

Dual Low Bias Current Precision Operational Amplifier

OP-297

FEATURES

- Precision Performance in Standard SO-8 Pinout
- Low Offset Voltage 50μV Max
- Low Offset Voltage Drift 0.6μV/°C Max
- -55°C to +125°C 450pA Max
- Very High Open-Loop Gain 2000V/mV Min
- Low Supply Current (Per Amplifier) 625µA Max
- Operates From ±2V to ±20V Supplies
- High Common-Mode Rejection 120dB Min
- Pin Compatible to LT1013, AD706, AD708, OP-221, LM158, and MC1458/1558 with Improved Performance

APPLICATIONS

- Strain Guage and Bridge Amplifiers
- High Stability Thermocouple Amplifiers
- Instrumentation Amplifiers
- Photo-Current Monitors
- High-Gain Linearity Amplifiers
- Long-Term Integrators/Filters
- Sample-and-Hold Amplifiers
- Peak Detectors
- Logarithmic Amplifiers
- Battery-Powered Systems

GENERAL DESCRIPTION

The OP-297 is the first dual op amp to pack precision performance into the space-saving, industry standard 8-pin SO package. Its combination of precision with low power and extremely low input bias current makes the dual OP-297 useful in a wide variety of applications.

LOW BIAS CURRENT OVER TEMPERATURE

REV. B

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Precision performance of the OP-297 includes very low offset, under 50μ V, and low drift, below 0.6μ V/°C. Open-loop gain exceeds 2000V/mV insuring high linearity in every application. Errors due to common-mode signals are eliminated by the OP-297's common-mode rejection of over 120dB. The OP-297's power supply rejection of over 120dB minimizes offset voltage changes experienced in battery powered systems. Supply current of the OP-297 is under 625µA per amplifier and it can operate with supply voltages as low as ± 2 V. *Continued*

PIN CONNECTIONS

VERY LOW OFFSET

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel: 617/329-4700
 Fax: 617/326-8703
 Twx: 710/394-6577

 Telex: 924491
 Cable: ANALOG NORWOODMASS

GENERAL DESCRIPTION Continued

The OP-297 utilizes a super-beta input stage with bias current cancellation to maintain picoamp bias currents at all temperatures. This is in contrast to FET input op amps whose bias currents start in the picoamp range at 25°C, but double for every 10°C rise in temperature, to reach the nanoamp range above 85°C. Input bias current of the OP-297 is under 100pA at 25°C and is under 450pA over the military temperature range.

Combining precision, low power and low bias current, the OP-297 is ideal for a number of applications including instrumentation amplifiers, log amplifiers, photo-diode preamplifiers and longterm integrators. For a single device, see the OP-97; for a quad, see the OP-497.

ORDERING INFORMATION[†]

T _Δ = +25°C		OPERATING		
ν _{OS} ΜΑΧ (μV)	CERDIP 8-PIN	PLASTIC 8-PIN	LCC 20-CONTACT	TEMPERATURE
50	OP297AZ/883*		OP297ARC/883*	MIL
50	OP297AZ	_		MIL
50	OP297EZ		_	MIL
100	OP297FZ	OP297FP		XIND
200	_	OP297GP		XIND
200		OP297GS ^{††}		XIND

 For devices processed in total compliance to MIL-STD-883, add /883 after part number. Consult factory for 883 data sheet.

 Burn-in is available on extended industrial temperature range parts in CerDIP, and plastic DIP packages. For ordering information, see PMI's Data Book, Section 2.

^{††} For availability and burn-in information on SO packages, contact your local sales office.

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage	±20V
Input Voltage (Note 2)	
Differential Input Voltage (Note 2)	
Output Short-Circuit Duration	Indefinite
Storage Temperature Range	
Z, RC-Package(65°C to +175°C
P, S-Package	
Operating Temperature Range	
OP-297A (Z, RC)	55°C to +125°C
OP-297E, F (Z)	-40°C to +85°C
OP-297F, G (P, S)	
Junction Temperature	
Z, RC-Package6	5°C to +175°C
P, S-Package	
Lead Temperature Range (Soldering, 60 sec)	

PACKAGE TYPE	⊖ _{jA} (Note 3)	Θjc	UNITS
8-Pin CerDIP (Z)	134	12	°C/W
8-Pin Plastic DIP (P)	96	37	°C/W
20-Contact LCC (RC)	88	33	°C/W
8-Pin SO (S)	150	41	°C/W

NOTES:

 Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.

