4. Keep the total currents of IoL (avg) for ports P0, P1, Do-D10, and RESET to 80mA or less.
- 5. However, the minimum value for the system clock frequency when using an A-D converter is 400kHz.

Keep the duty ratio of the external clock within the range shown in Table 19. Table 19 Supply voltage and duty ratio of external clock

Supply voltage	Duty ratio of external clock
4.5V to 5.5V	40% to 60%
2.2V to 5.5V	30% to 70%

7. External clock cannot be used as f(X_{CIN}) clock.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Symbol	ool Parameter		Test condition		Limits			
Syntuoi			rest condition	Min.	Тур.	Max.	Unit	
VoL	"L" level output voltage P0, P1, RESET		IOL=2mA			0.9	V	
VOL	"L" level output voltage	D4, D5	IOL=8mA			1.5	v	
VOL	"L" level output voltage	D ₀ -D ₃ , D ₆ , D ₇ -D ₁₀	IoL=2mA			0.9	v	
l;H	"H" level input current	P0, P1, P2, P3, P4, D8, RESET	V₂≕V _{DD} (Not	e 1)		1	μA	
l _{iH}	"H" level input current	D ₀ -D ₇ , D ₉ , D ₁₀	V ₁ =12V			1	μA	
l, _H	"H" level input current	VREF	Vi=3V			1	mA	
In	"L" level input current P0, P1, P2, P3, P4, D ₈ , RESET		vi=0∧ (Not (Not	1			μA	
IIL.	"L" level input current	D ₀ D ₇ , D ₉ , D ₁₀	Vi=0V	-1			μA	
loz	Output current at off-st	ate D ₀ -D ₇ , D ₉ , D ₁₀	V _o =12V			1	μA	
loz	Output current at off-st	ate P0, P1, D8, RESET	Vo=Vbo			1	μA	
	Supply current at power down 1 m (LCD operation)		$f(X_{IN})=1.5MHz$ $f(X_{CIN})=32kHz$		0.7	2.1	mA	
		at active high-speed mode	$f(X_{IN}) = 500 \text{ kHz}$ $f(X_{CIN}) = 32 \text{ kHz}$		0. 3	0.9	mA	
		at active low-speed mode	$f(X_{IN}) = \text{Stop}$ $I(X_{CIN}) = 32 \text{kHz}$		20	60	μA	
ldd		at power down 1 mode (LCD operation)	$I(X_{NN}) = Stop$ $f(X_{CN}) = 32kHz$		7	21	μA	
		at power down 2 mode	$f(X_{ N}) = Stop$ $f(X_{C N}) = Stop$ $T_a = 25^{\circ}C$		0.1	1.0	μA	
			$f(X_{iN}) = \text{Stop}$ $f(X_{CiN}) = \text{Stop}$			10	μA	
IADD	A-D operation current		f(X _{IN})=1.5MHz		0.2	0.6	mA	
	Zero cross comparator	operation current	$f(X_{iN}) = 1.5 MHz$		0.8	2.4	mA	
R _{PU}	Pull-up resistor value P	20 and P1	V _{DD} =3V V ₁ =0V	40	100	250	kΩ	
V ₁₊ -V ₁₋	Hysteresis INT ₀ , INT ₁ ,	INT ₂			0.3		v	
V ₁₊ -V ₇₋	Hysteresis RESET				0.7		v	
RCOM	COM output impedanc	Ð	(Not	e 3)	2	10	kΩ	
R _{SEG}	SEG output impedance)	(Not	e 3)	3	15	kΩ	
R _{VLC}	Internal resistor value f	or LCD power	Т _а =25°С	300	600	1200	kΩ	
	Zero cross comparator					±0.04V _{DD}	v	

ELECTRICAL CHARACTERISTICS (Ta=-20°C to 85°C, VDD=3.0V, unless otherwise noted)

Notes 1. In this case, port P4 function is selected with software. 2. The pull-up resistors of ports P0 and P1 are disconnected.

