KA3303/KA3403 ## **Quad Operational Amplifier** #### **Features** - Output voltage can swing to GND or negative supply - Wide power supply range; - Single supply of 3.0V to 36V - Dual supply of ± 1.5 V to ± 18 V - Electrical characteristics similar to the KA741 - Class AB output stage for minimal crossover distortion - Short circuit protected output. ### **Description** The KA3303 series is a monolithic Quad operational amplifier consisting of four independent amplifiers. The device has high gain, internally frequency, compensated operational amplifiers designed to operate from a single power supply or dual power supplies over a wide range of voltages. The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. ### **Internal Block Diagram** ## **Schematic Diagram** ## **Absolute Maximum Ratings** | Parameter | Symbol | Value | Unit | |---|----------|------------------------|----------| | Supply Voltage | Vcc | ±18 or +36 | V | | Differential Input Voltage | VI(DIFF) | 36 | V | | Input Voltage | VI | ±18 | V | | Output Short Circuit Duration | - | Continuous | - | | Power Dissipation | PD | 670 | mW | | Operating Temperature
KA3303
KA3403 | Topr | -40 ~ + 85
0 ~ + 70 | °C
°C | | Storage Temperature | TSTG | -65 ~ + 150 | °C | ### **Electrical Characteristics** (VCC = +15V, VEE = -15V for KA3403, VCC = +14V, VEE = GND for KA3303, T_A = 25 °C, unless otherwise specified) | Parameter | Symbol Conditions - | | KA3303 | | | KA3403 | | | Unit | | |------------------------------------|---------------------|-----------------------|------------|-------------|---------------|--------|-------------|---------------|------|--------| | Parameter | Symbol | Condit | Conditions | | Тур. | Max. | Min. | Тур. | Max. | Unit | | Input Offset Voltage | Vio | - | | - | 1.5 | 8.0 | - | 1.5 | 10 | mV | | Imput Offset Voltage | VIO | | Note1 | - | - | 10 | - | - | 12 | 1110 | | Input Offset Current | lio | - | | - | 5 | 75 | - | 5 | 50 | nA | | Imput Onset Current | 110 | | Note1 | - | - | 150 | - | - | 100 | ш | | Input Bias Current | IBIAS | - | | - | 30 | 200 | - | 30 | 200 | nA | | Input bias Current | IBIAS | | Note1 | - | - | 500 | - | - | 400 | ш | | Large Signal Voltage Gain | GV | VO(P-P) = : | ±10V | 20 | 200 | - | 20 | 200 | - | V/mV | | Large Signal Voltage Gain | G∨ | $R_L = 2K\Omega$ | Note1 | 15 | - | - | 15 | - | - | V/IIIV | | Input Impedance | Rı | - | | 0.3 | 1.0 | - | 0.3 | 1.0 | - | МΩ | | | VO(P-P) | $R_L = 10K\Omega$ | | +12 | +12.5 | - | ±12 | ±13.5 | - | | | Output Voltage Swing | | $R_L = 2K\Omega$ | | +10 | +12 | - | ±10 | ±13 | - | V | | | | $R_L = 2K\Omega$ | Note1 | +10 | - | - | ±10 | - | - | | | Input Common Mode
Voltage Range | VI(R) | - | | 12V
-VEE | 12.5V
-VEE | - | 13V
-VEE | 13.5V
-VEE | - | V | | Common Mode Rejection Ratio | CMRR | R _S ≥ 10KΩ | 2 | 70 | 90 | - | 70 | 90 | - | dB | | Power Supply Current | Icc | VO(P) = 0, RL = ∞ | | - | 2.8 | 7.0 | - | 2.3 | 7.0 | mA | | Output Short Circuit Current | Isc | Each amplifier | | ±10 | ±30 | ±45 | ±10 | ±20 | ±45 | mA | | Positive Supply
Rejection Ratio | PSRR(+) | - | | | 30 | 150 | - | 30 | 150 | μV/V | | Negative Supply
Rejection Ratio | PSRR(-) | - | | - | - | - | - | 30 | 150 | μV/V | ## **Electrical Characteristics (Continued)** (VCC = +15V, VEE = -15V for KA3403, VCC = +14V, VEE = GND for KA3303, $T_A = 25$ °C, unless otherwise specified) | Parameter | Cymhal | Conditions | | KA330 | 3 | KA3403 | | | Unit | |---|----------------------|---|---|-------|------|--------|------|------|--------| | Parameter | Symbol | | | Тур. | Max. | Min. | Тур. | Max. | Oilit | | Average Temperature
Coefficient of Input
Offset Current (Note2) | ΔΙΙΟ/ΔΤ | - | | 50 | - | - | 50 | - | pA/°C | | Input Offset Voltage Drift (Note2) | ΔV _{IO} /ΔΤ | - | - | 10 | - | - | 10 | - | μV/°C | | Power Bandwidth (Note2) | GBW | $GV = 1,RL = 2K\Omega,$
VO(P.P) = 20VP-P, THD=5% | | 9.0 | - | - | 9.0 | - | KHz | | Small Signal Bandwidth (Note2) | BW | $G_V=1,R_L=10K\Omega$