2. For supply voltages less than ±20V, the absolute maximum input voltage is equal to the supply voltage.

 Θ_{jA} is specified for worst case mounting conditions, i.e., Θ_{jA} is specified for device in socket for CerDIP, P-DIP, and LCC packages; Θ_{jA} is specified for device soldered to printed circuit board for SO package.

ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $T_A = +25$ °C, unless otherwise noted.

			0	P-297	/E	(OP-297	F	OP-297G			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	МАХ	MIN	TYP	MAX	MIN	ТҮР	MAX	UNITS
Input Offset Voltage	V _{OS}		_	25	50		50	100	_	80	200	μV
Long-Term Input Voltage Stability			_	0.1	-	_	0.1	_		0.1		μV/mo
Input Offset Current	l _{os}	V _{CM} = 0V	-	20	100		35	150	_	50	200	pA
Input Bias Current	l _B	V _{CM} = 0V	_	20	±100	_	35	±150		50	±200	рĄ
Input Noise Voltage	e _{n p-p}	0.1Hz to 10Hz	_	0.5	_	_	0.5	-	-	0.5	-	μV _{p-p}
Input Noise Voltage Density	e _n	f _O = 10Hz f _O = 1000Hz	-	20 17	-	-	20 17	-		20 17	-	nV∕√Hz
Input Noise Current Density	in	f _O = 10Hz	-	20	-	-	20	_	-	20	_	fA⁄√ Hz
Input Resistance Differential Mode	R _{IN}		-	30	-	-	30	-	-	30	_	MΩ
Input Resistance Common-Mode	RINCM		-	500		_	500	_		500	-	GΩ
Large-Signal Voltage Gain	Avo	$V_O = \pm 10V$ $R_L = 2k\Omega$	2000	4000	-	1500	3200	-	1200	3200	-	V/mV

			C	P-297A	/E	OP-297F			(OP-2970	3	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	МАХ	MIN	ТҮР	MAX	UNITS
Input Voltage Range	IVR	(Note 1)	±13	±14	-	±13	±14		±13	±14	_	v
Common-Mode Rejection	CMR	$V_{CM} = \pm 13V$	120	140		114	135	-	114	135	-	dB
Power Supply Rejection	PSR	$V_{S} = \pm 2V$ to $\pm 20V$	120	130	-	114	125	_	114	125	_	dB
Output Voltage Swing	Vo	$R_L = 10kΩ$ $R_L = 2kΩ$	±13 ±13	±14 ±13.7	-	±13 ±13	±14 ±13.7	-	±13 ±13	±14 ±13.7	_	v
Supply Current Per Amplifier	I _{SY}	No Load	-	525	625	_	525	625	-	525	625	μА
Supply Voltage	Vs	Operating Range	±2	_	±20	±2		±20	±2		±20	v
Slew Rate	SR		0.05	0.15	-	0.05	0.15	-	0.05	0.15	_	V/µs
Gain Bandwith Product	GBWP	A _V = +1	_	500	-	-	500	-	-	500	-	kHz
Channel Separation	CS	$V_O = 20V_{p-p}$ $f_O = 10Hz$	_	150	_	_	150	_	_	150	-	dB
Input Capacitance	C _{IN}			3	-	-	3	_	_	3	_	pF

ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $T_A = +25^{\circ}C$, unless otherwise noted. Continued

NOTE:

1. Guaranteed by CMR test.

ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $-55^{\circ}C \le T_A \le +125^{\circ}C$ for OP-297A, unless otherwise noted.

				OP-297A		
PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS
Input Offset Voltage	V _{os}		-	45	100	μV
Average Input Offset Voltage Drift	TCV _{OS}			0.2	0.6	μV/ºC
Input Offset Current	I _{OS}	V _{CM} = 0V	<u> </u>	60	450	рА
Input Bias Current	I _B	V _{CM} = 0V	_	60	±450	рА
Large-Signal Voltage Gain	A _{VO}	$V_O = \pm 10V, R_L = 2k\Omega$	1200	2700		V/mV
Input Voltage Range	IVR	(Note 1)	±13	±13.5	_	v
Common-Mode Rejection	CMR	$V_{CM} = \pm 13$	114	130	-	dB
Power Supply Rejection	PSR	$V_S = \pm 2.5 V$ to $\pm 20 V$	114	125	-	dB
Output Voltage Swing	Vo	$R_L = 10k\Omega$	±13	±13.4		v
Supply Current Per Amplifier	I _{SY}	No Load		575	750	μA
Supply Voltage	Vs	Operating Range	±2.5	-	±20	v

NOTE:

1. Guaranteed by CMR test.

			OP-297E		OP-297F			OP-297G				
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	ТҮР	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	V _{OS}		_	35	100	_	80	300		110	400	μV
Average Input Offset Voltage Drift	TCV _{OS}		-	0.2	` 0.6	-	0.5	2.0	-	0.6	2.0	µV/⁰C
Input Offset Current	los	V _{CM} = 0V		50	450		80	750	-	80	750	рА
Input Bias Current	I _B	V _{CM} = 0V	-	50	±450	-	80	±750		80	±750	рА
Large-Signal Voltage Gain	Avo	$V_0 = \pm 10V, R_L = 2k\Omega$	1200	3200	_	1000	2500	_	800	2500	_	V/mV
Input Voltage Range	IVR	(Note 1)	±13	±13.5	_	±13	±13.5	_	±13	±13.5	_	v
Common-Mode Rejection	CMR	$V_{CM} = \pm 13V$	114	130		108	130	_	108	130	_	dB
Power Supply Rejection	PSR	$V_{S} = \pm 2.5 V$ to $\pm 20 V$	114	0.15	-	108	0.15	_	108	0.3	-	dB
Output Voltage Swing	Vo	R _L = 10kΩ	±13	±13.4	-	±13	±13.4	_	±13	±13.4	_	v
Supply Current Per Amplifier	I _{SY}	No Load		550	750		550	750	-	550	750	μA
Supply Voltage	Vs	Operating Range	±2.5	-	±20	±2.5	-	±20	±2.5	_	±20	v

NOTE:

1. Guaranteed by CMR test.

CHANNEL SEPARATION TEST CIRCUIT

DICE CHARACTERISTICS

2. -IN A 3. +IN A 4. V-5. +IN B 6. -IN B 7. OUT B 8. V+

1. OUT A

For additional DICE information, refer to PMI's Data Book, Section 2.

DIE SIZE 0.071 x 0.114 inch, 8,094 sq. mils (1.80 x 2.90 mm, 5.22 sq. mm)

WAFER TEST LIMITS at V_S = $\pm 15V$, T_A = $\pm 25^{\circ}C$, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	OP-297GBC LIMIT	UNITS
Input Offset Voltage	V _{os}		200	μV MAX
Input Offset Current	los	V _{CM} = 0V	200	pA MAX
Input Bias Current	1 ₈	V _{CM} = 0V	±200	pA MAX
Large-Signal Voltage Gain	A _{VO}	$V_0 = \pm 10V, R_L = 2k\Omega$	1200	V/mV MIN
Input Voltage Range	IVR	(Note 1)	±13	V MIN
Common-Mode Rejection	CMR	$V_{CM} = \pm 13V$	114	dB MIN
Power Supply Rejection	PSR	$V_{\rm S} = \pm 2V$ to $\pm 18V$	114	dB MIN
Output Voltage Swing	vo	$R_{L} = 10k\Omega$ $R_{L} = 2k\Omega$	±13 ±13	V MIN
Supply Current Per Amplifier	I _{SY}	No Load	625	μΑ ΜΑΧ

NOTES:

1. Guaranteed by CMR test.

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS Continued

,

SIMPLIFIED SCHEMATIC (One Amplifier is Shown)

APPLICATIONS INFORMATION

Extremely low bias current over the full military temperature range makes the OP-297 attractive for use in sample-and-hold amplifiers, ers, peak detectors, and log amplifiers that must operate over a wide temperature range. Balancing input resistances is not necessary with the OP-297. Offset voltage and TCV_{OS} are degraded only minimally by high source resistance, even when unbalanced.

The input pins of the OP-297 are protected against large differential voltage by back-to-back diodes and current-limiting resistors. Common-mode voltages at the inputs are not restricted, and may vary over the full range of the supply voltages used.

The OP-297 requires very little operating headroom about the supply rails, and is specified for operation with supplies as low as $\pm 2V$. Typically, the common-mode range extends to within one volt of either rail. The output typically swings to within one volt of the rails when using a $10k\Omega$ load.

AC PERFORMANCE

The OP-297'S AC characteristics are highly stable over its full operating temperature range. Unity-gain small-signal response is shown in Figure 1. Extremely tolerant of capacitive loading on the output, the OP-297 displays excellent response even with 1000pF loads (Figure 2).