3. Use an external power supply for the LCD power, and leave all pins open except the measured pin.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Symbol	Parameter		Test condition		Unit			
Syntool					Min.	Тур.	Max.	Unit
VOL	"L" level output voltage P0, P1, RESET		I _{OL} =5mA				0.5	v
Vol	"L" level output voltage	• D ₄ , D ₅	I _{OL} ≕20mA				2	v
V _{ol}	"L" level output voltage	• D ₀ D ₃ , D ₆ , D ₇ D ₁₀	I _{OL} =12mA				2	v
I _{IH}	"H" level input current P0, P1, P2, P3, P4, D ₈ , RESET		VI=VDD	(Note 1)			1	μA
կո	"H" level input current	D ₀ D ₇ , D ₉ , D ₁₀	V1=12V				1	μA
l _{iH}	"H" level input current	VREF	V1=5V				2	mA
ارر	"L" level input current	P0, P1, P2, P3, P4, D ₈ , RESET	V ₁ =0V	(Note 1) (Note 2)	-1			μA
հե	"L" level input current	D ₀ -D ₇ , D ₉ , D ₁₀	v _i =0v		-1			μA
loz	Output current at off-st	ate D ₀ -D ₇ , D ₉ , D ₁₀	V _o =12V			_	1	μA
loz	Output current at off-st	ate P0, P1, D ₈ , RESET	Vo=VDD				1	μA
		at active high-speed mode	$f(X_{IN})=4MHz$ $f(X_{CIN})=32kHz$			3	9	mA
		at active low-speed mode	$f(X_{ N}) = \text{Stop}$ $f(X_{C N}) = 32 \text{kHz}$			50	150	μA
		at power down 1 mode	f(X _{IN})=Stop			30	90	μA
IDD	Supply current	(LCD operation)	$f(X_{CIN}) = 32 kHz$					
	at power down 2 mode	at power down 2 mode	$f(X_{IN}) = \text{Stop}$ $f(X_{CIN}) = \text{Stop}$ $T_{a} = 25^{\circ}C$			0. 1	1.0	μA
			$f(X_{iN}) = Stop$ $f(X_{CiN}) = Stop$				10	μA
IADD	A-D operation current		f(X _{IN})=4MHz	-		0.8	2.5	mA
IZDD	Zero cross comparator	operation current	f(X _{IN})=4MHz			1.0	3.0	mA
R _{PU}	Pull-up resistor value P	20 and P1	V _{DD} =5V V ₁ =0V		20	50	125	ĸΩ
V_+-V	Hysteresis INT ₀ , INT ₁ ,	INT ₂				0.3		V
V_+-V	Hysteresis RESET					1.8	1	٧
RCOM	COM output impedanc	e		(Note 3)		2	10	kΩ
R _{SEG}	SEG output impedance	3		(Note 3)		3	15	kΩ
R _{VLC}	Internal resistor value I	•	T _a =25℃		300	600	1200	kΩ
	Zero cross comparator	te between V _{LC3} and V _{SS})					±0.04V _{PD}	v

ELECTRICAL CHARACTERISTICS (Ta=-20°C to 85°C, VDD=4.5V to 5.5V, unless otherwise noted)

$\textbf{A-D} \quad \textbf{CONVERTER} \quad \textbf{CHARACTERISTICS} \quad (\textbf{T}_a = -20^\circ\text{C} \text{ to } 85^\circ\text{C}, \textbf{V}_{ob} = 5\text{V}, \textbf{V}_{ss} = \text{AV}_{ss} = 0\text{V}, \text{f}(\textbf{X}_{iN}) = 4\text{MHz}, \text{ unless otherwise noted})$

Symbol			L	Limits		
	Parameter	Test conditions	Min.	Тур.	Max.	Unit
-	Resolution				8	bit
	Absolute accuracy (Note 4)	V _{D0} =V _{REF} =5.12V			±2	LSB
RLADDER	Ladder resistor		2.5	5	10	kΩ
tCONV	Conversion time	f(X _{IN})=4MHz			25.5	μs
VREF	Reference input voitage		2.7		VDD	٧
VIA	Analog input voltage		0		VREF	v

Notes 1. In this case, port P4 function is selected with software.