$V_O(P-P)=50mV$ | - | 1.0 | - | - | 1.0 | - | MHz | | Slew Rate (Note2) | SR | G _V =1,V _I = -10V to +10V | - | 0.4 | - | - | 0.4 | - | V/μs | | Rise Time (Note2) | T _R | $GV=1,RL=10K\Omega$
VO(P-P)=50mV | - | 0.35 | - | - | 0.35 | - | μs | | Fall Time (Note2) | TF | GV=1,RL=10KΩ
VO(P-P)=50mV | - | 0.35 | - | - | 0.35 | - | μs | | Over Shoot (Note2) | os | $G_V=1,R_L=10K\Omega$
$V_O(P-P)=50mV$ | - | 20 | - | - | 20 | - | % | | Phase Margin (Note2) | MPH | $G_V=1,R_L=2K\Omega, C_L=200pF$ | - | 60 | - | - | 60 | - | Degree | | Crossover Distortion (Note2) | CD | VI =30mVP-P,
VO(P-P)=2.0VP-P f =10KHz | - | 1.0 | - | - | 1.0 | - | % | #### Note: - 1. KA3403: 0 °C \leq TA \leq +70 °C , KA3303: -40 °C \leq TA \leq +85 °C - 2. Guaranteed by design. ## **Electrical Characteristics** (VCC = 5.0V, VEE = GND, TA=25 $^{\circ}$ C unless otherwise specified) | Parameter | Symbol | Conditions | | KA3303 | | | KA3403 | | | | |--|-------------------------------------|---|-------------|-------------|------|-------------|-------------|------|------|--| | Farameter | Syllibol | | | Тур. | Max. | Min. | Тур. | Max. | Unit | | | Input Offset Voltage | Vio | - | - | - | 10 | - | 2.0 | 10 | mV | | | Input Offset Current | lιο | - | - | - | 75 | - | 30 | 50 | nA | | | Input Bias Current | IBIAS | - | - | - | 500 | - | 200 | 500 | nA | | | Large Signal Open
Loop Voltage Gain | Gv | R _L = 2.0KΩ | | 200 | - | 10 | 200 | - | V/mV | | | Power Supply
Rejection Ratio | PSRR | - | | - | 150 | - | - | 150 | μV/V | | | | $R_L = 10K\Omega$, $V_{CC} = 5.0V$ | | | 3.3 | 3.5 | - | 3.3 | 3.5 | - | | | Output Voltage Range VO(P-P) | | RL =10K Ω , 5.0V \leq VCC \leq 30V | VCC
-2.0 | VCC
-1.7 | - | VCC
-2.0 | VCC
-1.7 | - | V | | | Supply Current | Icc | - | - | 2.5 | 7.0 | - | 2.5 | 7.0 | mA | | | Channel Separation | CS | f = 1KHz to 20KHz | - | 120 | - | - | 120 | - | dB | | ## **Typical Performance Characteristics** Figure 1. Open Loop Frequency Response Figure 3. Output Swing Figure 5. Input Bias Current vs Temperature Figure 2. Wave Response Figure 4. Output Voltage vs Frequency Figure 6. Input Bias Current vs Supply Voltage ### **Mechanical Dimensions** ### **Package** #### **Dimensions in millimeters** # **14-DIP** 6.40 ±0.20 0.252 ±0.008 0.46 ±0.10 0.018 ±0.004 1.50 ±0.10 0.059 ±0.004 $\frac{19.80}{0.780}$ MAX 19.40 ±0.20 0.764 ±0.008 $\frac{2.54}{0.100}$ #7 #8 7.62 3.25 ± 0.20 $\frac{0.20}{0.008}\,\text{MIN}$ 0.300 0.128 ±0.008 3.30 ± 0.30 $\tfrac{5.08}{0.200}~\text{MAX}$ 0.130 ±0.012 $\frac{0.25^{+0.10}_{-0.05}}{0.010^{+0.004}_{-0.002}}$ 0~15° ### **Mechanical Dimensions** (Continued) ### **Package** #### **Dimensions in millimeters** ## 14-SOP ## **Ordering Information** | Product Number | Package | Operating Temperature | |----------------|---------|-----------------------| | KA3403 | 14-DIP | 0 ~ + 70°C | | KA3403D | 14-SOP | 0~+70 C | | KA3303 | 14-DIP | -40 ∼ + 85°C | | KA3303D | 14-SOP | -40 ~ + 65 C | #### **DISCLAIMER** FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. #### **LIFE SUPPORT POLICY** FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. - A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. www.fairchildsemi.com - Single supply of 3.0V to 36V - Dual supply of ± 1.5 V to ± 18 V - Electrical characteristics similar to the KA741 - Class AB output stage for minimal crossover distortion - Short circuit protected output. #### back to top #### Product status/pricing/packaging | Product | Product status | Package type | Leads | Packing method | |---------|-----------------|--------------|-------|----------------| | KA3403 | Full Production | DIP | 14 | RAIL | | J. | | | | | Product Folder - Fairchild P/N KA3403 - Quad Operational Amplifier | KA3403D | Full Production | Full Production <u>SOP</u> | | RAIL | | |-----------|-----------------|----------------------------|----|-----------|--| | KA3403DTF | Full Production | SOP | 14 | TAPE REEL | | back to top <u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u> © Copyright 2002 Fairchild Semiconductor