FIGURE 1: Small-Signal Transient Response (C_{LOAD} = 100pF, A_{VCL} = +1)

FIGURE 2: Small-Signal Transient Response (C_{LOAD} = 1000pF, A_{VCL} = +1)

FIGURE 3: Large-Signal Transient Response (A_{VCL} = +1)

GUARDING AND SHIELDING

To maintain the extremely high input impedances of the OP-297, care must be taken in circuit board layout and manufacturing. Board surfaces must be kept scrupulously clean and free of moisture. Conformal coating is recommended to provide a humidity barrier. Even a clean PC board can have 100pA of leakage currents between adjacent traces, so guard rings should be used around the inputs. Guard traces are operated at a voltage close to that on the inputs, as shown in Figure 4, so that leakage currents become minimal. In noninverting applications, the guard ring should be connected to the common-mode voltage at the inverting input. In inverting applications, both inputs remain at ground, so the guard trace should be grounded. Guard traces should be on both sides of the circuit board.

FIGURE 4: Guard Ring Layout and Connections

OPEN-LOOP GAIN LINEARITY

The OP-297 has both an extremely high gain of 2000V/mV minimum and constant gain linearity. This enhances the precision of the OP-297 and provides for very high accuracy in high closedloop gain applications. Figure 5 illustrates the typical open-loop gain linearity of the OP-297 over the military temperature range.

FIGURE 5: Open-Loop Linearity of the OP-297

APPLICATIONS

PRECISION ABSOLUTE VALUE AMPLIFIER

The circuit of Figure 6 is a precision absolute value amplifier with an input impedance of $30M\Omega$. The high gain and low TCV_{OS} of the OP-297 insure accurate operation with microvolt input signals. In this circuit, the input always appears as a common-mode signal to the op amps. The CMR of the OP-297 exceeds 120dB, yielding an error of less than 2ppm.

FIGURE 6: Precision Absolute Value Amplifier

PRECISION CURRENT PUMP

Maximum output current of the precision current pump shown in Figure 7 is ± 10 mA. Voltage compliance is ± 10 V with ± 15 V supplies. Output impedance of the current transmitter exceeds $3M\Omega$ with linearity better than 16 bits.

PRECISION POSITIVE PEAK DETECTOR

In Figure 8, the C_H must be of polystyrene, Teflon*, or polyethylene to minimize dielectric absorption and leakage. The droop rate is determined by the size of C_H and the bias current of the OP-297.

FIGURE 7: Precision Current Pump

SIMPLE BRIDGE CONDITIONING AMPLIFIER

Figure 9 shows a simple bridge conditioning amplifier using the OP-297. The transfer function is:

$$V_{OUT} = V_{REF} \left(\frac{\Delta R}{R + \Delta R} \right) \frac{R_F}{R}$$

The REF-43 provides an accurate and stable reference voltage for the bridge. To maintain the highest circuit accuracy, $R_{\rm F}$ should be 0.1% or better with a low temperature coefficient.

FIGURE 9: A simple bridge conditioning amplifier using the OP-297.

FIGURE 8: Precision Positive Peak Detector

^{*}Teflon is a registered trademark of the Dupont Company

NONLINEAR CIRCUITS

Due to its low input bias currents, the OP-297 is an ideal log amplifier in nonlinear circuits such as the square and square-root circuits shown in Figures 10 and 11. Using the squaring circuit of Figure 10 as an example, the analysis begins by writing a voltage loop equation across transistors Q_1 , Q_2 , Q_3 and Q_4 .

$$V_{T1} \ln \left(\frac{I_{IN}}{I_{S1}}\right) + V_{T2} \ln \left(\frac{I_{IN}}{I_{S2}}\right) = V_{T3} \ln \left(\frac{I_O}{I_{S3}}\right) + V_{T4} \ln \left(\frac{I_{REF}}{I_{S4}}\right)$$

All the transistors of the MAT-04 are precisely matched and at the same temperature, so the I_S and V_T terms cancel, giving:

 $2 \ln I_{IN} = \ln I_O + \ln I_{REF} = \ln (I_O \times I_{REF})$

Exponentiating both sides of the equation leads to:

$$I_{O} = \frac{(I_{IN})^2}{I_{REF}}$$

Op amp A₂ forms a current-to-voltage converter which gives $V_{OUT} = R_2 \times I_O$. Substituting (V_{IN}/R_1) for I_{IN} and the above equation for I_O yields:

$$V_{OUT} = \left(\frac{R_2}{I_{REF}}\right) \left(\frac{V_{IN}}{R_1}\right)^2$$

A similar analysis made for the square-root circuit of Figure 11 leads to its transfer function:

$$V_{OUT} = R_2 \sqrt{\frac{(V_{IN})(I_{REF})}{R_1}}$$

FIGURE 10: Squaring Amplifier

FIGURE 11: Square-Root Amplifier

In these circuits, I_{REF} is a function of the negative power supply. To maintain accuracy, the negative supply should be well regulated. For applications where very high accuracy is required, a voltage reference may be used to set I_{REF} . An important consideration for the squaring circuit is that a sufficiently large input voltage can force the output beyond the operating range of the output op amp. Resistor R_4 can be changed to scale I_{REF} , or R_1 and R_2 can be varied to keep the output voltage within the usable range.