2. The pull-up resistors of ports P0 and P1 are disconnected.

3. Use an external power supply for the LCD power, and leave all pins open except the measured pin.

4. The absolute accuracy does not include quantification error.

MITSUBISHI MICROCOMPUTERS

4520 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

BASIC TIMING DIAGRAM

Notes on zero cross input

Apply the voltage within the limits of -0.7 to 7.7V. Because the voltage is supplied to V_{DD} and V_{SS} through a parasitic diode in the microcomputer when the voltage is applied to port D_8 while V_{DD} and V_{SS} are open. And keep the current to port D_8 to 100μ A or less.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

BUILT-IN PROM VERSION

In addition to the mask ROM versions, the 4520 Group has three programmable ROM versions software compatible with the mask ROM. One is the window-type EPROM version supplied with a built-in EPROM which can be written to and erased. Others are the One Time PROM versions whose PROMs can only be written to and not be erased. Since the functions of the built-in EPROM and One Time PROM versions are exactly the same, except erasure, all of them are referred to as built-in PROM versions in this explanation, unless otherwise noted. The built-in PROM versions have functions similar to those of the mask ROM versions, but they have PROM mode that enables writing to built-in PROM.

Table 20 shows the product of built-in PROM version. Fig. 73 and Fig. 74 show the pin configulations of built-in PROM version. The One Time PROM versions have pin-compatibility with the mask ROM version. The built-in EPROM version has a different outline.

The built-in EPROM version is the microcomputer for program development. Use this microcomputer only for program development and prototype test.

Table 20	Product	of	built-in	PROM	version

Product	PROM size (×10 bits)	RAM size (×4 bits)	Package	Remarks
M34520E8-XXXSP/FP	8192 words		SP : 64P4B FP : 64P6N-A	One Time PROM version (shipped after writing) (Shipping after writing and testing in factory)
M34520E8SP/FP	8192 words	384 words		One Time PROM version (shipped in blank)
M34520E8SS/FS *			SS : 64S1B-E FS : 64D0	Built-in EPROM version

* : For program development only

Fig. 73 Pin configuration of built-in PROM version

MITSUBISHI MICROCOMPUTERS

4520 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(1) PROM mode

Each built-in PROM version has a PROM mode in addition to a normal operation mode. The PROM mode is used to write to and read from the built-in PROM.

In the PROM mode, the programming adapter can be used with a general-purpose PROM programmer to write to or read from the built-in PROM as if it were M5M27C256K. Programming adapters are listed in Table 21.

· Writing and reading of built-in PROM

Programming voltage is 12.5V. Write the program in the PROM of the built-in PROM version as shown in Fig. 75.

Erasing

Only the built-in EPROM (M34520E8SS/FS) version has a transparent window for erasing on the top surface of the package. The EPROM is erased when it is exposed to ultraviolet light with a wavelength of 2537 Å to an integrated dose of 15 W s/cm or more through the window.

- (2) Notes on handling
 - Sunlight and fluorescent lamp contain light that can erase written information. Be sure to cover the transparent glass portion with a seal or other similar materials except when erasing.
 - ② Mitsubishi Electric corp. provides the seal for covering the transparent glass. Take care that the seal does not touch the lead pins.
 - ③ Clean the transparent glass before erasing. Fingers' fat and paste disturb the passage of ultraviolet light and may affect badly the erasure capability.
 - ④ A high voltage is used for writing. Take care that overvoltage is not applied. Take care especially at turning on the power.
 - ⑤ For the One Time PROM version shipped in blank, Mitsubishi Electric corp. does not perform PROM writing test and screening in the assembly process and following processes. In order to improve reliability after writing, performing writing and test according to the flow shown in Fig. 76 before using is recommended. (Products shipped in blank : PROM contents is not written in factory when shipped)

