& HARRIS 80C286

High Performance Microprocessor

August 1995 With Memory Management and Protection
Features Pin Configurations 68 LEAD PGA
* Compatible with NMOS 80286 Component Pad View — As viewed from underside of
. the component when mounted on the board.
* Wide Range of Clock Rates: 4. 2o e
-DC to 25MHz (80C286-25) e esesena
-DC to 20MHz (80C286-20) sss3z883E :
-DC to 16MHz (80C286-16) , N o
-DC to 12.5MHz (80C286-12) PO ®E® L B
-DC to 10MHz (80C286-10) : :' g%@@@@@@gg :m :%
e Static CMOS Design for Low Power Operation vee ok | @@ @@ | wrn w {
» ICCSB = 5mA Maximum a3 nestt | @@ BE | W n
» ICCOP = 185mA Maximum (80C286-10) w1 B paa wRie ves
220mA Maximum (80C286-12) : o gg % e |
260mA Maximum (80C286-16) o oao | @@ @@ | wo conmma |
310mA Maximum (80C286-20) wo PEOOIROOOD@) w =X
410mA Maximum (80C286-25) | 200000 |
* High Performance Processor (Up to 19 Times the 8086 Throughput) sw s oNEe PIN 1 INDICATOR
e Large Address Space: D -
» 16 Megabytes Physical/1 Gigabyte Virtual per Task HEIE I RN
¢ Integrated Memory Management, Four—Leve_l Memory Protection P.C. Board View — As viewed from the component side
and Support for Virtual Memory and Operating Systems of the P.C. board.
¢ Two 80C86 Upward Compatible Operating Modes: e r o osco2 . . ow
» 80C286 Real Address Mode » PVAM ; feseeen
* Compatible with 80287 Numeric Data Co-Processor $32535335353 ‘
e High Bandwidth Bus Interface (25 Megabyte/Sec) 000800000) '
* Available in: R (@@O@@@@@@@E@ | oo a0
» 68 Pin PGA (Commercial, Industrial, and Military) o | @@ D@ a
» 68 Pin PLCC (Commercial and Industrial) v gg g 9 e
DeSCfiptiOn vgs PEREQ @@ PGA @:7 @ A4 A
The Harris 80C286 is a static CMOS version of the NMOS 80286 Yoo REROY ?2 .o
R R . . HOLD HLDA @ @ AB A
microprocessor. The 80C286 is an advanced, high-performance micro- coniTR Wi | @ @ D@ | a0 oan |
processor with specially optimized capabilities for multiple user and o o |@OOEOOPEO®®® | an au
multi-tasking systems. The 80C286 has built-in memory protection that PeOeOeB®)
supports operating system and task isolation as well as program and IN 1 (NDICATOR %/,; £ g5 eces
data privacy within tasks. A 25MHz 80C286 provides up to nineteen -
times the throughput of a standard SMHz 8086. The 80C286 includes g ¢% 8 83323
memory management capabilities that map 230 (one gigabyte) of virtual
address space per task into 224 bytes {16 megabytes) of physical zf-“:}:;z"b‘g:r:""s viewed from the component side
memory.
The 80C286 is upwardly compatible with 80C86 and 80C88 sofware (the
80C286 instruction set is a superset of the 80C86/80C88 instruction
set). Using the 80C286 real address mode, the 80C286 is object code
compatible with existing 80C86 and 80C88 software. In protected virtual
address mode, the 80C286 is source code compatible with 80C86 and
80C88 software but may require upgrading to use virtual address as
supported by the 80C286's integrated memory management and
protection mechanism. Both modes operate at full 80C286 performance
and execute a superset of the 80C86 and 80C88 instructions.
The 80C286 provides special operations to support the efficient
implementation and execution of operating systems. For example, one
instruction can end execution of one task, save its state, switch to a new
task, load its state, and start execution of the new task. The 80C286 also
supports virtual memory systems by providing a segment-not-present
exception and restartable instructions.

CAUTION: Electronic devices are sensitive 1o electrostatic discharge. Proper IC handling procedures should be followed.
Copyright © Harns Corporation 1985

B 4302271 0063508 374 WA 1

File Number 2947.1

80C286

Ordering Information

TEMPERATURE
PACKAGE RANGE 10MH2 12.5MHz 16MHz 20MHz 25MHz

PGA 0°C to +70°C - CGB0C286-12 CG80C286-16 CG80C286-20 .
-40°C to +85°C |1G80C286-10 1G80C286-12 - - -
t| -55°C to +125°C |MG80C286-10/883 [MGB0C286-12/883 - - -
5962-9067801MXC | 5962-9067802MXC - - -

PLCC 0°C to +70°C - C580C286-12 CS80C286-16 CS80C286-20 | CS80C286-25
-40°C to +85°C | 1S80C286-10 1S80C286-12 1S80C286-16 1S80C286-20 -

t Respactive /883 specifications are included at the end of this data sheet.

Functional Diagram

e - =< - ——-C-C-"—"—-———— " g ———— 3
| ADDRESS UNIT (AU) | X |
1 I ADDRESS Az3 - Ag,
| | ‘ LATCHES AND ORIVERS I BHE. WiD
,
PHYSICAL ‘
| ADDRESS ! PROCESSOR || PEACR ‘
| ADDER T | |pReFeTcHen| | extension [|
! SEGMENT | [INTERFACE | PEREQ
) BASES i | + REAGY. HOLD
| OFFSET -—== 1 | BUS CONTROL - &1, 30. CODANTA
| ADDER SEGMENT | seament] I TOCR. HLOA
| CHECKER SizES ! ! I
1 | |‘> DATA TRANSCEIVERS Dis - Do
[} [|
L T et s N St o NV UV | - o |
- F=—=Z2] |- -~ s-_-=-=-Z=-= 6 BYTE |
[{s 1I I | ereFeTcH |
| ALy | ! QUEUE 8US UNIT (BU) |
| F - —————— o — 4
J | ! !
! REGISTERS | CONTROL ! Tt T T T T T [ReseET
! ‘ . I 3 DECODED |\ crpicrion INSTRUCTION | cLx
| +— INSTRUCTION | f— Vss
QURUE DECODER UNIT (1U)
| execution uNIT (gU) f W\ T T | je— Vec
———————————————— o S i e p——) b oo e e e - e e o d
Nmt! 18usy
INTR
M 4302271 00L3509 200 WA 2

80C286

Pin Description

The following pin function descriptions are for the 80C286 microprocessor:

TABLE 1.
PIN
SYMBOL | NUMBER TYPE DESCRIPTION

CLK 31 | SYSTEM CLOCK: provides the fundamental timing for the 80C286 system. It is divided
by two inside the BOC286 to genenerate the processor clock. The internal divide-by-two
circuitry can be synchronized to an external clock generator by a LOW to HIGH
transition on the RESET input.

D45-Dg 36-51 1/0 DATA BUS: inputs data during memory, 1/0, and interrupt acknowledge read cycles;
outputs data during memory and /O write cycles. The data bus is active HIGH and is
held at high impedance to the last valid logic level during bus hold acknowledge.

Ag3-Ap 7-8 0] ADDRESS BUS: outputs physical memory and 1/0 port addresses. Ap3-A1g are LOW |

10-28 during /0 transfers. Ag is LOW when data is to be transferred on pins D7-Dg (see table
32-43 below). The address bus is active High and floats to three-state off during bus hold
acknowledge.

BHE 1 0} BUS HIGH ENABLE: indicates transfer of data on the upper byte of the data bus,
D45-Dg. Eight-bit oriented devices assigned to the upper byte of the data bus would
normally use BHE to condition chip select functions. BHE is active LOW and floats to
three-state OFF during bus hold acknowledge.

BHE and Ag Encodings
BHE Value [Aq Value Function
0 0 Word transfer
0 1 Byte transfer on upper half of data bus (D15-Dg)
1 0 Byte transfer on lower half of data bus {(D7-Dg)
1 1 Reserved

8—1, S_o 4,5 O BUS CYCLE STATUS: indicates initiation of a bus cycle and along with M/IO and
COD/INTA, defines the type of bus cycte. The bus is in a Tg state whenever one or both
are LOW. 81 and So are active LOW and are held at a high impedance logic one during
bus hold acknowledge.

80C286 Bus Cycle Status Definition
COD/INTA | M/IO Sy So Bus Cycle Initiated
O(LOW) 0 Q 0 interrupt acknowledge
0 0 0 1 Reserved
0 0 1 0 Reserved
0 0 1 1 None; not a status cycle
0 1 0 0 If A1=1 then halt; else shutdown
0 1 0 1 Memory data read
¢] 1 1 0 Memory data write
0 1 1 1 None; not a status cycle
1(HIGH) o] 0 0 Reserved
1 0 0 1 1/O read
1 0 1 0 1/0 write
1 o} 1 1 None; not a status cycle
1 1 0 0 Reserved
1 1 Q 1 Memory instruction read
1 1 1 0 Reserved
1 1 1 1 None, not a status cycle

M/1O 67 O MEMORY /O SELECT: distinguishes memory access from 1/0 access. |f HIGH during
T, a memory cycle or a halt/shutdown cycle is in progress. {f LOW. an 1/O cycle oran
interrupt acknowledge cycle is in progress. M/IO is held at high impedance to the last
valid logic state during bus hold acknowiedge.

B 4302271 0063510 Tee WM

80C286

Pin Description

TABLE 1. CONTINUED

SYMBOL

PIN
NUMBER

TYPE

DESCRIPTION

COD/INTA

66

CODE/INTERRUPT ACKNOWLEDGE: distinguishes instruction fetch cycles from
memory data read cyctes. Also distinguishes interrupt acknowledge cycles from 1/0
cycles. COD/INTA is held at high impedance to the last valid logic state during bus hold
acknowiedge. its timing is the same as M/IO.

LOCK

68

BUS LOCK: indicates that other system bus masters are not to gain control of the system
bus for the current and following bus cycles. The LOCK signal may be activated
explicitly by the "LOCK" instruction prefix or automatically by 80C286 hardware during
memory XCHG instructions, interrupt acknowledge, or descriptor table access. LOCK
is active LOW and is held at a high impedance logic one during bus hold acknowiedge.

READY

63

BUS READY: terminates a bus cycle. Bus cycles are extended without limit until
terminated by READY LOW. READY is an active LOW synchronous input requiring
setup and hold times relative to the system clock be met for correct operation. READY is
ignored during bus hold acknowledge. (Note 1)

HOLD
HLDA

64
65

BUS HOLD REQUEST AND HOLD ACKNOWLEDGE: control ownership of the 80C286
locai bus. The HOLD input ailows another tocal bus master to request contro! of the
local bus. When control is granted, the 80C286 will float its bus drivers and then activate
HLDA, thus entering the bus hold acknowiedge condition. The local bus will remain
granted to the requesting master until HOLD becomes inactive which resuits in the
80C286 deactivating HLDA and regaining control of the local bus. This terminates the
bus hoid acknowledge condition. HOLD may be asynchronous to the system clock.
These signals are active HIGH. Note that HLDA never floats.

INTR

57

INTERRUPT REQUEST: requires the 80C286 to suspend its current program execution
and service a pending external request. Interrupt requests are masked whenever the
interrupt enable bit in the flag word is cleared. When the 80C286 responds to an interrupt
request, it performs two interrupt acknowiedge bus cycles to read an 8-bit interrupt
vector that identifies the source of the interrupt. To ensure program interruption, INTR
must remain active until an interrupt acknowledge bus cycle is initiated. INTR is
sampled at the beginning of each processor cycle and must be active HIGH at least two
processor cycles before the current instruction ends in order to interrupt before the next
instruction. INTR is level sensitive, active HIGH, and may be asynchronous to the
system clock.

NMt

59

NON-MASKABLE INTERRUPT REQUEST: interrupts the 80C286 with an internally
supplied vector value of two. No interrupt acknowledge cycles are performed. The
interrupt enable bit in the 80C286 flag word does not affect this input. The NMi input is
active HIGH, may be asynchronous to the system clock. and is edge triggered after
internal synchronization. For proper recognition, the input must have been previously
LOW for at least four system clock cycles and remain HIGH for at least four system clock
cyctes.

PEREQ
PEACK

PROCESSOR EXTENSION OPERAND REQUEST AND ACKNOWLEDGE: extend the
memory management and protection capabilities of the 80C286 to processor
extensions. The PEREQ input requests the 80C286 to perform a data operand transfer
for a processor extension. The PEACK output signals the processor extension when the
requested operand is being transferred. PEREQ is active HIGH. PEACK is active LOW .
and is held at a high impedance logic one during bus hold acknowledge. PEREQ may be
asynchronous to the system clock.

54
53

PROCESSOR EXTENSION BUSY AND ERROR: indicates the gperating condition of a
processor extension to the 80C286. An active BUSY input stops 80C286 program
execution on WAIT and some ESC instructions until BUSY becomes inactive (HIGH).
The 80C286 may be interrupted while waiting for BUSY to become inactive. An active
ERROR input causes the 80C286 to perform a processor extension interrupt when
executing WAIT or some ESC instructions. These inputs are active LOW and may be
asynchronous to the system ctock.

m 4302271 0053511 969 W

80C286

Pin Description

TABLE 1. CONTINUED

SYMBOL

PIN
NUMBER

TYPE

DESCRIPTION

RESET

29

SYSTEM RESET: clears the internal logic of the B0C286 and is active HIGH. The 80C286
may be reinitialized at any time with a LOW to HIGH transition on RESET which remains
active for more than 16 system clock cycles. During RESET active, the output pins of the
80C286 enter the state shown below.

80C286 Pin State During Reset

Pin Value Pin Names

1 (HIGH)
0 (LOW)
HIGH IMPEDANCE

Sp._S1. PEACK, Ap3-Ag, BHE, LOCK
M/IO, COD/INTA, HLDA (Note 2)
D15-D0

b

Operation of the 80C286 begins after a HIGH to LOW transition on RESET. The HIGH to
LOW transition of RESET must be synchronous to the system clock. Approximately 50
system clock cycles are required by the 80C286 for internal initializations before the first
bus cycle to fetch code from the power-on execution address is performed. A LOW to
HIGH transition of RESET synchronous to the system clock will end a processor cycle at
the second HIGH to LOW transition of the system clock. The LOW to HIGH transition of
RESET may be asynchronous to the system clock; however, in this case it cannot be
predetermined which phase of the processor clock will occur during the next system
clock period. Synchronous LOW to HIGH transitions of RESET are required only for

systems where the processor clock must be phase synchronous to another clock.

Vss 9, 35, 60 !

SYSTEM GROUND: are the ground pins (all must be connected to system ground).

Vee 30,62 - i

is recommended.

SYSTEM POWER: +5 volt power supply pins. A 0.1uF capacitor between pins 60 and 62

NOTES:

1. READY is an open-coilector signal and should be pulled inactive with an appropriate resistor

. (62002 at 10MHz and 12.5 MHz, 4700 at 16MHz, 3900} at 20MHz, 27002 at 25MHz).

2. HLDA is only Low # HOLD is inactive (Low).

3. All unused inputs shouid be puiled to their inactive state with pull up/down resistors.

Functional Description

Introduction

The Harris 80C286 microprocessor is a static CMQOS
version of the NMOS 80286 microprocessor. The 80C286
is an advanced, high-performance microprocessor with
specially optimized capabilities for multiple user and
multi-tasking systems. Depending on the application, the
80C286’s performance is up to nineteen times faster than
the standard SMHz 8086's, while providing complete
upward software compatibility with Harris 80C86 and
80C88 CPU family.