Unadjusted accuracy of the square-root circuit is better than 0.1% over an input voltage range of 100mV to 10V. For a similar input voltage range, the accuracy of the squaring circuit is better than 0.5%.

OP-297 SPICE MACRO-MODEL

Figures 12 and 13 show the node and net list for a SPICE macromodel of the OP-297. The model is a simplified version of the actual device and simulates important DC parameters such as V_{OS} , I_{OS} , I_B , A_{VO} , CMR, V_O and I_{SY} . AC parameters such as slew rate, gain and phase response and CMR change with frequency are also simulated by the model.

The model uses typical parameters for the OP-297. The poles and zeros in the model were determined from the actual open and closed-loop gain and phase response of the OP-297. In this way, the model presents an accurate AC representation of the actual device. The model assumes an ambient temperature of 25° C.

LICENSE STATEMENT AND LIMITED WARRANTY

The OP-297 macro-model is protected under United States copyright laws and California trade secret laws. Precision Monolithics, Inc. hereby grants users of this macro-model, hereto referred to as the licensee, a nonexclusive, nontransferable license to use the OP-297 macro-model as long as the licensee abides by the terms of this agreement. Before using the OP-297 macro-model, the licensee should read this license. If the licensee does not accept these terms, this Data Sheet should be returned to PMI within 30 days.

The licensee agrees to treat this macro-model just like a book, except that the licensee may not loan, rent, lease, or license this macro-model, in whole, in part, or in modified form, to anyone outside the licensee's company. The licensee may modify the OP-297 macro-model to suit his specific applications, and the licensee may make copies of this macro-model for use within his company only. This macro-model is provided solely and exclusively for use by PMI customers to assist them in the assessment of the OP-297 for possible applications. The OP-297 macro-model is provided "as is." PMI makes no warranty, either express or implied, including but not limited to any implied warranties or merchantability and fitness for a particular purpose using this macro-model. In no event will PMI be liable for special, collateral, incidental, or consequential damages in connection with or arising out of the use of this macro-model.

Although every effort has been made to ensure accuracy of the information contained in this data sheet, PMI assumes no responsibility for inadvertent errors. PMI reserves the right to make changes to the product and the macro-model without prior notice.

FIGURE 12: OP-297 Macro-Model

* OP-297 SPICE MACRO-MODEL © PMI 1990	*POLE AT 1.8 MHZ
NODE ASSIGNMENTS NONINVERTING INPUT INVERTING INPUT OUTPUT I OUTPUT I POSITIVE SUPPLY I NEGATIVE SUPPLY	* R10 17 98 1E6 C5 17 98 88.4E-15 G2 98 17 16 23 1E-6 * *COMMON-MODE GAIN NETWORK WITH ZERO AT 50 HZ *
* SUBCKT OP-297 1 2 30 99 50 * INPUT STAGE & POLE AT 6 MHZ	C6 18 19 3.183E-9 R12 19 98 1 E2 18 98 3 23 100E-3
RIN1 1 7 2500 RIN2 2 8 2500 R1 8 3 5E11 R2 7 3 5E11 R3 5 99 612 R4 6 99 612 CIN 7 8 3E-12 C2 5 6 21.67E-12 I1 4 50 0.1E-3 IOS 7 8 20E-12 EOS 9 7 POLY(1) 19 23 25E-6 1 Q1 5 8 10 QX R5 10 4 96 R6 11 4 96 D1 8 9 DX V 9 8 DX E F 98 0 23 0 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
*GAIN STAGE & DOMINANT POLE AT 0.13 HZ R7 12 98 2.45E9 C3 12 98 500E-12 G1 98 12 5 6 1.634E-3 V2 99 13 1.5 V3 14 50 1.5 D3 12 13 DX D4 14 12 DX * NEGATIVE ZERO AT -1.8 MHZ * R8 15 16 1E6 C4 15 16 -88.4E-15 R9 16 98 1 E1 15 98 12 23 1E6	D5 22 26 DX D6 27 22 DX D7 99 28 DX D8 99 29 DX D9 50 28 DY D10 50 29 DY * * MODELS USED * MODEL QX NPN (BF=2.5E6) *MODEL DX D (IS=1E-15) *MODEL DY D (IS=1E-15 BV=50) *ENDS OP-297

FIGURE 13: OP-297 SPICE Net-List

.

-16-