Table 21 Programming adapters

Microcomputer	Programming adapter
M34520E8-XXXSP, M34520E8SP, M34520E8SS	PCA4747
M34520E8-XXXFP, M34520E8FP	PCA4748
M34520E8FS	PCA4749

Fig. 75 PROM memory map

Fig. 76 Flow of writing and testing for products shipped in blank

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS FOR BUILT-IN PROM VERSION

Symbol	Parameter		Conditions	Rating	Unit
VDD	Supply voltage			0.3 to 7	v
Vi	Input voltage P0, P1, P2, P3, P4, RESET, XIN, XCIN, VREF			-0.3 to V _{DD} +0.3	v
Vi	Input voltage D ₀ -D ₇ , D ₉ , D ₁₀			-0.3 to 13	V
V ₁	Input voltage VLC1, VLC2, VLC3			-0.3 to V _{DD} +0.3	v
V ₁	Input voltage Da/INTo/ZEROX			-0.7 to V _{DD} +0.7	V
l,	Input current D ₈ /INT ₀ /ZEROX			- 100 to 100	μA
٧o	Output voltage P0, P1, RESET	Output transistors in the cut-off state		-0.3 to V _{DD} +0.3	V
Vo	Output voltage D ₈	Output transistors in the cut-off state		-0.7 to Vpp+0.7	v
Vo	Output voltage Do-D7, D9, D10	Output transistors in the cut-off state		0. 3 to 13	V
Vo	Output voltage Xour, Xcour			-0.3 to V _{DD} +0.3	V
Vo	Output voltage SEG, COM			-0.3 to V _{LC3} +0.3	V
		T - 15°C	DIP (Note 2)	1100	
Pd Power dissipation	Power dissipation	T _a =25℃	QFP, LCC (Note 2)	300	mW
Topr	Operating temperature range (Note 1)			20 to 85	ĉ
Tstg	Storage temperature range			40 to 125	ĉ

Note1. Operating temperature range for built-in EPROM version (M34520E8FS, M34520E8SS) is -20°C to 70°C.

2. DIP : M34520E8-XXXSP, M34520E8SP, M34520E8SS QFP, LCC : M34520E8-XXXFP, M34520E8FP, M34520E8FS

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

RECOMMENDED OPERATING CONDITIONS FOR BUILT-IN PROM VERSION

 $(T_a = -20^{\circ}C \text{ to } 85^{\circ}C \text{ (Note 1)}, V_{DD} = 2.5^{\circ}V \text{ to } 5.5^{\circ}V, \text{ unless otherwise noted})$