The 80C286 operates in two modes: 80C286 real address
mode and protected virtual address mode. Both modes
execute a superset of the 80C86 and 80C88 instruction set.

In 80C286 real address mode programs use real addrasses
with up to one megabyte of address space. Programs use
virtual addresses in protected virtual address mode, also
called protected mode. In protected mode, the 80C286
CPU automatically maps 1 gigabyte of virtual addresses per
task into a 16 megabyte real address space. This mode also
provides memory protection to isolate the operating system
and ensure privacy of each tasks’ programs and data. Both
modes provide the same base instruction set, registers and
addressing modes.

The Functional Description describes the following: Static
operation, the base 80C286 architecture common to both
modes, 80C286 real address mode, and finally, protected
mode.

B 4302271 00L3512 ATS WM

¢

« -

80C286

Static Operation

The 80C286 is comprised of completely static circuitry.
Internal registers, counters, and latches are static and
require no refresh as with dynamic circuit design. This
eliminates the minimum operating frequency restriction
typically placed on microprocessors. The CMOS 80C286
can operate from DC to the specified upper frequency
limit. The clock to the processor may be stopped at any
point (either phase one or phase two of the processor
clock cycle) and held there indefinitely. There is,
however, a significant decrease in power requirement if
the clock is stopped in phase two of the processor clock
cycle. Details on the clock relationships will be discussed
in the Bus Operation section. The ability to stop the clock
to the processor is especially useful for system debug or
power critical applications.

The 80C286 can be single-stepped using only the
CPU clock. This state can be maintained as long as
necessary. Single step clock information allows simple
interface circuitry to provide critical information for
system debug.

Static design also allows very low frequency operation

(down to DC). In a power critical situation, this can
provide low power operation since 80C286 power
dissipation is directly related to operating frequency. As
the system frequency is reduced, so is the operating
power until, ultimately, with the clock stopped in phase
two of the processor clock cycle, the 80C286 power
requirement is the standby current (SmA maximum).

80C286 Base Architecture

The 80C86, 80C88, and 80C286 CPU family ali contain the
same basic set of registers, instructions, and addressing
modes. The 80C286 processor is upwardly compatible
with the 80C86 and 80C388 CPU'’s.

Register Set
The 80C286 base architecture has fifteen registers as

shown in Figure 1. These registers are grouped into the
following four categories.

GENERAL REGISTERS: Eight 16-bit general purpose
registers used to contain arithmetic and logical operands.
Four of these (AX, BX, CX and DX) can be used either in
their entirety as 16-bit words or split into pairs of separate
8-bit registers.

SEGMENT REGISTERS: Four 16-bit special purpose
registers select, at any given time, the segments of
memory that are immediately addressable for code, stack
and data. (For usage. refer to Memory Organization.)

16-BIT SPECIAL
REGISTER REGISTER
NAME) FUNCTIONS
7 07] 15 0
BYTE AX AH AL MULTIPLY/DIVIDE [CODE SEGMENT SELECTOR
ADDRESSABLE INST TI
(8-8IT DX OH DL V0 INSTRUCTIONS Ds DATA SEGMENT SELECTOR
REGISTER
NAMES Cx CH cL > LOOP/SHIFT/REPEAT COUNT SS STACK SEGMENT SELECTOR
SHOWN
) BX BH BL ES EXTRA SEGMENT SELECTOR
BASE REGISTERS
BP SEGMENT REGISTERS
st 15 0
INDEX REGISTERS
Dt F FLAGS
sp) STACK POINTER P INSTRUCTION POINTER
% o MSW MACHINE STATUS WORD
GENERAL
REGISTERS STATUS AND CONTROL

FIGURE 1.

REGISTERS

REGISTER SET

B 4302271 00L3513 731 WA

-

80C286

STATUS FLAGS:
CARRY

PARITY

AUXILIARY CARRY

ZERO

SIGN

OVERFLOW

13

ruacs: [N]

12 1110 9 8 1R I ¥4 3 b2 1 o
ope Jorfor|w [[s [2 NNV or NNV e RWW cr |

A

CONTROL FLAGS:

TRAP FLAG

INTERRUPT ENABLE

DIRECTION FLAG

SPECIAL FIELDS:

VO PRIVILEGE LEVEL |

NESTED TASK FLAG 1

o F Y =] ‘ L]]

RESERVED

AW

PROCESSOR EXTENSION EMULATED
MONITOR PROCESSOR EXTENSION

T

TASK SWITCH

PROTECTION ENABLE

FIGURE 2. STATUS AND CONTROL REGISTER BIT FUNCTIONS
LY

BASE AND INDEX REGISTERS: Four of the general
purpose registers may also be used to determine offset
addresses of operands in memory. These registers may
- contain base addresses or indexes to particular locations
within a segment. The addressing mode determines the
specific registers used for operand address calculations.

STATUS AND CONTROL REGISTERS: Three 16-bit
special purpose registers record or control certain
aspects of the 80C286 processor state. These include the
Flags register and Machine Status Word register shownin

Figure 2, and the Instruction Pointer, which contains the
offset address of the next sequential instruction to be
executed.

Flags Word Description

The Flags word (Flags) records specific characteristics of
the result of logical and arithmetic instrucitons (bits 0, 2,
4,6, 7 and 11) and controls the operation of the 80C286
within a given operating mode (bits 8 and 9). Flags is a
16-bit register. The function of the flag bits is given in
Table 2.

TABLE 2. FLAGS WORD BIT FUNCTIONS

BIT POSITION NAME FUNCTION

o] CF Carry Flag — Set on high-order bit carry or borrow; cleared otherwise

2 PF Parity Flag — Set if low-order 8-bits of result contain an even number of 1-bits; cleared
otherwise

4 AF Set on carry from or borrow to the low order four bits of AL; cleared otherwise

6 ZF Zero Flag — Set if result is zero: cleared otherwise

7 SF Sign Flag — Set equai to high-order bit of result (0 if positive, 1 if negative)

11 OF Overflow Flag — Set if result is a too-large positive number or a too-smail negative
number {excluding sign-bit) to fit in destination operand; cleared otherwise

8 TF Single Step Flag — Once set, a single step interrupt occurs after the next instruction
executes. TF is cleared by the single step interrupt.

9 IF Interrupt-enable Flag — When set, maskable interrupts wiil cause the CPU to transfer
control to an interrupt vector specified tocation

10 DF Direction Fiag — Causes string instructions to auto decrement the appropriate index
registers when set. Clearing DF causes auto increment.

EM 4302271 00b351Y4 k78 WA

80C286

Instruction Set

The instruction set is divided into seven categories: data
transfer, arithmetic, shift/rotate/logical, string manipuia-
tion, control transfer, high level instructions, and
processor control. These categories are summarized in
Figure 3.

An B0C286 instruction can reference zero, one, or two

Two-operand instructions (e.g. MOV and ADD) are
usually three to six bytes long. Memory to memory
operations are provided by a special class of string
instructions requiring one to three bytes. For detailed
instruction formats and encodings refer to the instruction
set summary at the end of this document.

operands; where an operand may reside in a register, in ADDITION
revssons (0. W5 sr0 HLT e o ars ane [200 | Aaroyarvor
long. One-operand instructions (e.g. INC and DEC) are ADC Add byte or word with carry
usually two bytes long but some are encoded in only one INC Increment byte or word by 1
or mamry location. Two-operand ntrutions permitthe | —2AA | ASCI adjustfor adiion
?c;rllrg\?vﬁz);ix types 'of instrLF:ction operations: P DAA Decimal adjust for addition
¢ Register to Register ¢ Memory to Memory SUBTRACTION
e Memory to Register * Register to Memory suB Subtract byte or word
¢ Immediate to Register * Immediate to Memory SeB Subtract byte or word with borrow
GENERAL PURPOSE DEC Decrement byte or word by 1
MOV Move byte or word NEG Negate byte or word
PUSH Push word onto stack CMP Compare byte or word
POP Pop word off stack AAS ASQII adjugt for subtraction
PUSHA Push all registers on stack DAS Decimal adjust for subtraction
POPA Pop all registers from stack MULTIPLICATION
XCHG Exchange byte or word MUL Mulitiply byte or word unsigned
XLAT Translate byte IMUL Integer multiply byte or word
INPUT/OUTPUT AAM ASCH adjust for multiply
IN Input byte or word DIVISION
ouT Output byte or word DIv Divide byte or word unsigned
ADDRESS OBJECT IDIV Integer divide byte or word
LEA Load effective address AAD ASCII adjust for division
LDS Load pointer using DS CBW Convert byte to word
LES Load pointer using ES CWD Convert word to doubleword
FLAG TRANSFER FIGURE 3B. ARITHMETIC INSTRUCTIONS
LAHF Load AH register from flags
SAHF Store AH register in flags LOGICALS
PUSHF Push flags onto stack NOT “Not" byte or word
POPF Pop flags off stack AND “And" byte or word
FIGURE 3A. DATA TRANSFER INSTRUCTIONS OR “Inclusive or” byte or word
XOR "Exclusive or” byte or word
MOVS Move byte or word string TEST “Test" byte or word
INS Input bytes or word string SHIFTS
ouTs Output bytes or word string SHL/SAL Shift logical/arithmetic left byte or word
CMPS Compare byte or word string SHR Shift logical right byte or word
SCAS Scan byte or word string SAR Shift arithmetic right byte or word
LODS Load byte or word string ROTATES
STOS Store byte or word string ROL Rotate left byte or word
REP Repeat ROR Rotate right byte or word
REPE/REPZ Repeat while equal/zero RCL Rotate through carry left byte or word
REPNE/REPNZ Repeat while not equal/not zero RCR Rotate through carry right byte or word
FIGURE 3C. STRING INSTRUCTIONS FIGURE 3D. SHIFT/ROTATE LOGICAL INSTRUCTIONS

B 4302271 0063515 504 WA

80C286

CONDITIONAL TRANSFERS UNCONDITIONAL TRANSFERS
JA/UNBE Jump if above/not below nor equal CALL Call procedure
JAE/UNB Jump if above or equal/not below RET Return from procedure
JB/AUNAE Jump if below/not above nor equal JMP Jump
JBE/UNA Jump if below or equal/not above
JC Jumpif carry ITERATION CONTROLS
JENZ Jump if equal/zero
JG/NLE Jump if greater/not less nor equal LOOP Loop
JGE/NL Jump if greater or equal/not less LOOPE/LOOPZ Loop if equal/zero
JUUNGE Jump if less/not greater nor equal LOOPNE/LOOPNZ Loop if not equal/not zero
JLEANG Jump if less or equal/not greater JCXZ Jump if register CX = 0
JNC Jump if not carry
JNE/INZ Jump if not equal/not zero INTERRUPTS
JNO Jump if not overflow
JNPAJPO Jump if not parity/parity odd INT Interrupt
JNS Jump if not sign INTO Interrupt if overflow
JO Jump if overilow IRET interrupt return
JP/JPE Jump if parity/parity even
JS Jump if sign
FIGURE 3E. PROGRAM TRANSFER INSTRUCTIONS
Memory Organization
FLAG OPERATIONS) . .
Memory is organized as sets of variable-length segments.
STC Setcarry flag Each segment is a linear contiguous sequence of up to
CcLC Clear carry flag 84K (216) 8-pit bytes. Memory is addressed using a
CMC Complement carry flag two-pomponent address (a pointgr) that consists of a
STD Set direction flag 16-bit segmgnt setector aqd a 16-bit offs_et. The segment
selector indicates the desired segment in memory. The
CLD Clear direction flag offset component indicates the desired byte address
STI Setinterrupt enable flag within the segment. (See Figure 4).
CLl Clear interrupt enable flag

EXTERNAL SYNCHRONIZATION

All instructions that address operands in memory must
specify the segment and the offset. For speed and
compact instruction encoding, segment selectors are

HLT Ha'_t unulu_nte_rru.pt or r'eset usually stored in the high speed segment registers. An
WAIT Wait for TEST pin active instruction need specify only the desired segment
ESC Escape to extension processor register and offset in order to address a memory operand.
LOCK Lock bus during next instruction
NO OPERATION ,}; ~
NOP [No operation
POINTER
EXECUTION ENVIRONMENT CONTROL T
LMSW Load machine status word seoment | orrser
1 1615
SMSwW Store machine status word OPERARD
T SELECTED | } SELECTED
SEGMENT
FIGURE 3F. PROCESSOR CONTROL INSTRUCTIONS
ENTER Format stack for procedure entry
LEAVE Restore stack for procedure exit ’J,\u/ :JC
BOUND Detects values outside prescribed range MEMORY

FIGURE 3G. HIGH LEVEL INSTRUCTIONS

FIGURE 4. TWO COMPONENT ADDRESS

B 4302271 0063516 440 WM

80C286

TABLE 3. SEGMENT REGISTER SELECTION RULES

Memory Segment Register Implicit Segment
Reference Needed Used Selection Rule
Instructions Code (CS) Automatic with instruction prefetch
Stack Stack (SS) All stack pushes and pops. Any memory reference which uses BP as a
base register.
Local Data Data (DS) All data references except when relative to stack or string destination
External (Global) Data Extra (ES) Alternate data segment and destination of string operation

Most instructions need not explicitly specify which
segment register is used. The correct segment register is
automatically chosen according to the rules of Table 3.
These ruies follow the way programs are written (see
Figure 5) as independent modules that require areas for
code and data, a stack, and access to external data areas.

Special segment override instruction prefixes ailow the
implicit segment register selection rules to be overriden
for special cases. The stack, data and extra segments may
coincide for simple programs. To access operands not re-
siding in one of the four immediately available segments,
a full 32-bit pointer or a new segment selector must be
loaded.

Addressing Modes

The 80C286 provides a total of eight addressing modes for
instructions to specify operands. Two addressing modes
are provided for instructions that operate on register or
immediate operands:

REGISTER OPERAND MQODE: The operand is located in
one of the 8 or 16-bit general registers.

IMMEDIATE OPERAND MODE: The operand is included
in the instruction.

Six modes are provided to specify the location of an oper-
and in a memory segment. A memory operand address
consists of two 16-bit components: segment selector and
offset. The segment selector is supplied by a segment
register either implicitly chosen by the addressing mode
or explicitly chosen by a segment override prefix. The off-
set is calculated by summing any combination of the
following three address elements:

the displacement (an 8 or 16-bit immediate value
contained in the instruction)

the base (contents of either the BX or BP base registers)

the index (contents of either the Sl or Dl index registers)

r——=1
| |
CODE
MODULE A
DATA
! i
! |
CODE cru
MODULE B
DATA CODE
| I‘ﬁL DATA
! |
STACK
PROCESS
STACK EXTRA
- SEGMENT
| - REGISTERS
I
! I
PROCESS
DATA
BLOCK 1
I I
! !
PROCESS
DATA
BLOCK 2
! 1
| U |
MEMORY
FIGURE 5. SEGMENTED MEMORY HELPS

STRUCTURE SOFTWARE

B 4302271 003517 347

10

80C286

Any carry out from the 16-bitaddition is ignored. Eight-bit
displacements are sign extended to 16-bit values.

Combinations of these three address elements define the
six memory addressing modes, described below.

DIRECT MODE: The operand's offset is contained in the
instruction as an 8 or 16-bit displacement element.

REGISTER INDIRECT MODE: The operand’s offset is in
one of the registers Si, DI, BX or BP.

BASED MODE: The operand's offset is the sum of an 8 or
16-bit displacement and the contents of a base register
(BX or BP).