Symbol	Parameter	Test conditions		Limits		
			Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage (Note 2)	$f(X_{IN}) = 4.0 MHz$	4.5	5.0	5.5	v
	Supply voltage (Note 2)	f(X _{IN})==1.5MHz	2.5		5.5	v
VRAM	RAM back-up voltage (at RAM back-up mode)		2.0		5.5	٧
Vss	Supply voltage			0		V
AVss	Analog supply voitage (Note 3)			Vss		V
V _{LC3}	Supply voltage for LCD (Note 4)		2.5		5.5	v
Vн	"H" level input voltage P0, P1, P2, P3, P4, Da		0. 7V _{DD}		VDD	v
ViH	"H" level input voltage D ₀ -D ₇ , D ₉ , D ₁₀		0.7V _{DD}		12	v
VIH	"H" level input voltage X _{IN}		0.7Vpp		VDD	v
ViH	"H" level input voltage RESET	• · · · · · · · · · · · · · · · · · · ·	0.85V _{DD}		VDD	v
Viji	"H" level input voltage CNTR ₁ , S _{IN} , S _{CK} , INT ₀ , INT ₁ , INT ₂		0. 8V _{DD}		VDD	v
VIL	"L" level input voltage P0, P1, P2, P3, P4, D ₀ D ₁₀		0		0. 3V _{DD}	v
VIL	"L" level input voltage XIN	· ·····	0		0. 3V _{DD}	V
VIL	"L" level input voltage RESET		0		0.1Vpp	v
	"L" level input voltage CNTR1, SIN, SCK,	· · · · · · · · · · · · · · · · · · ·				
VIL	INT ₀ , INT ₁ , INT ₂		0		0. 2V _{DD}	v
loL(peak)	"L" level peak output current P0, P1, RESET	V _{DD} ≕4.5V to 5.5V			10	mA
OL(peak)	"L" level peak output current D4, D5				40	mA
oL(peak)	"L" level peak output current D0-D3, D6-D10				24	mA
OL(ava)	"L" level average output current P0, P1, RESET (Note 5)				5	mA
OL(avg)	"L" level average output current D4, D5 (Note 5)				20	mA
loL(avg)	"L" level average output current D0-D3, D6-D10 (Note 5)				12	mA
	f(X _{IN}) clock frequency	V _{DD} =4.5V to 5.5V			4.0	
f(X _{IN})	(with a ceramic resonator) (Note 6)	V _{DD} =2.5V to 5.5V			1.5	MH
	f(X _{IN}) clock frequency (Note 6)	V _{DD} =4.5V to 5.5V			3.0	
f(X _{IN})	(with external clock input) (Note 7)	V _{DD} ==2.5V to 5.5V			0.8	MH
f(X _{CIN})	f(X _{CIN}) clock frequency (with a quartz-crystal oscillator) (Note 8)	V _{DD} =2.5V to 5.5V			50	kHz
	Serial I/O external clock cycle	V _{PD} =4.5V to 5.5V	750		1	ns
tw(S _{CK})	("H" level or "L" level pulse width)	V _{DD} =2.5V to 5.5V	2.0			μs
	Timer external input cycle	V _{pp} =4.5V to 5.5V	750			ns
tw(CNTR1)	("H" tevel or "L" tevel pulse width)	V _{DD} =2.5V to 5.5V	2.0		1	μs

Notes 1. Operating temperature range for built-in EPROM version (M34520E8FS, M34520E8SS) is -20°C to 70°C.

2. Supply voltage at Mask ROM version is 2. 2V to 5. 5V.

Supply voltage at built-in PROM version is 2.5V to 5.5V.

· When using zero cross detection circuit

V_{DD}=3.0V to 5.5V (Mask ROM version)

- V_{DD}=4.0V to 5.5V (Built-in PROM version)
- . When using A-D converter
- V_{DD}=2.7V to 5.5V (Mask ROM version, built-in PROM version)
- 3. Use AV_{SS} and V_{SS} at the same voltage level.
- 4. When using 1/2 bias : $V_{LC1} = V_{LC2} = 1/2 \cdot V_{LC3}$
- When using 1/3 bias : $V_{LC1}=1/3 \cdot V_{LC3}$, $V_{LC2}=2/3 \cdot V_{LC3}$
- 5. Keep the total currents of I_{OL} (avg) for ports P0, P1, D₀-D₁₀, and RESET to 80mA or less.
- 6. However, the minimum value for the system clock frequency when using an A-D converter is 400kHz.

7. Keep the duty ratio of the external clock within the range shown in Table 22.

Table 22 Supply voltage and duty ratio of external clock

Supply voltage	Duty ratio of external clock
4.5V to 5.5V	40% to 60%
2.5V to 5.5V	30% to 70%

8. External clock cannot be used as $f(X_{\mbox{\scriptsize CIN}})$ clock.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

ELECTRICAL CHARACTERISTICS FOR BUILT-IN PROM VERSION

 $(T_a = -20^{\circ}C \text{ to } 85^{\circ}C \text{ (Note 1)}, V_{DD} = 3.0 \text{V}, \text{ unless otherwise noted})$

Symbol	Parameter		Test condition		Limits			
					Min.	Тур.	Max.	Uni
VOL	"L" level output voltage	PO, P1, RESET	l _{oL} ==2mA				0.9	v
VoL	"L" level output voltage	a D ₄ , D ₅	lot=8mA				1.5	V
VOL	"L" level output voltage	∋ D ₀ D ₃ , D ₆ , D ₇ D ₁₀	I _{OL} =2mA				0.9	V
l _{in}	"H" level input current P0, P1, P2, P3, P4, D ₈ , RESET		VI=VDD	(Note 2)			1	μA
l _{ін}	"H" level input current	D ₀ -D ₇ , D ₉ , D ₁₀	V ₁ =12V				1	μA
l _{iH}	"H" level input current	V _{REF}	v,=3v				1	mA
l _{ι.} .	"L" level input current P0, P1, P2, P3, P4, D8, RESET		v,=0v	(Note 2) (Note 3)	-1			μA
112	"L" level input current	D ₀ D ₇ , D ₉ , D ₁₀	v,=0v		-1			μA
loz	Output current at off-st	ate D ₀ -D ₇ , D ₉ , D ₁₀	V _o =12V				1	μA
loz	Output current at off-st	ate P0, P1, D8, RESET	Vo=Vpp				1	μA
	at active high-speed mode at active low-speed mode at active low-speed mode at power down 1 mode (LCD operation) at power down 2 mode		$f(X_{IN})=1.5MHz$ $f(X_{CIN})=32kHz$			0.7	2.1	mА
Ι _{DD}		at active high-speed mode	$f(X_{IN}) = 500 \text{ kHz}$ $f(X_{CIN}) = 32 \text{ kHz}$			0. 3	0.9	mA
		at active low-speed mode	$f(X_{IN}) = \text{Stop}$ $f(X_{CIN}) = 32\text{kHz}$			20	60	μA
		•	$f(X_{\rm IN}) = \text{Stop}$ $f(X_{\rm CIN}) = 32\text{kHz}$			7	21	μA
			$f(X_{iN}) = \text{Stop}$ $f(X_{CiN}) = \text{Stop}$ $T_a = 25^{\circ}\text{C}$			0. 1	1.0	μA
		$f(X_{iN}) = \text{Stop}$ $f(X_{CiN}) = \text{Stop}$				10	μA	
IADD	A-D operation current		$f(X_{IN}) = 1.5 MHz$			0.2	0.6	mA
IZDD	Zero cross comparator	operation current	f(X _{IN})=1.5MHz			0.8	2.4	mA
R _{PU}	Pull-up resistor value P0 and P1		V _{DD} =3V V _I =0V		40	100	250	kΩ
V_+-V	Hysteresis INT ₀ , INT ₁ , INT ₂					0.3	+	v
V ₇₊ V ₇	Hysteresis RESET					0.7	t	v
R _{COM}	COM output impedance			(Note 4)		2	10	kΩ
RSEG	SEG output impedance			(Note 4)		3	15	kΩ
R _{VLC}	Internal resistor value for LCD power (impedance between V _{LC3} and V _{S5})		T _a ==25℃		300	600	1200	kΩ
	Zero cross comparator			· · · · · · · · · · · · · · · · · · ·			±0.04V _{DD}	v

Notes 1. Operating temperature range for built-in EPROM version (M34520E8FS, M34520E8SS) is -20°C to 70°C.

2. In this case, port P4 function is selected with software.

3. The pull-up resistors of ports P0 and P1 are disconnected.

4. Use an external power supply for the LCD power, and leave all pins open except the measured pin.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

ELECTRICAL CHARACTERISTICS FOR BUILT-IN PROM VERSION

 $(T_a = -20^{\circ}C \text{ to } 85^{\circ}C \text{ (Note 1)}, V_{DD} = 4.5V \text{ to } 5.5V, \text{ unless otherwise noted})$