INDEXED MODE: The operand'’s offset is the sumofan 8
or 16-bit displacement and the contents of an index regis-
ter (Sl or DI).

BASED INDEXED MODE: The operand’s offset is the sum
of the contents of a base register and an index register.

BASED INDEXED MODE WITH DISPLACEMENT: The
operand’s offset is the sum of a base register’'s contents,
an index register's contents, and an 8 or 16-bit displace-
ment.

Data Types

The 80C286 directly supports the following data types:

Integer: A signed binary numeric value contained in an
8-bit byte or a 16-bit word. All operations assume
a 2's complement representation. Signed 32 and
64-bit integers are supported using the 80287
Numeric Data Processor.

Ordinal: An unsigned binary numeric value contained in
an 8-bit byte or 16-bit word.

Pointer: A 32-bit quantity, composed of a segment
selector component and an offset component.
Each component is a 16-bit word.

String: A contiguous sequence of bytes or words. A
string may contain from 1 byte to 64K bytes.

ASCII: A byte representation of alphanumeric and
control characters using the ASCII standard of
character representation.

BCD: A byte (unpacked) representation of the decimal
digits 0-9.

Packed A byte (packed) representation of two decimal

BCD: digits 0-9 storing one digit in each nibble of the
byte.

Floating A signed 32, 64 or 80-bit real number

Point: representation. (Floating point operands are

supported using the 80287 Numeric Processor
extension),

Figure 6 graphically represents the data types supported '
by the 80C286.

7 0

SIGNED
BYTE

SIGN BIT J|]
MAGNITUDE

7 [
UNSIGNED
BYTE
L MsB
MAGNITUDE

st g7 0

SIGNED i

WORD ’ ,

SIGN BIT - | -MSB |
MAGNITUDE

SIGNED 3t +3 +2 615 1] 0

DOUBLE [HIIIl[lllIIIIIIIIIIIIIIHIIFT] :i

WORD* it

SIGN BIT- | MSB {
MAGNITUDE

+7 +8 +5 +4 +3 +2 +1 0
SIGNED 48 47 32N 1615 [

woro | | [T [T [T]

SIGN BIT 4~ MSB '

MAGN{TUDE
5 +1 0 o
UNSIGNED IIIIIII IHIIH
WORD l [] !
(—MsB ‘
MAGNITUDE §
+N +1 0
BINARY : 7111 ITTOTIII Hro '
c i SOt
DECIMAL
8cpy _BCD BCD BCD
DIGIT N DIGIT 1 DIGIT ¢
7 N, A
TTTTITTIYTTTT
S i IO v it
ASCH ASCli ASCII
CHARACTERy CHARACTERy CHARACTERq
7 *N 7t a7 0 o
PACKED EERERRS LRRERAR
e T
| S—
MOST

LEAST
SIGNIFICANT DIGIT SIGNIFICANT DIGIT

+N +1

ns ° s oms 9 o
STRING EII‘IIIIIIIIIII
BYTE/WORD N BYTE/WORD 1 BYTE/WORD 0
n_*3 *2 4605 1 0,
POINTER rnlur|lrnlnllr||||n[nllnl|
| 1 |
SELECTOR OFFSET

79+9 +8 +7 +6 +5 +4 +3 +2 +1 0

e [T T T T T T T TT
SIGN BIT - |
EXPONENT

L do

MAGNITUDE

‘Supported by 80C286/80287 Numeric Data Processor Configuration
FIGURE 6. 80C286 SUPPORTED DATA TYPES

M 4302271 00L3518 213 W »

80C286

TABLE 4. INTERRUPT VECTOR ASSIGNMENTS
DOES RETURN ADDRESS
INTERRUPT RELATED POINT TO INSTRUCTION
FUNCTION NUMBER INSTRUCTIONS CAUSING EXCEPTION?

Divide error exception 0] DIv, IDIV Yes
Single step interrupt 1 All
NMI interrupt 2 INT 2 or NMI pin
Breakpoint interrupt 3 INT 3
INTO detected overflow exception 4 INTO No
BOUND range exceeded exception 5 BOUND Yes
invalid opcode exception 6 Any undefined opcode Yes
Processor extension not available exception 7 ESC of WAIT Yes
Reserved-do not use 8-15
Processor extension error interrupt 16 ESC or WAIT
Reserved 17-31
User defined 32-255

I/0O Space

The 170 space consists of 84K 8-bit ports, 32K 16-bit ports,
or a combination of the two. I/0 instructions address the
1/0 space with either an 8-bit port address, specified in the
instruction, or a 16-bit port address in the DX register.
8-bit port addresses are zero extended such that A15-Ag
are LOW. 1/O port addresses 00F8(H) through 00FF(H)
are reserved.

Interrupts

An interrupt transfers execution to a new program
location. The old program address (CS:IP) and machine
state (Flags) are saved on the stack to allow resumption of
the interrupted program. Interrupts fail into three classes:
hardware initiated, INT instructions, and instruction
exceptions. Hardware initiated interrupts occur in
response to an external input and are classified as
non-maskable or maskable. Programs may cause an
interrupt with an INT instruction. Instruction exceptions
occur when an unusual condition which prevents further
instruction processing is detected while attempting to
execute an instruction. The return address from an
exception will always point to the instruction causing the
exception and include any leading instruction prefixes.

A table containing up to 256 pointers defines the proper
interrupt service routine for each interrupt. Interrupts 0-
31, some of which are used for instruction exceptions, are
reserved. For each interrupt, an 8-bit vector must be
supplied to the 80C286 which identifies the appropriate
table entry. Exceptions supply the interrupt vector inter-
nally. INT instructions contain or imply the vector and
allow access to alt 256 interrupts. Maskable hardware
initiated interrupts supply the 8-bit vector to the CPU
during an interrupt acknowledge bus sequence. Non-
maskable hardware interrupts use a predefined internally
supplied vector.

Maskable Interrupt (INTR)

The 80C286 provides a maskable hardware interrupt
request pin, INTR. Software enables this input by setting
the interrupt flag bit (IF) in the flag word. All 224
user-defined interrupt sources can share this input, yet
they can retain separate interrupt handlers. An 8-bit
vector read by the CPU during the interrupt acknowledge
sequence (discussed in System Interface section)
identifies the source of the interrupt.

The processor automatically disables further maskable
interrupts internally by resetting the IF as part of the
response to an interrupt or exception. The saved flag
word will reflect the enable status of the processor prior to
the interrupt. Untii the flag word is restored to the flag
register, the interrupt flag will be zero unless specifically
set. The interrupt return instruction includes restoring the
tlag word, thereby restoring the original status of IF.

Non-Maskable Interrupt Request (NM!)

A non-maskable interrupt input (NM1) is also provided.
NMI has higher priority than INTR. A typical use of NM|
would be to activate a power failure routine. The
activation of this input causes an interrupt with an
internally supplied vector value of 2. No external interrupt
acknowledge sequence is performed.

Whiie executing the NMI servicing procedure, the 80C286
will service neither further NMI requests, INTR requests,
nor the processor extension segment overrun interrupt
untit an interrupt return (IRET) instruction is executed or
the CPU is reset. If NMI occurs while currently servicing
an NMI, its presence will be saved for servicing after
executing the first IRET instruction. IF is cleared at the

beginning of an NMI interrupt to inhibit INTR interrupts. .

MR 4302271 00635149 15T BE

12

-

80C286

Single Step Interrupt

The 80C286 has an internal interrupt that allows programs
to execute one instruction at a time. It is called the single
step interrupt and is controlled by the single step flag bit
(TF) in the flag word. Once this bitis set, an internal single
step interrupt will occur after the next instruction has
been executed. The interrupt clears the TF bitand usesan
internally supplied vector of 1. The IRET instruction is
used to set the TF bit and transfer control to the next
instruction to be single stepped.

Interrupt Priorities

Initialization and Processor Reset

Processor initialization or start up is accomplished by
driving the RESET input pin HIGH. RESET forces the
80C286 to terminate all execution and focal bus activity.
No instruction or bus activity will occur as long as RESET
is active. After RESET becomes inactive, and an internal
processing interval eiapses, the 80C286 begins execution
in real address mode with the instruction at physical
location FFFFFO(H). RESET also sets some registers to
predefined values as shown in Table 6.

TABLE 6. 80C286 INITIAL REGISTER STATE AFTER RESET

When simgltanepus interrupt reque§ts occur, they are Flag word 0002(H)
processed in a fixed order as shown in Table 5. Interrupt _
processing involves saving the flags, return address, and Machine status word FFFO(H)
setting CS:IP to point at the first instruction of the Instruction pointer FFFO(H)
interrupt handler. if another enabled interrupt should
occur, it is processed before the next instruction of the Code segment Fooo(H)
current interrupt handler is executed. The last interrupt Data segment 0000{H)
rocessed is therefore the first one serviced.
P Extra segment 0000(H)
TABLE 5. INTERRUPT PROCESSING ORDER Stack segment 0000(H)
ORDER INTERRUPT HOLD must not be active during the time from the leading
edge of the initial RESET to 34 CLKs after the trailing edge
1 - Jnstruction exception of the initial RESET of an 80C286 system.
2 Single ste o
ns P Machine Status Word Description
3 NMI
1 br tonsi . ; The machine status word (MSW) records when a task
ocessor extension segment overrun switch takes place and controls the operating mode of the
5 INTR 80C286. It is a 16-bit register of which the lower four bits
5 INT instruction are used. One bit places the CPU into protected mode,
while the other three bits, as shown in Table 7, control the
TABLE 7. MSW BIT FUNCTIONS
BIT POSITION NAME FUNCTION
0 PE Protected mode enable piaces the 80C286 into protected mode and cannot be cleared
except by RESET.
1 MP Monitor processor extension allows WAIT instructions to cause a processor extension
not present exception (number 7).
2 EM Emulate processor extension causes a processor extension not present exception
(number 7) on ESC instructions to allow emulating a processor extension.
3 TS Task switched indicates the next instruction using a processor extension will cause
exception 7, allowing software to test whether the current processor extension context
betongs to the current task.

me 4302271 0063520 971 |

13

80C286

TABLE 8. RECOMMENDED MSW ENCODINGS FOR PROCESSOR EXTENSION CONTROL

INSTRUCTIONS
CAUSING
TS MP EM RECOMMENDED USE EXCEPTION 7
0 0 0 initial encoding after RESET. 80C286 operation is identical to None
80C86/88
0 0 1 No processor extension is available. Software will emulate its ESC
function,
1 0 1 No processor extension is available. Software will emulate its ESC
function. The current processor extension context may belong to
another task.
0] 1 0 A processor extension exists. None
1 1 0 A processor extension exists. The current processor extension ESC or WAIT
context may belong to another task. The exception 7 on WAIT allows
software to test for an error pending from a previous processor
extension operation

processor extension interface. After RESET, this register
contains FFFO(H) which places the 80C286 in 80C286 real
address mode.

The LMSW and SMSW instructions can load and store the
MSW in real address mode. The recommended use of TS,
EM, and MP is shown in Table 8.

Halt

The HLT instruction stops program execution and
prevents the CPU from using the local bus until restarted.
Either NMI, INTR with IF = 1, or RESET will force the
80C286 out of hait. If interrupted, the saved CS:IP will
point to the next instruction after the HLT.

80C286 Real Address Mode

The 80C286 executes a fully upward-compatible superset
of the 80C86 instruction set in real address mode. In real
address mode the 80C286 is object code compatible with
80C86 and 80C88 software. The real address mode
architecture (registers and addressing modes) is exactly
as described in the 80C286 Base Architecture section of
this Functional Description.

Memory Size

Physical memory is a contiguous array of up to 1,048,576
bytes (one megabyte) addressed by pins Aqg through A1g
and BHE. Apq through A23 should be ignored.

Memory Addressing

In real address mode physical memory is a contiguous
array of up to 1,048,576 bytes (one megabyte) addressed
by pin Ag through A1g and BHE. Address bits Ang-Ags3
may not always be zero in real mode. Agg-A23 should not
be used by the system while the 80C286 is operating in
Real Mode.

The selector portion of a pointer is interpreted as the
upper 16-bits of a 20-bit segment address. The lower four
bits of the 20-bit segment address are always zero.
Segment addresses, therefore, begin on multiples of 16
bytes. See Figure 7 for a graphic representation of
address information.

All segments in real adcdress mode are 84K bytes in size
and may be read. written. or executed. An exceptionorin-
terrupt can occur if data operands or instructions attempt

to wrap around the end of a segment (e.g. aword with its
low order byte at offset FFFF(H) and its high order byte at
offset 0000(H). If, in real address mode, the information
contained in a segment does not use the fuil 84K bytes,
the unused end of the segment may be overlayed by
another segment to reduce physical memory require-
ments.

15 [
OFFSET
0000 OFFSEY ADDRESS
-
15 Q
SEGMENT SEGMENT
SELECTOR 0000} AppRess
——e—t
ADDER
9)
20-BIT PHYSICAL
MEMORY ADDRESS

FIGURE 7. 80C286 REAL ADDRESS MODE ADDRESS
CALCULATION

M u302271 0063521 408 WM

14

80C286

TABLE 9. REAL ADDRESS MODE ADDRESSING INTERRUPTS

INTERRUPT RELATED RETURN ADDRESS
FUNCTION NUMBER INSTRUCTIONS BEFORE INSTRUCTION

Interrupt table limit too small exception 8 INT vector is not within table limit Yes
Processor extension segment overrun 9 ESC with memory operand extending No
interrupt beyond offset FFFF(H)
Segment overrun exception 13 Word memory reference with offset = Yes

FFFF(H) or an attempt to execute past

the end of a segment

Reserved Memory Locations

The 80C286 reserves two fixed areas of memory inreal ad-
dress mode (see Figure 8); system initialization area and
interrupt table area. Locations from addresses FFFFQ(H)
through FFFFF(H) are reserved for system initialization.
Initial execution begins at focation FFFFO(H). Locations
00000(H) through O03FF(H) are reserved for interrupt
vectors.

FFFFFH
RESET BOOTSTRAP
PROGRAM JUMP
o6 v FFFFOH
. . ~
* : x
IFFH
INTERRUPT POINTER
FOR VECTOR 255
3FCH.
A : L
T - -
™
INTERRUPT POINTER
FOR VECTOR 1 aH
INTERRUPT POINTER 3H
FOR VECTOR 0
oM
INITIAL CS:IP VALUE 1S FOOO:FFFO.

FIGURE 8. 80C286 REAL ADDRESS MODE INITIALLY
RESERVED MEMORY LOCATIONS

Interrupts

Table 9 shows the interrupt vectors reserved for excep-
tions and interrupts which indicate an addressing error.
The exceptions leave the CPU in the state existing before
attempting to execute the failing instruction (except for

PUSH, POP, PUSHA, or POPA). Refer to the next section
on protected mode initialization for a discussion on
exception 8.

Protected Mode Initialization

To prepare the 80C286 for protected mode, the LIDT
instruction is used to load the 24-bit interrupt table base
and 16-bit limit for the protected mode interrupt table.
This instruction can also set a base and limit for the
interrupt vector tabie in real address mode. After reset, the
interrupt table base is initialized to 000000(H) and its size
set to 03FF(H). These values are compatible with 80C86
and 80C88 software. LIDT should only be executed in
preparation for protected mode.