Symbol	Parameter		Took own distant		Limits		
			Test condition	Min.	Тур.	Max.	Unit
VOL	"L" level output voltage	PO, P1, RESET	I _{OL} =5mA			0.5	v
VOL	"L" level output voltage	• D ₄ , D ₅	I _{OL} =20mA		1	2	v
Vol	"L" level output voltage D ₀ -D ₃ , D ₆ , D ₇ -D ₁₀		i _{ot} =12mA			2	v
t _{ин}	"H" level input current P0, P1, P2, P3, P4, D ₆ , RESET		V ₁ =V _{DD} (Note	?)		1	μA
1 _{IH}	"H" level input current	D ₀ D ₇ , D ₉ , D ₁₀	v ₁ =12v			1	μA
h _B	"H" level input current	VREF	Vi=5V		1	2	mA
կլ	"L" level input current	P0, P1, P2, P3, P4, D6, RESET	V _I =0V (Note (Note				µА
հլ	"L" level input current	D ₀ -D ₇ , D ₉ , D ₁₀	V ₁ =0V	-1			μA
loz	Output current at off-st	ate D ₀ -D ₇ , D ₉ , D ₁₀	V _o =12V			1	μA
loz	Output current at off-st	ate P0, P1, D8, RESET	Vo=VcD			1	μA
IDD	at active low-speed at power down 1 m (LCD operation)	at active high-speed mode	$f(X_{IN})=4MHz$ $f(X_{CIN})=32kHz$		3	9	mA
		at active low-speed mode	$f(X_{IN}) = Stop$ $f(X_{CIN}) = 32kHz$		50	150	μA
		at power down 1 mode	$f(X_{\rm IN}) = \text{Stop}$	-	30	90	μA
		at power down 2 mode	$f(X_{CIN}) = 32kHz$ $f(X_{IN}) = Stop$ $f(X_{CIN}) = Stop$ $T_a = 25^{\circ}C$		0.1	1.0	μA
			$f(X_{IN}) = \text{Stop}$ $f(X_{CIN}) = \text{Stop}$			10	μA
IADD	A-D operation current		f(X _{IN})=4MHz		0.8	2.5	mA
IZDD	Zero cross comparator	operation current	$f(X_{IN}) = 4MHz$		1.0	3.0	mA
R _{PU}	Pull-up resistor value P0 and P1		$V_{DD}=5V$ $V_{I}=0V$	20	50	125	kΩ
$v_{\tau+} - v_{\tau-}$	Hysteresis INT ₀ , INT ₁ ,	INT ₂			0.3		v
$v_{\tau+} - v_{\tau-}$					1.8		v
RCOM	COM output impedance		(Note	4)	2	10	kΩ
R _{SEG}	SEG output impedance		(Note	4)	3	15	kΩ
R _{VLC}	Internal resistor value for LCD power		T _a =25 [°] C	300	600	1200	kΩ
	(impedance between V _{LC3} and V _{SS}) Zero cross comparator accuracy					±0.04V _{OD}	v

A-D CONVERTER CHARACTERISTICS FOR BUILT-IN PROM VERSION

 $(T_{a}=-20^{\circ}C \text{ to } 85^{\circ}C \text{ (Note 1)}, V_{DD}=5V, V_{SS}=AV_{SS}=0V, f(X_{IN})=4MHz, \text{ unless otherwise noted})$

Symbol		Test conditions	Limits			Unit
	Parameter		Min.	Тур.	Max.	Unit
	Resolution				8	bit
	Absolute accuracy (Note 5)	V _{DD} =V _{REF} =5.12V			±2	LSB
RLADDER	Ladder resistor		2.5	5	10	kΩ
tCONV	Conversion time	$f(X_{IN}) = 4MHz$			25.5	μs
VREF	Reference input voltage		2.7		VDD	V
VIA	Analog input voltage		0		VREF	V

Notes 1. Operating temperature range for built-in EPROM version (M34520E8FS, M34520E8SS) is -20°C to 70°C

2. In this case, port P4 function is selected with software.

3. The pull-up resistors of ports P0 and P1 are disconnected.

4. Use an external power supply for the LCD power, and leave all pins open except the measured pin.

5. The absolute accuracy does not include quantification error.

Notes on zero cross input

Apply the voltage within the limits of -0.7V to 7.7V. Because the voltage is supplied to V_{DD} and V_{SS} through a parasitic diode in the microcomputer when the voltage is applied to port D_B while V_{DD} and V_{SS} are open. And keep the current to port D_B to 100 μ A or less.