Shutdown

Shutdown occurs when a severe error is detected that
prevents further instruction processing by the CPU.
Shutdown and halt are externally signalled via a halt bus
operation. They can be distinguished by A1 HIGH for halt
and Aq LOW for shutdown. In real address mode,
shutdown can occur under two conditions:

¢ Exceptions 8 or 13 happen and the IDT limit does not
include the interrupt vector.

® A CALL INT or PUSH instruction attempts to wrap
around the stack segment when SP is not even.

An NMI input can bring the CPU out of shutdown if the
IDT limit is at least O00F(H) and SP is greater than
0005(H), otherwise shutdown can only be exited via the
RESET input.

Protected Virtual Address Mode

The 80C286 executes a fully upward-compatible superset
of the 80C86 instruction set in protected virtual address
mode (protected mode). Protected mode also provides
memory management and protection mechanisms and
associated instructions.

The 80C286 enters protected virtual address mode from
real address mode by setting the PE (Protection Enable)
bit of the machine status word with the Load Machine
Status Word (LMSW) instruction. Protected mode offers

extended physical and virtual memory address space,
memory protection mechanisms, and new operations to
support operating systems and virtual memory.

All registers, instructions, and addressing modes de-
scribed in the 80C286 Base Architecture section of this
Functional Description remain the same. Programs for
the 80C86, 80C88. and real address mode 80C286 can be
run in protected mode: however, embedded constants for
segment selectors are different.

BN 4302271 00b3522 744 WA

15

-~

¥~

80C286

Memory Size

The protected mode 80C286 provides a 1 gigabyte virtual
address space per task mapped into a 16 megabyte
physical address space defined by the address pins
A23-Ag and BHE. The virtual address space may be larger
than the physical address space since any use of an
address that does not map to a physical memory location
will cause a restartable exception,

cPu
It 16 15 a P
{
POINTER |SELECTOR| OFFSET :
— 1 i
PHYSICAL MEMORY ;
~ ~
i
MEMORY
PHYSICAL operang | | SEGMENT
ADORESS
ADDER
SEGMENT
SEGMENT BASE SEGMENT DESCRIPTOR
ADDRESS DESCRIPTOR | [ragLe
22 [} [}
"/ dnl

Y Y
FIGURE 9. PROTECTED MODE MEMORY ADDRESSING

Memory Addressing

As in real address mode, protected mode uses 32-bit
pointers, consisting of 16-bit selector and offset
components. The seiector, however, specifies an index
into a memory resident table rather than the upper 16-bits
of a real memory address. The 24-bit base address of the
desired segment is obtained from the tables in memory.
The 16-bit offset is added to the segment base address to
form the physical address as shown in Figure 9. The tables

are automatically referenced by the CPU whenever a
segment register is loaded with a selector. All 80C286
instructions which load a segment register will reference
the memory based tables without additional software. The
memory based tables contain 8 byte values called
descriptors.

Descriptors

Descriptors define the use of memory. Special types of
descriptors also define new functions for transfer of
control and task switching. The 80C286 has segment
descriptors for code, stack and data segments, and
system control descriptors for special system data
segments and control transfer operations. Descriptor
accesses are performed as locked bus operations to
assure descriptor integrity in muiti-processor systems.

Code and Data Segment Descriptors (S = 1)

Besides segment base addresses, code and data descrip-
tors contain other segment attributes including segment
size (1 to 64K bytes), access rights (read only, read/write,
execute only, and execute/read), and presence in
memory (for virtual memory systems) (See Figure 10).
Any segment usage violating a segment attribute
indicated by the segment descriptor will prevent the
memory cycle and cause an exception or interrupt.

CODE OR DATA SEGMENT DESCRIPTOR

7 0 7 0
+7 IRESERVED’ +6
:?Gc::: BYTE +5 P | DlPLl S] T1YP|E | A BASE 33_15 +4
+3 BAS? 15-0 +2
+1 LIMI:I’ 15-0 0
15 8 7 0

"Must be set to 0 for compatability with future upgrades.

ACCESS RIGHTS BYTE DEFINITION

P osal'ttl on Name Function
7 Present (P) P=1 Segment is mapped into physical memory.
P=0 No mapping to physical memory exits, base and limit are
not used.
6-~5 Descriptor Privilege Segment privilege attribute used in privilege tests.
Level (DPL)
4 Segment Descrip- S=1 Code or Data (includes stacks) segment descriptor
tor (S) S=0 System Segment Descriptor or Gate Descriptor
3 Executabie (E) E=0 Data segment descriptor type is: It
2 Expansion Direc- ED O Expand up segment, offsets must be < limit. Data
tion (ED) ED =t Expand down segment, offsats must be > limit. Segment
1 Writeabie (W) W=20 Data segment may not be written into. (S =1,
T W = 1. Data segment may be written into. E=0)
Fi)::: 3 Executable (E) E=1 Code Segment Descriptor type is: it
Definition 2 Conforming (C) C=1 Code segment may only be executed Code
when CPL > DPL and CPL Segment
remains unchanged.
1 Asadable (R) R =0 Code segment may not be read (S =1,
R=1 Code segment may be read. E=1)
0 Accessed (A) A=0 Segment has not been accessed.
A=1 Segment selector has been ioaded into segment register
or used by selector test instructions.

FIGURE 10. CODE AND DATA SEGMENT DESCRIPTOR FORMATS

M 4302271 00L3523 LaQ .

16

e ——

v o,

80C286

Code and data (including stack data) are stored in two
types of segments: code segments and data segments.
Both types are identified and defined by segment
descriptors (S = 1). Code segments are identified by the
executable (E) bit set to 1 in the descriptor access rights
byte. The access rights byte of both code and data
segment descriptor types have three fields in common:
present (P) bit, Descriptor Privilege Level (DPL), and
accessed (A) bit. If P = 0, any attempted use of this
segment will cause a not-present exception. DPL
specifies the privilege level of the segment descriptor.
DPL controls when the descriptor may be used by a task
(refer to privilege discussion below). The A bit shows
whether the segment has been previously accessed for
usage profiling, a necessity for virtual memory systems.
The CPU will always set this bit when accessing the
descriptor.

Data segments (S = 1, E = 0) may be either read-only or
read-write as controlled by the W bit of the access rights
byte. Read-only (W =0) data segments may not be written
into. Data segments may grow in two directions, as
determined by the Expansion Direction (ED) bit: upwards
(ED = 0) for data segments, and downwards (ED = 1) fora
segment containing a stack. The limit field for a data
segment descriptor is interpreted differently depending
on the ED bit (see Figure 10).

A code segment (S = 1, E = 1) may be execute-only or
execute/read as determined by the Readable (R) bit. Code
segments may never be written into and execute-only
code segments (R = 0) may not be read. A code segment
may also have an attribute called conforming (C). A
conforming code segment may be shared by programs
that execute at different privilege levels. The DPL of a
conforming code segment defines the range of privilege
levels at which the segment may be executed (refer to
privilege discussion beiow). The limit field identifies the
last byte of a code segment.

System Segment Descriptors (S = 0, Type = 1-3)

In addition to code and data segment descriptors, the
protected mode 80C286 defines System Segment
Descriptors. These descriptors define special system data
segments which contain a table of descriptors (Local
Descriptor Table Descriptor) or segments which contain
the execution state of a task (Task State Segment
Descriptor).

Figure 11 gives the formats for the special system data
segment descriptors. The descriptors contain a 24-bit
base address of the segment and a 16-bit limit. The access
byte defines the type of descriptor, its state and privilege
level. The descriptor contents are valid and the segment is
in physical memory if P = 1. If P = 0, the segment is not
valid. The DPL field is only used in Task State Segment
descriptors and indicates the privilege level at which the
descriptor may be used (see Privilege). Since the Local
Descriptor Table descriptor may only be used by a special
privileged instruction, the DPL field is not used. Bit 4 of
the access byte is 0 to indicate that it is a system control
descriptor. The type field specifies the descriptor type as
indicated in Figure 11.

SYSTEM SEGMENT DESCRIPTOR
7 07 o

T
RESERVED* +6

+ |p Dlleol TYPE | BASE 2315 +4
1 1

+3 BASE 15.9 +2
L

+1 LIMIT 5.0 o
L

15 8 7 0
"Must be set to 0 for compatability with future upgradés

SYSTEM SEGMENT DESCRIPTOR FIELDS

Name | Value Description
TYPE 1 Available Task State Segment (TSS) ‘
2 Local Descriptor Table |
3 Busy Task State Segment (TSS) !
P 0 Descriptor contents are not valid i
1 Descriptor contents are valid 1
DPL 0-3 Descriptor Privilege Level |
BASE | 24-bit | Base Address of special system data | |
number | segment in real memory !
LIMIT 16-bit | Offset of last byte in segment
number
FIGURE 11. SYSTEM SEGMENT DESCRIPTOR FORMAT

Gate Descriptors (S = 0, Type = 4-7)

Gates are used to control access to entry points within the
target code segment. The gate descriptors are call gates,
task gates, interrupt gates and trap gates. Gates provide a
level of indirection between the source and destination of
the control transfer. This indirection allows the CPU to
automatically perform protection checks and control
entry point of the destination. Call gates are used to
change privilege levels (see Privilege), task gatesare used
to perform a task switch, and interrupt and trap gates are
used to specify interrupt service routines. The interrupt
gate disables interrupts (resets IF) while the trap gate
does not.

Figure 12 shows the format of the gate descriptors. The
descriptor contains a destination pointer that points to the
descriptor of the target segment and the entry point
offset. The destination selector in an interrupt gate, trap
gate, and call gate must refer to a code segment
descriptor. These gate descriptors contain the entry point
to prevent a program from constructing and using an
illegal entry point. Task gates may only refer to a task state
segment. Since task gates invoke a task switch, the
destination offset is not used in the task gate.

Exception 13 is generated when the gate is used if a
destination selector does not refer to the correct
descriptor type. The word count fieid is used in the call
gate descriptor to indicate the number of parameters
(0-31 words) to be automatically copied from the caller's
stack to the stack of the called routine when a control
transfer changes privilege levels. The word count field is
not used by any other gate descriptor.

The access byte format is the same for all descriptors. P =
1 indicates that th gate contents are valid. P = 0 indicates
the contents are not valid and causes exception 11 if
referenced. DPL is the descriptor privilege level and
specifies when this descriptor may be used by a task (refer

B 4302271 00b3524 517 M

80C286

to privilege discussion below). Bit 4 must equal 0 to
indicate a system control descriptor. The type field
specifies the descriptor type as indicated in Figure 12.

GATE DESCRIPTOR

7 07 0
+7 RESERVED* +6
WORD
5 |P|OPLIO| TYPE |X X X| COUNT4q | 4
+3 DESTINATION SELECTOR 159 X x| +2
+ DESTINATION OFFSET 15.9 0
15 8 7)

“Must be set to 0 for compatibility with future upgrades

GATE DESCRIPTOR FIELDS

Name Value Description
4 ~Call Gate
5 ~Task Gate
TYPE 6 ~lInterrupt Gate
7 -Trap Gate
P 0 -Descriptor Contents are not
valid
1 -Descriptor Contents are
valid
DPL 0-3 Descriptor Privilege Level
WORD Number of words to copy
COUNT 0-31 from callers stack to called
procedures stack. Only used
with call gate.
Selector to the target code
DESTINATION | 16-bit ifg;“g::;)ca"' Interrupt or
SELECTOR | selector Selector to the target task
state segment (Task Gate)
DESTINATION | 16-bit | Entry point within the target
OFFSET offset | code segment

FIGURE 12. GATE DESCRIPTOR FORMAT

Segment Descriptor Cache Registers

A segment descriptor cache register is assigned to each
of the four segment registers (CS, SS, DS, ES). Segment
descriptors are automatically loaded (cached) into a
segment descriptor cache register (Figure 13) whenever
the associated segment register is loaded with a selector.

PROGRAM VISIBLE

SEGMENT SELECTORS

" o

SEGMENT REGISTERS
(LOADED BY PROGRAM)

ACCESS
RIGHTS SEGMENT PHYSICAL BASE ADDRESS SEGMENT SIZE

1418 o

SEGMENT DESCRWTOR CACHE REGISTERS
l_ (AUTOMATICALLY LOADED BY CPU) _J

FIGURE 13. DESCRIPTOR CACHE REGISTERS

Only.segment descriptors may be loaded into segment

descriptor cache registers. Once loaded, all references to

that segment of memory use the cached descriptor
information instead of reaccessing the descriptor. The
. descriptor cache registers are not visible to programs. No
| instructions exist to store their contents. They only
change when a segment register is loaded.

i Selector Fields

|A protected mode selector -has three fields: descriptor
entry index, local or global descriptor table indicator (T1),
and selector privilege (RPL) as shown in Figure 14. These
fields select one of two memory based tables of
descriptors, select the appropriate table entry and allow
high-speed testing of the selector's privilege attribute
(refer to privilege discussion below).

SELECTOR
INDEX T RPL
| G U N N T N N T S I | 1
15 8 7 2 10
BITS NAME FUNCTION
1-0 REQUESTED INDICATES SELECTOR PRIVILEGE
PRIVILEGE LEVEL DESIRED
LEVEL
(RPL)
2 TABLE Tl = 0 USE GLOBAL DESCRIPTOR TABLE
INDICATOR (GDT)
(™ Ti = 1 USE LOCAL DESCRIPTOR TABLE
{Lom
18-3 INDEX SELECT DESCRIPTOR ENTRY IN TABLE

FIGURE 14. SELECTOR FIELDS

Local and Global Descriptor Tables

Two tables of descriptors, called descriptor tables,
contain all descriptors accessible by a task at any given
time. A descriptor table is a linear array of up to 8192
descriptors. The upper 13 bits of the selector value are an
index into a descriptor table. Each table has a 24-bit base
register to locate the descriptor tabie in physical memory
and a 16-bit limit register that confine descriptor access to
the defined limits of the table as shown in Figure 15. A
restartable exception (13) will occur if an attempt is made
to reference a descriptor outside the table limits.

MEMORY

cPy x P~
15 [-
I »
| M GoT
GDT BASE I
24-BIT PHYS AD t
15 0 |
LoT N
DESCR
SELECTOR LDTy
Ts T T
| '] : CURRENT
| 2 | oTumr] . Lot
1 LDT BASE !
y Lzemireevs ao =
| PROGRAM INVISIBLE l LOT,
| tautomaticaiy | g a
LOADED | 5>9
| eromiroT DEscn H S5y
| WITHIN GOT) 2 §zg
L 1 £33«
E ~
FIGURE 15. LOCAL AND GLOBAL DESCRIPTOR TABLE

DEFINITION

B 4302271 0063525 453 W

18

80C286

One table, called the Global Descriptor table (GDT),
contains descriptors available to all tasks. The other table,
called the Local Descriptor Table (LDT), contains
descriptors that can be private to a task. Each task may
have its own private LDT. The GDT may contain all
descriptor types except interrupt and trap descriptors.
The LDT may contain only segment, task gate, and call
gate descriptors. A segment cannot be accessed by atask
if its segment descriptor does not exist in either descriptor
table at the time of access.

The LGDT and LLDT instructions load the base and limit
of the global and local descriptor tables. LGDT and LLDT
are privileged, i.e. they may only be executed by trusted
programs operating at level 0. The LGDT instruction
loads a six byte field containing the 16-bit table limit and
24-bit physical base address of the Global Descriptor
Table as shown in Figure 16. The LDT instruction loads a
selector which refers to a Local Descriptor Table
descriptor containing the base address and limit for an
LDT, as shown in Figure 11.

7 0 7 0
+5 RESERVED* BASE 23.1¢ +4
+3 BASEI 15-0 +2
+1 LIMIT 159 0
15 8 7 o

"Must be set to 0 for compatability with future upgrades

FIGURE 16. GLOBAL DESCRIPTOR TABLE AND
INTERRUPT DESCRIPTOR TABLE DATA TYPE

Interrupt Descriptor Table

The protected mode 80C286 has a third descriptor table,
called the Interrupt Descriptor Table (IDT) (see Figure
17), used to define up to 256 interrupts. It may contain
only task gates, interrupt gates and trap gates. The IDT
{Interrupt Descriptor Table) has a 24-bit physical base
and 16-bit limit register in the CPU. The priviledged LIDT
instruction loads these registers with a six byte value of
identical form to that of the LGDT instruction (see Figure
16 and Protected Mode Initialization).
i MEMORY

GATE FOR
INTERRUPT #£n i

GATE FOR
INTERRUPT #t'p-1

- INTERRUPT
cPU M L DESCRIPTOR
TABLE
GATE FOR noT)
15 0 INTERRUPT I

e o

DT LT GATE FOR Z > 5

L| wTerRRuPT#O g x 0

IDT BASE L - g z

n) 4 4 2¥g

FIGURE 17. INTERRUPT DESCRIPTOR TABLE DEFINITION

References to IDT entries are made via INT instructions,
external interrupt vectors. or exceptions. The IDT must be
at least 256 bytes in size to allocate space for all reserved
interrupts.

Privilege

The 80C286 has a four-level hierarchical privilege system
which controls the use of privileged instructions and
access to descriptors (and their associated segments)

within a task. Four-level privilege, as shown in Figure 18,
is an extension of the userssupervisor mode commonly
found in minicomputers. The privilege levels are
numbered 0 through 3. Level 0 is the most privileged level.
Privilege levels provide protection within a task. (Tasks
are isolated by providing private LDT’s for each task.)
Operating system routines, interrupt handlers, and other
system software can be included and protected within the
virtual address space of each task using the four levels of
privilege. Each task in the system has a separate stack for
each of its privilege levels.

Tasks, descriptors, and selectors have a privilege level
attribute that determines whether the descriptor may be
used. Task privilege affects the use of instructions and
descriptors. Descriptor and selector privilege only affact
access to the descriptor.

APPLICATIONS

cru
ENFORCED
SOFTWARE
INTERFACES

05 EXTENSIONS

HIGH SPEED
OPERATING
SYSTEM

INTERFACE

NOTE: PL becomes numericaliy lower as privilege level increases

FIGURE 18. HIERARCHICAL PRIVILEGE LEVELS

Task Privilege

A task always executes at one of the four privilege levels.
The task privilege level at any specific instant is called the
Current Privilege Level (CPL) and is defined by the lower
two bits of the CS register. CPL cannot change during
execution in a single code segment. A task's CPL may
only be changed by control transfers through gate
descriptors to a new code segment (See Cantrol
Transfer). Tasks begin executing at the CPL value
specified by the cade segment selector within TSS when
the task is initiated via a task switch operation (See Figure
19). A task executing at Level 0 can access all data
segments defined in the GDT and the task’s LDT and is
considered the most trusted level. A task executing a
Level 3 has the most restricted access to data and is
considered the least trusted level.

Descriptor Privilege

Descriptor privilege is specified by the Descriptor
Privilege Level (DPL) field of the descriptor access byte.
DPL specifies the least trusted task privilege level (CPL) at
which a task may access the descriptor. Descriptors with
DPL = 0 are the most protected. Only tasks executing at
privilege level 0 (CPL = 0) may access them. Descriptors
with DPL = 3 are the least protected (i.e. have the least
restricted access) since tasks can access them when
CPL =0, 1. 2, or 3). This rule applies to all descriptors.
except LDT descriptors.

M 430207 00b3526 39T mm

19

80C286

TABLE 10. DESCRIPTOR TYPES USED FOR CONTROL TRANSFER

DESCRIPTOR DESCRIPTOR
CONTROL TRANSFER TYPES OPERATION TYPES REFERENCED TABLE
Intersegment within the same privilege levels JMP, CALL, RET, IRET* Code Segment GDT/LDT
Intersegment to the same or higher privilege CALL Call Gate - GDT/LDT
leve! Interrupt within task may change CPL.
Interrupt Instruction, Exception Trap or Interrupt 10T
External Interrupt Gate
Intersegment to a lower privilege level RET, IRET* Code Segment GDT/LDT
{changes task CPL)
CALL, JMP Task State Segment GDT
Task Switch CALL, JMP Task Gate GDTADT
IRET™*
Interrupt Instruction, Exception Task Gate IDT
External Interrupt

‘NT (Nested Task bit of flag word) =0

Selector Privilege

Selector privilege is specified by the Requested Privilege
Level (RPL) field in the least significant two bits of a
selector. Selector RPL may establish a less trusted
privilege level than the current privilege level for the use of
a selector. This level is cailed the task’s effective privilege
level (EPL). RPL can only reduce the scope of a task's
access to data with this selector. A task's effective
privilege is the numeric maximum of RPL and CPL. A
selector with RPL = 0 imposes no additionat restriction on
its use while a selector with RPL = 3 can only refer to
segments at privilege Level 3 regardless of the task’s CPL.
RPL is generally used to verify that pointer parameters
passed to a more trusted procedure are notallowed to use
data at a more privileged level than the cailer (refer to
pointer testing instructions).

Descriptor Access and Privilege Validation

Determining the ability of a task to access a segment
involves the type of segment to be accessed, the
instruction used, the type of descriptor used and CPL,
RPL, and DPL. The two basic types of segment accesses
are control transfer (selectors loaded into CS) and data
{selectors loaded into DS, ES or S8).

Data Segment Access

Instructions that load selectors into DS and ES must refer
to a data segment descriptor or readable code segment

“descriptor. The CPL of the task and the RPL of the
selector must be the same as or more privileged
{numerically equal to or lower than) than the descriptor
DPL. In general, a task can only access data segments at
the same or less privileged ievels than the CPL or RPL
{(whichever is numericaily higher) to prevent a program
from accessing data it cannot be trusted to use.

An exception to the rule is a readable conforming code
segment. This type of code segment can be read fromany
privilege level.

“*NT (Nested Task bit of flag word) = 1

If the privilege checks fail (e.g. DPL is numerically less
than the maximum of CPL and RPL) or an incorrect type
of descriptor is referenced (e.g. gate descriptor or
execute only code segment) exception 13 occurs. If the
segment is not present, exception 11 is generated.

Instructions that load selectors into SS must refer to data
segment descriptors for writable data segments. The
descriptor privilege (DPL) and RPL must equal CPL. All
other descriptor types or a privilege level violation will
cause exception 13. A not present fauit causes exception
12.

Control Transfer

Four types of control transfer can occur when a selector is
loaded into CS by a control transfer operation (see Table
10). Each transfer type can only occur if the operation
which loaded the selector references the correct
descriptor type. Any violation of these descriptor usage
rules (e.g. JMP through a call gate or RET to a Task State
Segment) will cause exception 13.

The ability to reference a descriptor for control transfer is
also subject to rules of privilege. A CALL or JUMP
instruction may only reference a code segmentdescriptor
with DPL equal to the task CPL or a conforming segment
with DPL of equai or greater privilege than CPL. The RPL
of the selector used to reference the code descriptor must
have as much privilege as CPL.

RET and IRET instructions may only reference code
segment descriptors with descriptor priviiege equal to or
less privileged than the task CPL. The selector loaded into
CS is the return address from the stack. After the return,
the selector RPL is the task’s new CPL. If CPL changes,
the old stack pointer is popped after the return address.

When a JMP or CALL references a Task State Segment
descriptor, the descriptor DPL must be the same or less
privileged than the task’s CPL. Reference to a valid Task

B 4302271 00b3527 22k m

20

e e

80C286

State Segment descriptor causes a task switch (see Task
Switch Qperation). Reference to a Task State Segment
descriptor at a more privileged level than the task's CPL
generates exception 13.

When an instruction or interrupt references a gate
descriptor, the gate DPL must have the same or less
privilege than the task CPL. If DPL is ata more privileged
level than CPL, exception 13 occurs. If the destination
selector contained in the gate references a code segment
descriptor, the code segment descriptor DPL must be the

- same or more privileged than the task CPL. If not,
Exception 13 is issued. After the control transfer, the code
segment descriptors DPL is the task's new CPL. If the
destination selector in the gate references a task state
segment, a task switch is automatically performed (see
Task Switch Operation).

The privilege rules on control transfer require:

» JMP or CALL direct to a code segment (code segment
descriptor) can only be a conforming segment with
DPL of equal or greater privilege than CPL or a non-
conforming segment at the same privilege level.

» interrupts within the task, or calls that may change
privilege levels, can only transfer control through a
gate at the same or aless privileged level than CPLtoa
code segment at the same or more privileged level than
CPL.

» return instructions that don't switch tasks can only
return control to a code segment at the same or less
privileged level.

» task switch can be performed by a call, jump or
interrupt which references either a task gate or task
state segment at the same or less privileged level.

Privilege Level Changes

Any control transfer that changes CPL within the task,
causes a change of stacks as part of the operation. Initial
values of 88:SP for privilege levels 0, 1, and 2 are kept in
the task state segment (refer to Task Switch Operation).
During a JMP or CALL control transfer, the new stack
pointer is loaded into the SS and SP registers and the

and cross privilege levels, a fixed number of words, as
specified in the gate, are copied from the previous stack to
the current stack. The inter-segment RET instruction with
a stack adjustment value wiil correctly restore the
previous stack pointer upon return.

Protection

The 80C286 includes mechanisms to protect critical
instructions that effect the CPU execution state (e.g. HLT)
and code or data segments from improper usage. These
protection mechanisms are grouped into three forms:

» Restricted usage of segments (e.g. no write allowed to
read-only data segments). The only segments available
for use are defined by descriptors in the Local
Descriptor Tabie (LDT) and Global Descriptor Table
(GDT).

» Restricted access to segments via the rules of privilege
and descriptor usage.

» Privileged instructions or operations that may only be
executed at certain privilege levels as determined by
the CPL and I/O Privilege Leve! (IOPL). The IOPL is
defined by bits 14 and 13 of the flag word.

These checks are performed for all instructions and can
be split into three categories: segment load checks (Table
11), operand reference checks (Table 12), and privileged
instruction checks (Table 13). Any violation of the rules
shown will result in an exception. A not-present exception
related to the stack segment causes exception 12.

The IRET and POPF instructions do not perform some of
their defined functions if CPL is not of sufficient privilege
(numerically small enough). Precisely these are:

» The IF bit is not changed if CPL is greater than IQPL.

» The IOPL field of the flag word is not changed if CPL is
greater than 0.

No exceptions or other indication are given when these
conditions occur.

TABLE 12. OPERAND REFERENCE CHECKS

previous stack pointer is pushed onto the new stack. EXCEPTION
ERROR DESCRIPTION NUMBER
When returning to the original privilege level, its stack is —
restored as part of the RET or IRET instruction operation. | Write into code segment 13
For subroutine calls that pass parameters on the stack | R€ad from execute-onily code segment 13
Write to read-only data segment 13
TABLE 11. SEGMENT REGISTER LOAD CHECKS Segment limit exceeded (Notel) 12 0r 13
EXCEPTION NOTE 1. Carry out in offset calculations is ignored.
ERROR DESCRIPTION NUMBER
Descriptor table limit exceeded 13 TABLE 13. PRIVILEGED INSTRUCTION CHECKS
Segment descriptor not-present 11ori12 EXCEPTION
Privilege rules violated 13 ERROR DESCRIPTION NUMBER
Invglid descriptor/segment type segment CPL # 0 when executing the following
register load: instructions: 13
—Read only data segment load to 88 LIDT. LLDT. LGDT, LTR, LMSW, CTS, HLT
—Special control descriptor load to DS, ES, SS 13
—Execute only segment load to DS, ES, SS CPT > IOPL when executing the following
—Data segment load to CS instructions: 13
—Read/Execute code segment load SS INS. IN, OUTS, OUT, STI, CLI, LOCK
m uy302271 0063528 12 21

D

80C286

TABLE 14. PROTECTED MODE EXCEPTIONS
RETURN ADDRESS
INTERRUPT AT FALLING ALWAYS ERROR CODE
VECTOR FUNCTION INSTRUCTION? | RESTARTABLE? ON STACK?

8 Double exception detected Yes No (Note 2) Yes

9 Processor extension segment overrun No No {(Note 2) No

10 Invalid task state segment Yes Yes Yes

11 Segment not present Yes Yes Yes

12 Stack segment overrun or stack segment not present Yes Yes (Note 1) Yes

13 General protection Yes No {Note 2) Yes
NOTES: 1. When a PUSHA or POPA instruction attempts to wrap around the stack segment, the machine state after the exception will not be restartable

because stack segment wrap around is not permitted. This condition is identified by the vaiue of the saved SP being either 0000(H), 0001 (H),

FFFE(H), or FFFF(H).

2. These exceptions indicate a violation to privilege rules or usage rules has occurred. Restart is generally not attempted under those

conditions.

Exceptions

The 80C286 detects several types of exceptions and
interrupts in protected mode (see Table 14). Most are
restartable after the exceptional condition is removed.
Interrupt handlers for most exceptions can read an error
code, pushed on the stack after the return address, that
identifies the selector involved (0 if none). The return
address normally points to the failing instruction,
including all leading prefixes. For a processor extension
segment overrun exception, the return address will not
point at the ESC instruction that caused the exception;
however, the processor extension registers may contain
the address of the failing instruction.

These exceptions indicate a violation to privilege rules or
usage rules has occurred. Restart is generally not
attempted under those conditions.

All these checks are performed for all instructions and can
be split into three categories: segment load checks (Tabte
11), operand reference checks (Table 12), and privileged
instruction checks (Tabie 13). Any violation of the ruies
shown will result in an exception. A not-presentexception
causes exception 11 or 12 and is restartable.

Special Operations

Task Switch Operation

The 80C286 provides a built-in task switch operation
which saves the entire 80C286 execution state (registers,
address space, and a link to the previous task), loads a
new execution state, and commences execution in the
new task. Like gates, the task switch operation is invoked
by executing an inter-segment JMP or CALL instruction
which refers to a Task State Segment (TSS) or task gate
descriptor in the GDT or LDT. An INT instruction,
exception, or external interrupt may also invoke the task
switch operation by selecting a task gate descriptor in the
associated IDT descriptor entry.

The TSS descriptor points at a segment (see Figure 19)
containing the entire 80C286 execution state while a task
gate descriptor contains a TSS selector. The limit field of
the descriptor must be greater than 0028(H).

Each task must have a TSS associated with it. The current
TSS is identified by a speciai register in the 80C286 called

* the Task Register (TR). This register contains a selector
- referring to the task state segment descriptor that defines

the current TSS. A hidden base and limit register
associated with TR are loaded whenever TR is loaded with
a new selector. The IRET instruction is used to return
control to the task that called the current task or was
interrupted. Bit 14 in the flag register is called the Nested
Task (NT) bit. It controls the function of the IRET
instruction. If NT = 0, the IRET instruction performs the
regular current task by popping values off the stack; when
NT =1, IRET performs a task switch operation back to the

. previous task.

When a CALL, JMP, or INT instruction initiates a task
switch, the old (except for case of JMP) and new TSS wiil
be marked busy and the back link field of the new TSS set
to the old TSS selector. The NT bitof the new task is set by
CALL or INT initiated task switches. An interrupt that
does not cause a task switch will clear NT. NT may aiso be
set or cleared by POPF or IRET instructions.

The task state segment is marked busy by changing the
descriptor type fieid from Type 1 to Type 3. Use of a
selector that references a busy task state segment causes
Exception 13.

Processor Extension Context Switching

The context of a processor extension is not changed by
the task switch operation. A processor extension context
need only be changed when a different task attempts to
use the processor extension (which still contains the con-
text of a previous task). The 80C286 detects the first use of
a processor extension after a task switch by causing the
processor extension not present exception (7). The inter-
rupt handler may then decide whether a contextchange is
necessary.

Whenever the 80C286 switches tasks, it sets the Task
Switched (TS) bit of the MSW. TS indicates that a proces-
sor extension context may belong to a different task than
the current one. The processor extension not present ex-
ception (7) will occur when attempting to execute an ESC
or WAIT instruction if TS = 1 and a processor extension is
present (MP = 1 in MSW).

B 4302271 00L3529 0TS WA

22

B}

80C286

IS o

~ ~
N Y% \
A
cry ESERVED TYPE | DESCRIPTION
TASK REGISTER 4
SYSTEM P|P[0ITYPEl BASEz;-1e 1 AN AVAILABLE TASK STATE
TR R S L ITY SEGMENT. MAY BE USED AS
DESCRIPTOR THE DESTINATION OF A TASK
15 [] 8ASEis 0 hl SWITCH OPERATION.
rPm-_—————_— bl 1 |
| 3 A BUSY TASK STATE SEGMENT.
: PROGRAM INVISIBLE I UMIT o0 | CANNOT BE USED AS THE
= 2 A | DESTINATION OF A TASK
! LIMIT | ! | SWITCH.
! : b e e e e] e e e - -] -
! BASE
] ! ~, ~
[° | ~ 7"
[P (P R BYTE
15 0| OFFSET
TASK LOT SELECTOR a2
DS SELECTOR %0
S$ SELECTOR 38
SEGMENT IS NOT PRESENT IN
€S SELECTOR 3 MEMORY. BASE AND LIMIT ARE NOT
DEFINED
ES SELECTOR £
o FH
st 30
B8P 28 | CURRENT
TASK
sp 26 [STATE
BX 24
TASK OX 22
b= STATE *
SEGMENT CX 20
AX 18
FLAG WORD 16
IP (ENTRY POINT) 14]
SS FOR CPL 2 12
SP FOR CPL 2 10
SS FOR CPL 3 8| WImAL
STACKS
SP FOR CPL 1 §{ FORCPLO,1.2
SS FOR CPL O 4
SP FOR CPL 0 2
BACK LINK SELECTORTOTSS | o
X ~

FIGURE 19. TASK STATE SEGMENT AND TSS REGISTERS

Pointer Testing Instructions

The 80C286 provides several

pointer testing and consistency checks for maintaining
system integrity (see Table 15). These instructions
use the memory management hardware to verify that a

instructions to speed

TABLE 15. 80C286 POINTER TEST INSTRUCTIONS

selector value refers to an appropriate segment without
risking an exception. A condition flag (ZF) indicates
whether use of the selector or segment will cause an
exception.

INSTRUCTION | OPERANDS FUNCTION
ARPL Selector, Adjust Requested Privilege Level: adjusts the RPL of the selector to the numeric maximum
Register of current selector RPL value and the RPL value in the register. Set zero flag if selector RPL
was changed by ARPL.
VERR Selector VERify for Read: sets the zero flag if the segment referred to by the selector can be read.
VERW Selector VERify for Write: sets the zero flag if the segment referred to by the selector can be written.
LSL Register, Load Segment Limit: reads the segment limit into the register if privilege rules and descrip-
Selector tor type allow. Set zero flag if successtul.
LAR Register. Load Access Rights: reads the descriptor access rights byte into the register if privilege
Selector rules allow. Set zero flag it successful.

B 4302271 00bL3530 810 mE

23

80C286

Double Fault and Shutdown

If two separate exceptions are detected during a single
instruction execution, the 80C286 performs the double
fault exception (8). If an exception occurs during
processing of the doubie fault exception, the 80C286 will
enter shutdown. During shutdown no further instructions

. or exceptions are processed. Either NMI (CPU remains in
protected mode) or RESET (CPU exits protected mode)
can force the 80C286 out of shutdown. Shutdown is
externally signalled via a HALT bus operation with A4
LOW.

Protected Mode Initialization

The 80C286 initially executes in real address mode after
RESET. To allow initialization code to be placed at the top
of physical memory, Az3.30 will be HIGH when the
80C286 performs memory references relative to the CS
register until CS is changed. A23.0¢ will be zero for refer-
ences to the DS, ES, or SS segments. Changing CSinreal
address mode will force Ag3.09 LOW whenever CS is

used again. The initial CS:IP value of FOOO:FFFQ provides
64K bytes of code space for initialization code without
changing CS.

Protected mode operation requires several registers to be
initialized. The GDT and IDT base registers mustrefertoa
valid GDT and IDT. After executing the LMSW instruction
to set PE, the 80C286 must immediately execute an intra-
segment JMP instruction to clear the instruction queue of
instructions decoded in real address mode.

To force the 80C286 CPU registers to match the initial
protected mode state assumed by software, execute a
JMP instruction with a selector referring to the initial TSS
used in the system. This will load the task register, local
descriptor table register, segment registers and initial
general register state. The TR shouid point ata valid TSS
since any task switch operation involves saving the
current task state.

System Interface

The 80C286 system interface appears in two forms: a local
bus and a system bus. The local bus consists of address,
data, status, and control signals at the pins of the CPU. A
system bus is any buffered version of the local bus. A
system bus may also differ from the local bus in terms of
coding of status and control lines and/or timing and
loading of signals.

Bus Interface Signals and Timing

The 80C286 microsystems local bus interfaces the
80C286 to local memory and I/0O components. The inter-
face has 24 address lines. 16 data lines, and 8 status and
control signails.

The 80C286 CPU, 82C284 clock generator, 82C288 bus
controller, 82289 bus arbiter, 82C86H/87H tranceivers,
and 82C82/83H latches provide a buffered and decoded
system bus interface. The 82C284 generates the system
clock and synchronizes READY and RESET. The 82C288
converts bus operation status encoded by the 80C286 into
command and bus control signals. The 82289 bus arbiter

80ND
PAD

EXTERNAL
PIN

v

QUTPUT
DRIVER

INPUT

~

FIGURE 20A. BUS HOLD CIRCUITRY — PINS 36-51, 66, 67

INPUT
PROTECTION
CIRCUITRY

generates Multibus™ bus arbitration signals. These com-
ponents can provide the critical timing required for most
system bus interfaces including the Multibus.

Bus Hold Circuitry

To avoid high current conditions caused by floating
inputs to CMOS devices, and to eliminate the need for
pull-up/down resistors, “bus-hold” circuitry has been
used on the 80C286 pins 4-6, 36-51 and 66-68 (See Figure
20A and 20B). The circuit shown in Figure 20A will
maintain 'the last valid logic state if no driving source is
present (i.e. an unconnected pin ora driving source which
goes to a high impedance state). The circuit shown in
Figure 20B will maintain a high impedance logic one state
if no driving source is present. To overdrive the
“bus-hold” circuits, an external driver must be capable of
sinking or sourcing approximately 400 microamps at valid
input voltage levels. Since this “bus-hold” circuitry is
active and not a “resistive” type element, the associated
power supply current is negligible, and power dissipation
is significantly reduced when compared to the use of
passive pull-up resistors.

BONO
PAD

| EXTERNAL
PIN

l,f”’:"r' it |
outeyr ' °¢ |
DRIVER |

INPUT
BUFFER

| P
|
I
|
|
| Sy g
INPUT
PROTECTION
CIRCUITRY

A

FIGURE 208. BUS HOLD CIRCUITRY — PINS 4-6, 68

Muitibus™ 1s a Reaistered Trademark ~4 Intel

B 4302271 00L353) 757 MW

24

80C286

Physical Memory and I/O Interface

A maximum of 16 megabytes of physical memory can be
addressed in protected mode. One megabyte can be
addressed in real address mode. Memory is accessible as
bytes or words. Words consist of any two consecutive
bytes addressed with the least significant byte stored in
the lowest address. Byte transfers occur on either half of
the 16-bit local data bus. Even bytes are accessed over
D7.g while odd bytes are transferred over D15.g. Even
addressed words are transferred over Dy5-g in one bus
cycle, while odd addressed word require two bus
operations. The first transfers data on Dqy5-g, and the
second transfers data on D7.g. Both byte data transfers
occur automatically, transparent to software.

Two bus signals, Ag and BHE, control transfers over the
lower and upper halves of the data bus. Even address byte
transfers are indicated by Ag LOW and BHE HIGH. Odd
address byte transfers are indicated by Ag HIGH and BHE
LOW. Both Ag and BHE are LOW for even address word
transfers.

The 1/0 address space contains 64K addresses in both
modes. The 1/O space is accessible as either bytes or
words, as is memory. Byte wide peripheral devices may be
attached to either the upper or lower byte of the data bus.
Byte-wide 1/0 devices attached to the upper data byte
(D15-8) are accessed with odd /O addresses. Devices on
the lower data byte are accessed with even I/0 addresses.
An interrupt controller such as Harris's 82C59A must be
connected to the lower data byte (D7.g) for proper return
of the interrupt vector.

Bus Operation

The 80C286 uses a double frequency system clock (CLK
input) to control bus timing. All signals on the local bus
are measured relative to the system CLK input. The CPU
divides the system clock by 2 to produce the internal
processor clock, which determines bus state. Each
processor clock is composed of two system clock cycles
named phase 1 and phase 2. The 82C284 clock generator
output (PCLK) identifies the next phase of the processor
clock. (See Figure 21.)

[e—— ONE PROCESSOR CLOCK CYCLE ———~{

|-4——————— ONE BUS T STATE ———————po
PHASE 1 PHASE 2

|-=— OF PROCESSOR —’*‘—OF PROCESSOR —{

CLOCK CYCLE CLOCK CYCLE

w N/ N\

ONE SYSTEM
CLK CYCLE
PCLK / \ /
FIGURE 21. SYSTEM AND PROCESSOR CLOCK

RELATIONSHIPS

Six types of bus operations are supported: memory read,
memory write, I/0 read, I/0 write. interrupt acknowledge,
and halt/shutdown. Data can be transferred at a maximum
rate of one word per two processor clock cycles.

The 80C286 bus has three basic states: idle (T|), send
status (Tg), and perform command (Tg). The 80C286
CPU aiso has a fourth local bus state caited hold (TH). TH
indicates that the 80C286 has surrendered control of the
local bus to another bus master.in response to a HOLD
request.

Each bus state is one processor clock ong. Figure 22
shows the four 80C286 local bus states and allowed
transitions.

READY ¢ NEW CYCLE
FIGURE 22. 80C286 BUS STATES

Bus States

The idle (T)) state indicates that no data transfers are in
progress or requested. The first active state Tg is signaled
by status line Sq or Sg going LOW and identifying phase 1
of the processor clock. During Tg, the command
encoding, the address, and data (for a write operation) are
available on the 80C286 output pins. The 82C288 bus
controller decodes the status signais and generates
Muitibus compatible read/write command and local
transceiver control signals.

After Tg, the perform command (T¢) state is entered.
Memory or I/O devices respond to the bus operation
during Tc, either transferring read data to the CPU or
accepting write data. T states may be repeated as often
as necessary to ensure sufficient time for the memory or
1/Q device to respond. The READY signal determines
whether T is repeated. A repeated T state is called a
wait state.

During hold (TH), the 80C286 will fioat ail address, data,
and status output drivers enabiing another bus master to
use the local bus. The 80C286 HOLD input signal is used
to place the 80C286 into the Ty state. The 80C286 HLDA
output signal indicates that the CPU has entered TH.

Pipelined Addressing

The 80C286 uses a local bus interface with pipelined
timing to allow as much time as possible for data access.
Pipelined timing allows a new bus operation to be initiated
every two processor cycles, while allowing each
individual bus operation to last for three processor cycles.

BN 4302271 0063532 L93 mm

25

\

-

80C286

N

ax | l]_l | Lrj hTI L] L
o ~——=wmm/mf—5} | W
x«« e
. - —L

- T —_s
e P

VALID READ
OATA (M)

VALIO READ
DATA (N + 1)

Pipeling: valid address (N + 1) available in last phase of bus cycle (N).

FIGURE 23. BASIC BUS CYCLE

The timing of the address outputs is pipelined such that
the address of the next bus operation becomes available
during the current bus operation. Or, in other words, the
first clock of the next bus operation is overlapped with the
last clock of the current bus operation. Therefore, address
decode and routing logic can operate in advance of the
next bus operation.

External address latches may hold the address stabie for
the entire bus operation, and provide additional AC and
DC buffering.

The 80C286 does not maintain the address of the current
bus operation during all T states. Instead, the address
for the next bus operation may be emitted during phase 2
of any T¢. The address remains valid during phase 1 of
the first T to guarantee hold time, relative to ALE, for the
address latch inputs.

Bus Control Signals

The 82C288 bus controiler provides control signals;
address latch enable (ALE), Read/Write commands, data
transmit/receive (DT/ﬁ), and data enable (DEN) that
control the address latches, data transceivers, write
enable, and output enablte for memory and I/0O systems.

The Address Latch Enable (ALE) output determines when
the address may be latched. ALE provides at least one
system CLK period of address hold time from the end of
the previous bus operation until the address for the next
bus operation appears at the latch outputs. This address
hoid time is required to support Multibus and common
memory systems.

The data bus transceivers are controlied by 82C288
outputs Data Enable (DEN) and Data Transmit/Receive
(DT/R). DEN enables the data transceivers: while DT/R
controls tranceiver direction. DEN and DT/R are timed to
prevent bus contention between the bus master, data bus
transceivers, and system data bus transceivers.

Command Timing Controls

Two system timing customization options, command
extension and command delay, are provided on the
80C286 local bus.

Command extension allows additional time for external
devices to respond to a command and is analogous to
inserting wait states on the 80C86. External logic can
control the duration of any bus operation such that the
operation is only as long as necessary. The READY input
signal can extend any bus operation for as long as
necessary.

Command delay allows an increase of address or write
data setup time to system bus command active for any bus
operation by delaying when the system bus command
becomes active. Command delay is controlied by the
82C288 CMDLY input. After Tg, the bus controller
samples CMDLY at each failing edge of CLK. if CMDLY is
HIGH, the 82C288 will not activate the command signal.
When CMDLY is LOW, the 82C288 will activate the
command signal. After the command becomes active, the
CMDLY input is not sampled.

When a command is delayed, the available response time
from command active to return read data or accept write
data is less. To customize system bus timing, an address
decoder can determine which bus operations require
delaying the command. The CMDLY input does not affect
the timing of ALE, DEN or DT/R.

Figure 24 illustrates four uses of CMDLY. Example 1
shows delaying the read command two system CLKs for
cycle N-1 and no delay for cycle N, and example 2 shows
delaying the read command one system CLK forcycle N-1
and one system CLK delay for cycie N.

Bus Cycle Termination

At maximum transfer rates, the 80C286 bus alternates
between the status and command states. The bus status
signals become inactive after Tg so that they may cor-

BN 4302271 00bL3533 52T A

26

.

80C286

l READ CYCLE N—-1

I READ CYCLEN I ‘

"

Tc
_ I i

T i
N I N N

PROC
CLK

I

™
|~

[
XL

Az23-Ag

/

14 7
VA‘LID ADDR (N-1)

VALID ADDR N

/

/

/
Tem \ / / }/'

ALE \ . 4

!
i

EX1

\
A\

EX 2 '\

CMDLY

W/

FIGURE 24. CMDLY CONTROLS THE LEADING EDGE OF COMMAND SIGNAL

rectly signal the start of the next bus operation after the
completion of the current cycle. No external indication of
Tc exists on the 80C286 local bus. The bus master and
bus controller enter T¢ directly after Tg and continue
executing T¢ cycles until terminated by the assertion of
READY.

READY Operation

The current bus master and 82C288 bus controiler
terminate each bus operation simultaneously to achieve
maximum bus operation bandwidth. Both are informed in
advance by READY active (open-collector output from
82C284) which identifies the last T¢ cycle of the current
bus operation. The bus master and bus controller must
see the same sense of the READY signal, thereby
requiring READY to be synchronous to the system clock.

Synchronous Ready

The 82C284 clock generator provides READY synchroni-
zation from both synchronous and asynchronous sources
(see Figure 25). The synchronous ready input (SRDY) of
the clock generator is sampled with the falling edge of
CLK at the end of phase 1 ofeach T¢. The state of SRDY is
then broadcast to the bus master and bus controller via
the READY output line.

Asynchronous Ready

Many systems have devices or subsystems that are
asynchronous to the system clock. As a result, their ready
outputs cannot be guaranteed to meet the 82C284 SRDY
setup and hold time requirements. But the 82C284
asynchronous ready input (ARDY) is designed to accept
such signals. The ARDY input is sampled at the beginning
of each T cycle by 82C284 synchronization logic. This
provides one system CLK cycle time to resolve its value
before broadcasting it to the bus master and bus
controller.

ARDY or ARDYEN must be HIGH at the end of Tg. ARDY
cannot be used to terminate the bus cycle with no wait
states.

Each ready input of the 82C284 has an enable pin
(SRDYEN and ARDYEN) to select whether the current
bus operation will be terminated by the synchronous or
asynchronous ready. Either of the ready inputs may
terminate a bus operation. These enabtle inputs are active
low and have the same timing as their respective ready
inputs. Address decode logic usually selects whether the
current bus operation should be terminated by ARDY or
SRDY.

M 4302271 00bL3534 4bbL HE

27

80C286

Data Bus Control

Figures 26, 27, and 28 show how the DT/R, DEN, data bus,
and address signals operate for different combinations of
read, write, and idle bus operations. DT/R goes active
(LOW) for a read operation. DT/R remains HIGH before,
during, and between write operations.

The data bus is driven with write data during the second
phase of Tg. The delay in write data timing allows the read
data drivers, from a previous read cycle, sufficient time to
enter three-state OFF before the 80C286 CPU begins driv-
ing the local data bus for write operations. Write data will
always remain valid for one system clock past the last T
to provide sufficient hold time for Muitibus or other similar
memory or /O systems. During write-read or write-idle
sequences the data bus enters a high impedance state
during the second phase of the processor cycle after the
last Tc. In a write-write sequence the data bus does not
enter a high impedance state between T¢ and Ts.

Bus Usage

The 80C286 local bus may be used for several functions:
instruction data transfers, data transfers by other bus
masters, instruction fetching, processor extension data
transfers, interrupt acknowledge, and halt/shutdown.
This section describes local bus activities which have
special signals or requirements. Note that I/Q transfers
take place in exactly the same manner as memory
transfers (i.e. to the 80C286 the timing, etc. of an I/O
transfer is identical to a memory transfer).

HOLD and HLDA

HOLD and HLDA allow another bus master to gain control
of the local bus by placing the 80C286 bus into the TH
state. The sequence of events required to pass controi
between the 80C286 and another local bus master are
shown in Figure 29.

In this example, the 80C286 is initially in the T4 state as
signaled by HLDA being active. Upon leaving TH, as
signaled by HLDA going inactive, a write operation is
started. During the write operation another local bus
master requests the local bus from the 80C286 as shown
by the HOLD signal. After completing the write operation,
the 80C286 performs one T| bus cycle, to guarantee write
data hold time, then enters T as signaled by HLDA going
active.

The CMDLY signal and ARDY ready are used to start and
stop the write bus command, respectively. Note that
SRDY must be inactive or disabled by SRDYEN to
guarantee ARDY will terminate the cycle.

HOLD must not be active during the time from the leading
edge of RESET until 34 CLKs following the trailing edge of
RESET unless the 80C286 is in the Halt condition. To
ensure that the 80C286 remains in the Halt condition until

the processor Reset operation is complete, no interrupts
should occur after the execution of HLT until 34 CLKs
after the trailing edge of the RESET pulse.

LOCK

. The CPU asserts an active lock signal during Interrupt-
" Acknowledge cycles, the XCHG instruction, and during

some descriptor accesses. Lock is also asserted when the
LOCK prefix is used. The LOCK prefix may be used with

: the following ASM-286 assembly instructions; MOVS, INS

and OUTS. For bus cycles other than

Interrupt-
Acknowledge cycles, Lock will be active for the first and
subsequent cycles of a series of cycles to be locked. Lock
will not be shown active during the last cycle to be locked.

; For the next-to-last cycle, Lock will become inactive at the

end of the first TG regardless of the number of wait states
inserted. For Interrupt-Acknowledge cycles, Lock will be
active for each cycle, and will become inactive at the end

.of the first T¢ for each cycle regardless of the number of

wait-states inserted.

Instruction Fetching

The 80C286 Bus Unit (BU) will fetch instructions ahead of
the current instruction being executed. This activity is
catled prefetching. It occurs when the local bus would
otherwise be idle and obeys the following rules:

A prefetch bus operation starts when at least two bytes of
the 6-byte prefetch queue are empty.

The prefetcher normally performs word prefetches
independent of the byte alignment of the code segment
base in physical memory.

The prefetcher will perform only a byte code fetch
operation for control transfers to an instruction beginning
on a numerically odd physical address.

Prefetching stops whenever a control transfer or HLT
instruction is decoded by the IU and placed into the
instruction queue.

In real address mode, the prefetcher may fetch up to 6
bytes beyond the last control transfer or HLT instruction
in a code segment.

In protected mode, the prefetcher will never cause a
segment overrun exception. The prefetcher stops at the
last physical memory word of the code segment.
Exception 13 will occur if the program attempts to execute
beyond the last fuil instruction in the code segment.

If the last byte of a code segment appears on an even
physical memory address, the prefetcher will read the
next physical byte of memory (perform a word code
fetch). The value of this byte is ignored and any attempt to
execute it causes exception 13.

EN 4302271 003535 372 WA

28

80C286

MEMORY CYCLE N-1 | MEMORY CYCLEN ,
|
I I

T Tc ‘vi - Tc
b

w0

PSS st I e 1 e e e Y e e e O O

PROC CLK

oz - Ao wooon XL o soon TN vioro soom
Y \ / / /\ [/

oY ALY ///X/////////////////////////////Q// \w
sy AVENNR W
A TVLALNRNARNRRARTARRARNARARNRRARNARNRNARARNANAR AN NN/ 77272

(SEENOQTE 3.)

NOTES:

1. SRDYEN is active low

2. It SRDYEN is high, the state of SRDY will not effect READY
3. ARDYEN is active low

FIGURE 25. SYNCHRONOQUS AND ASYNCHRONOUS READY

1'I' w2 ! 1 I w2 w1 Tl" 2 ! B le =R i 1 TI 2 } 1 T(I———»z—’1
CLK[_]FIII_T_JLJLrJ h_f
J \ |

Az - Ag X{(« VALID ADDR /T X<<<< / VALID(ADDR : m@c
/ L)

T e 5T / ‘ / /
7 / 7 / /(/

-t mmmmm— = -/ SRR - %««(T) e

READ lgATlt /

\
— \
; /) \ - \\\ \
e \ I \'_/—L\——

|
DEN N \'
DR \-v\/"/ ’

FIGURE 26. BACK TO BACK READ-WRITE CYCLE

mm 4302271 0063536 239 1 2

80C286

WRITE CYCLE J READ CYCLE |
I

- XX X

3057

Dig ~Dp = o e = o = — = VALID WRITE DATA

DEN

DR

FIGURE 27. BACK TO BACK WRITE-READ CYCLE

l WRITE CYCLE N-1 I
Tg } Te

—I) | -2 I 1 ! 2 l 1 | 2

1 -2 N) “
e LML |
~
\\v \ \l \\
Aza-Ag W(VALID ADDR N-1 ‘\l @L | VALID ADDR N / W
; ! 7]
b / /

/ &
D15-00 = = = = = - - —- <<// VALID mm{ N-1 1/ m(VALIPI DATA N >>>>)- -
(\ \ \

MWTC

“ |

DR (HIGH)

FIGURE 28. BACK TO BACK WRITE-WRITE CYCLE

4302271 D0L3537 175 M 30

80C286

BUS HOLD
1 BUS HOLD ACKNOWLEDGE \ WRITE CYCLE ACKNOWLEDGE
BUSC_YCLETYPE | #1 | @2 | ¢s1T|H 02 I o1 T|H¢:| ot T|s¢a2 l ¢1T|coz | ¢1T|c ¢2| #1 T|c ¢2| o1 Ta' 62 | #1 T|H¢2 |
CLK 5
WW.&W
HOLD _ \ (SEE NOTE 4) . (SEE NOTE 6)
o i
HLDA \A\
3 {SEENOTE 1) (_S_E_E_NET_E 1)
§ SiesS0 T TTTTTYTT
" A23 -'Ao \\\\\\\\\\\\\\\\\\\\\\\\
M&)_, ---------------- P2l 2227 T T m——
COD/INTA (SEE NOTE 3)
i S s S -
015 -Dg m=—mmmmm—————————— VALID P —m—m————
[S T~ T,
8 NOT READY NOT READY (SEE NOTE 7
R AR) N1 NN
— NOT READ
CMDLY 77 1z, NN L i L 1 i
DELAY ENABLE {SEE NOTE 7)
MWTC \ /
§ VOH
§ DT/R
DEN _
- ALE / \
TS -STATUS CYCLE
TC - COMMAND CYCLE
NOTES: i

1. Status lines are held at a high impedance logic one by the 80C286 during a HOLD state.

2. Address, MAO and COD/INTA may start floating during any T depending on when internal 80C286 bus arbiter decides to release bus to external HOLD.
The float starts in 22 of T¢.

3. BHE and LOCK may start floating after the end of any T depending on when internal 80C286 bus arbiter decides to release bus to extemnal HOLD. The
float starts in o1 of T,

4. The minimum HOLD to HLDA time is shown. Maximum is one T} longer.

5. The earliest HOLD time is shown. It will always allow a subsequent memory cycle if pending is shown.

8. The minimum HOLD to HLDA time is shown. Maximum is a function of the instruction, type of bus cycle and other machine state (i.e., Interrupts, Waits, .
Lock, etc.).

7. Asynchronous ready allows termination of the cycle. Synchronous ready does not signai ready in this exampie. Synchronous ready state is ignored after
ready is signaied via the asynchronous input.

FIGURE 29. MULTIBUS WRITE TERMINATED BY ASYNCHRONOUS READY WITH BUS HOLD

B 4302271 00L3534 001 Wm 31

R A e

80C286

Processor Extension Transfers

The processor extension interface uses /O port
addresses 00F8(H), and 00FC(H) which are part of the /O
port address range reserved by Harris. An ESC instruction
with Machine Status Word bits EM = 0 and Tg = 0 will
perform 1/0O bus operations to one or more of these /0
port addresses independent of the value of IOPL and CPL.

ESC instructions with memory references enabie the CPU
to accept PEREQ inputs for processor extension operand
transfers. The CPU will determine the operand starting
address and read/write status of the instruction. For each
operand transfer, two or three bus operations are per-
formed, one word transfer with 1/O port address O0FA(H)
and one or two bus operations with memory. Three bus
operations are required for each word operand aligned on
an odd byte address.

Interrupt Acknowledge Sequence

Figure 30 illustrates an interrupt acknowledge sequence
performed by the 80C286 in response to an INTR input.
An interrupt acknowledge sequence consists of two INTA
bus operations. The first allows a master 82C53A Pro-
grammable Interrupt Controller (PIC) to determine which
if any of its slaves should return the interrupt vector. An
eight bit vector is read on Dg-D7 of the 80C286 during the
second INTA bus operation to select an interrupt handler
routine from the interrupt table.

The Master Cascade Enable (MCE) signal of the 82C288 is
used to enable the cascade address drivers during INTA
bus operations (See Figure 30) onto the local adress bus
for distribution to slave interrupt controllers via the
system address bus. The 80C286 emits the LOCK signal
(active LOW) during Tg of the first INTA bus operation. A
local bus “hold” request will not be honored until the end
of the second INTA bus operation.

Three idle processor clocks are provided by the 80C286
between INTA bus operations to allow for the minimum
INTA to INTA time and CAS (cascade address) out delay
of the 82C59A. The second INTA bus operation must
always have at least one extra T state added via logic
controlling READY. Ap3-Ag are in three-state OFF until
after the first T state of the second INTA bus operation.
This prevents bus contention between the cascade
address drivers and CPU address drivers. The extra T¢
state allows time for the 80C286 to resume driving the
address lines for subsequent bus operations.

Local Bus Usage Priorities

The 80C286 local bus is shared among several internal
units and external HOLD requests. In case of simulta-
neous requests, their relative priorities are:

(Highest) Any transfers which assert LOCK either
explicitly (via the LOCK instruction prefix) or
implicitly (i.e. some segment descriptor
accesses, an interrupt acknowledge se-
quence, or an XCHG with memory).

The second of the two byte bus operations
required for an odd aligned word operand.

extension data transfer.
Local bus request via HOLD input.

I

I

i

|

|

]

|

!

| The second or third cycle of a processor

|

I

I

I

| Processor extension data operand transfer via

| PEREQ input.

: Data transfer performed by EU as part of an
instruction.

(Lowest) An instruction prefetch request from BU. The

EU will inhibit prefetching two processor

clocks in advance of any data transfers to

minimize waiting by the EU for a prefetch to

finish.

Halt or Shutdown Cycles

The 80C286 externally indicates halt or shutdown
conditions as a bus operation. These conditions occur
due to a HLT instruction or muitiple protection exceptions
while attempting to execute one instruction. A halt or
shutdown bus operation is signalled when S, Sq, and
COD/INTA are LOW and MAO is HIGH. A{ HIGH
indicates halt, and A4 LOW indicates shutdown. The
82C288 bus controiler does not issue ALE, nor is READY
required to terminate a halt or shutdown bus operation.

During halt or shutdown, the 80C286 may service PEREQ
or HOLD requests. A processor extension segment
overrun during shutdown will inhibit further service of
PEREQ. Either NMI or RESET will force the 80C286 out of
either halt or shutdown. An INTR, if interrupts are
enabled, or a processor extension segment overrun
exception will atso force the 80C286 out of hait.

m u302271) pOL3539 Tud |

32

s

80C286

-t |NTA CYCLE 1
Ts Tc Tc T I T l n
ot boa2] a1 b w1 w2 Mmool]

«¢————|NTA CYCLE 2 ————0 i
Ts < Te Tc Ts I ‘
s Doz | owr 1 os2 ot w2 b 12

BUS CYCLE TYPE, Tc
—]

CLK

5150

[

MG, CODANTA

rocR _LZ\ WWWWW | T
: iseE o 4) </

{SEE NOTE 5,)
DON'T CARE)---.._.._..____<
D)) S Y e SRS o

= (SEE NOTE 1.)

_ PREVIOUS \ _ _ e o e d Y e e e e e —— e — _
Dis — Do waiTe cYCLE > D --------- VECTOR)- — —

, 80C286
»
8
]
Z
|
|
t
}
[
[
| %
(]
|Z

[o]
(]
1L

AN

e YO /777777 O /) O [
- \ -/
we [\ 2
M\ /A
o \ _/ \ -
o T\ [

1. Data is ignored.

2. First INTA cycle should have at least one wait state inserted to meet 82C59A minimum INTA pulse width.

3. Second INTA cycle must have at least one wait state inserted since the CPU will not drive Ag3-Ag, BHE and LOCK until after the first T state.
The CPU imposed one/clock delay prevents bus contention between cascade address buffer being disabled by MCE | and address outputs.

Without the wait state, the 80C286 address will not be valid for a memory cycle started immediately after the second INTA cycle. The 82C59A also
requires one wait state for minimum INTA pulse width.

4. LOCK is active for the first INTA cycle ta prevent the 82289 \from releasing the bus between INTA cycles in a multi-master system. LOCK isalso active
far the second INTA cycle.

5. Apa-Ag exits three-state OFF during ¢2 of the second T¢ in the INTA cycle.

FIGURE 30. INTERRUPT ACKNOWLEDGE SEQUENCE

B 4302271 0063540 767 WA
33

80C286

Vee
Vee
MROC MEMORY READ
WWTC MEMORY WRITE
GRT /O READ
BWEC 110 WRITE
WA INTERRUPT ACKNOWLEDGE
ALE
RESEY MCE ,————
DEN et = — = == ADVANCED MEMORY
I - cLK 1 cLK oTR | 44 == ~wi OECODE |- —= ANDIO CHIP SELECTS
= —— EFi 82C288 BUS r- - 4| r— 4 (OPTIONAL)
_L—— 7 | conrrowter | L1l 14 | r |
— | MAG 4 I L d
= i P F=++41 —_———-
SYNC READY ———{SADY _ RESET [T 1,_ 11 trt+—4
ENABLE ~——————-] SROYEN by ; | 11
ASYNC READY ————={ ARDY b RESET Wio | | 1] STB
ENABLE —————s-{ ARDYER OCR b= | [BE
bl ADDRESS BUS
82C284 ! : ‘w{CLK CODANTA |- — — 11 L
Gegt:gi:on] —— READY L 82ca2
1 | E:51 Agy=Ag >4 or 82C83H
— LATCH
b >0 AN
_——— —{ NMmI BHE
:- N —af HOLD
r=—= <«—{HLOA
1 CASq.2 Ao
Fe———— | EFRGR .
: | Cr—— - —aoey TR - TS |=— CHIP SELECT
I {PERcR lie
| || | | § r——— —*>|PEREQ WR
bl 80C286 RD
11 i CPU SPEN
- —L-‘-l-'—‘—'— b} 2 Do L 3 06 - D7 <:'“u - IRy
1 | 82C59A
| PROCESSOR i S INTERRUPT
EXTENSION r(CONTROLLER
: (OPTIONAL) | T ==
e o ——— 4
OF
82C86H OATA
J> or 82C87H aus
TRANS
CEIVER
.
FIGURE 31. BASIC 80C286 SYSTEM CONFIGURATION

System Configurations

The versatile bus structure of the 80C286 micro-system,
with a full complement of support chips, allows flexible
configuration of a wide range of systems. The basic
configuration, shown in Figure 31, is similar to an 80C86
maximum mode system. It includes the CPU plus an
82C59A interrupt controller, 82C284 clock generator, and
the 82C288 Bus Controller. The 80C86 latches (82C82
and 82C83H) and transceivers (82C86H and 82C87H)
may be used in an 80C286 microsystem.

As indicated by the dashed lines in Figure 31, the ability to
add processor extensions is an integral feature of 80C286
based microsystems. The processor extension interface
allows external hardware to perform special functions
and transfer data concurrent with CPU execution of other
instructions. Full system integrity is maintained because
the 80C286 supervises all data transfers and instruction
execution for the processor extension.

An 80C286 system which includes the 80287 numeric
processor extension (NPX) uses this interface. The
80C286/80287 system has all the instructions and data
types of an 80C86 or 80C88 with 8087 numeric processor
extension. The 80287 NPX can perform numeric calcula-

. tions and data transfers concurrently with CPU program
. execution. Numerics code and data have the same

integrity as all other information protected by the 80C286
protection mechanism.

The 80C286 can overlap chip select decoding and

. address propagation during the data transfer for the

previous bus operation. This information is latched into
the 82C82/83H's by ALE during the middle of a Tg cycle.
The latched chip select and address information remains
stable during the bus operation while the next cycle's
address is being decoded and propagated into the
system. Decode logic can be implemented with a high
speed PROM or PAL.

The optional decode logic shown in Figure 31 takes
advantage of the overlap between address and data of the
80C286 bus cycle to generate advanced memory and 1/0-
seiect signals. This minimizes system performance
degradation caused by address propagation and decode
delays. In addition to selecting memory and /O, the
advanced selects may be used with configurations
supporting local and system buses to enable the appro-
priate bus interface for each bus cycle. The COD/INTA

B 4302271 00L354) &ThL EE

34

’ 80C286

Y
Vee svsodEse |,
RESET INIT e
Vee CBRQ R ———
ATCWAYS MULTIBUS
—>1cBarcR 9PRO ™ | Bus ARBITRATION
50 BPAN |+——
& BUSY pe—>
READY CBRQ |@—>
1 CLK LOCK e
BUS ARBITER
Vee
AEN WMADC MEMORY READ
I,_m |_[MwTC MEMORY WRITE
iGRC VO READ
CmoLY owe = /O WRITE
. X2 X NTA INTERRUPT ACKNOWLEDGE
' 50 [»{ 56 ALE
HESET RES &7 | 5 MCE
READY READY DEN
l PCLK K 1 cLK oTA
= —ER 82C288 BUS
e | CONTROLLER
-E__ | MAG
- |
SYNC READY ————1 SROY RESET T
ENABLE —] SADYEN 1 {
ASYNC REAQY ——»| ZRDY I RESET M0 L.
AREVEN ! i
ENABLE ————»| L Tl d - 3€ ADDRESS BUS
82C284 | e CLK T ‘
cLock . RERDY CODINTAI—
GENERATOR I : s Ars- Ao > 82C83H
- =% 7 LATCH
———J —1 NMI BRE
T —» HOLD
: :' ~«—{ HLOA CASo s Ao
r———=-=-- —>-| ERHOR €5 |— cHiP sELECT
b | p————- —» BUSY INTR INT
Py e == PEACK INTA
I r
- r — — — -»{PEREQ ~={ WR
P ' o
gl 80C286
Py cPU SPEN
b, L R— LS -
i) 82C59A
PROCESSOR o INTERRUPT
: EXTENSION k R CONTROLLER
| (OPTIONAL) | N
b e o o o e o e F O—E
J‘> 82C87H '
yacemn DATA BUS
CEIVER
T

FIGURE 32. MULTIBUS SYSTEM BUS INTERFACE)

and M/10 signals are applied to the decode logic to
distinguish between interrupt, 1/0, code, and data bus
cycles.

By adding the 82289 bus arbiter chip the 80C286 provides
a Multibus system bus interface as shown in Figure 32.
The ALE output of the 82C288 for the Multibus bus is
connected to its CMDLY input to delay the start of
commands one system CLK as required to meet Multibus

address and write data setup times. This arrangement will
add at least one extra T¢ state to each bus operation
which uses the Muitibus.

A second 82C288 bus controller and additional latches
and transceivers could be added to the iocal bus of Figure
32. This configuration allows the 80C286 to support an
on-board bus for local memory and peripherals, and the
Multibus for system bus interfacing.

B 4302271 00bL3542 532 M

35

Specifications 80C286

A.C. Electrical Specifications Vg =+5V + 10%, Tp = 09C t0 +70°C (C80C286-12), Ta = -409C to +859C (I80C286-10, -12)
Vo = +5V £ 5%, Ta = 0°C to +70°C (CBOC286-16), Ta = ~409C to +859C (180C286-16)
A.C. Timings are Referenced to 0.8V and 2.0V Points of the Signals
as lllustrated in Datasheet Waveforms, Uniess Otherwise Specified.
10MHz 12.5MHz 16MHz
SYMBOL PARAMETER MIN | MAX | MIN | MAX | MIN | MAX UNIT TEST CONDITION
TIMING REQUIREMENTS
1 System Clock (CLK) Period 50 - 40 - 31 - ns
2 System Clock (CLK) LOW Time 12 - 11 - 7 - ns @1.0vV
3 System Clock (CLK) HIGH Time 16 - 13 - 11 - ns @ 3.6V
17 System Clock (CLK) RISE Time - 8 - 8 - 5 ns 1.0Vto 3.6V
18 System Clock (CLK) FALL Time - 8 - 8 - 5 ns 3.6V1o0 1.0V
4 Asynchronous Inputs SETUP Time 20 - 15 - 5 - ns (Note 1)
5 Asynchronous Inputs HOLD Time 20 - 15 - 5 - ns (Note 1)
6 RESET SETUP Time 19 - 10 - 10 - ns
7 RESET HOLD Time 0 - 0 - 0 - ns
8 Read Data SETUP Time 8 - 5 - 5 - ns
9 Read Data HOLD Time 4 - 4 - 3 - ns
10 READY SETUP Time 26 - 20 - 12 - ns
11 READY HOLD Time 25 - 20 - 5 - ns
20 Input RISE/FALL Times - 10 - 8 - 6 ns 0.8V to 2.0V
TIMING RESPONSES
12A Status/PEACK Active Delay 1 22 1 21 1 18 ns 1,{Notes 3,7)
12B Status/PEACK Inactive Delay 1 30 1 24 1 20 ns 1, (Notes 3, 8)
13 Address Valid Delay 1 35 1 32 1 27 ns 1, (Notes 2, 3)
14 Write Data Valid Delay 0 40 0 31 o] 28 ns 1, (Notes 2, 3)
15 Address/Status/Data Float Deiay 0 47 0 32 0 29 ns 2, (Note 5)
16 HLDA Valid Delay 0 47 0 25 0 25 ns 1, (Notes 3, 8)
19 Address Valid to Status SETUP Time 27 - 22 - 16 - ns 1, {Notes 3, 4)
NOTES: 1. Asynchronous inputs are INTR, NMI, HOLD, PEREQ, ERROR, and BUSY. This specification is given only for testing purposas, to assure
recognition at a specific CLK edge.
2. Delay from 1.0V on the CLK to 0.8V or 2.0V.
3. Output load: C|_ = 100pF.
4. Delay measured from address either reaching 0.8V or 2.0V (valid) to status going active reaching 0.8V or status going inactive reaching 2.0V.
5. Delay from 1.0V on the CLK to Float (no current drive) condition.
6. Delay from 1.0V on the CLK to 0.8V for min. (HOLD time) and to 2.0V for max. (inactive deiay).
7. Delay from 1.0V on the CLK 1o 2.0V for min. (HOLD time) and to 0.8V for max. {active delay).
8. Delay from 1.0V on the CLK to 2.0V.
A.C. Test Conditions
TEST CONDITION I (CONSTANT CURRENT SOURCE) CL
1 | 2.0mA | 100pF
2 -8mA (Vo to Float) 100pF
8mA (Vp|_to Float)

B3 4302271 0063543 479 1M

I A S

Specifications 80C286

Absolute Maximum Ratings Thermal Information (Typical)
SupplyVoltageot +8.0V Thermal Resistance X7 6y
Input, Output or /O Voltage Applied. GND -1.0V to Ve +1.0V PGAPackage 41°C/W 17°C/W
Storage Temperature Range -65°C to +150°C PLCCPackagec...... 36°Cc/wW N/A
Junction Temperature, PGA +175°C Package Power Dissipation
PLCC . e i, +150°C PGAPackageccoiimiiiiii i 1.22wW

Lead Temperature (Soldering, 108) +300°C PLCC Package at+70°C...............c.oooiinnn... 22w

(PLCC-Lead Tips Only) Derate Above +70°C.ol 27.8mw/C
GateCount. oot e 22,500

CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Voltage Range Operating Temperature Range
B0C286-10,-12. ...ttt +4.5V to +5.5V 180C286-10,-12,-16,-20 -40°C to +85°C
B0C286-16,-20,-25iiieinannn +4.75V to +5.25V C80C286-12,-16,-20,-25.covveernnnn 0°C to +70°C

DC Electrical Specifications Ve = +5V £ 10%, T = 0°C to +70°C (C80C286-12) Ve = +5V + 5%, T4 = 0°C to +70°C
(C80C286-16, -20, -25) Vg = +5V + 10%, T = -40°C to +85°C (I80C286-10, -12) Vg = +5V £ 5%,
Ta = -40°C to +85°C (180C286-16, -20)

PARAMETER SYMBOL TEST CONDITIONS MIN MAX UNITS
input LOW Voltage ViL -0.5 0.8 \
Input HIGH Voltage ViH 20 Ve +0.5 v
CLK Input LOW Voltage Vie -0.5 1.0 \'
CLK Input HIGH Voitage Vine 3.6 Ve +0.5 \
Qutput LOW Voltage VoL loL = 2.0mA - 0.4 \
Output HIGH Voitage Vor lon = -2.0mA Igy = -100pA 3.0 - \'

Vee -0.4 -
Input Leakage Current Iy Vin=GND or Ve -10 10 mA
Pins 29, 31, 57, 59, 61, 63-64
input Sustaining Current on BUSY and IsnH Vin = GND (See Note 5) -30 -500 mA
ERROR Pins .
Input Sustaining Current LOW IgHL Vg = 1.0V (See Note 1) 38 200 mA
Input Sustaining Current HIGH lgHH Vin = 3.0V (See Note 2) -50 -400 mA
Output Leakage Current lo Vo =GND orVee -10 10 mA
Pins 1, 7-8, 10-28, 32-34
Active Power Supply Current lecop 80C286-10 (See Note 4) - 185 mA
80C286-12 (See Noto 4) - 220 mA
80C286-16 (See Note 4) - 260 mA
80C286-20 (See Note 4) - 310 mA
80C286-25 (See Note 4) - 410 mA
Standby Power Supply Current lcess (See Note 3) - 5 mA
Capacitance T, = +25°C, All Measurements Referenced to Device GND

PARAMETER SYMBOL TEST CONDITIONS TYP UNITS
CLK Input Capacitance Ceik FREQ = 1MHz 10 pF
Other Input Capacitance Cin 10 pF
I/O Capacitance Cvo 10 pF

NOTES:
1. lgp should be measured after lowering Vy to GND and then raising to 1.0V on the foilowing pins: 36-51, 66, 67.
2. lgnun Should be measured after raising V\y to Ve and then lowering to 3.0V on the following pins: 4-6, 36-51, 66-68.
3. lcesp tested with the clock stopped in phase two of the processor clock cycle. Viy = Vg or GND, Ve = Vo (Max), outputs unloaded.
4

. lccoe measured at 10MHz for the 80C286-10, 12.5MHz for the 80C286-12, 16MHz for the 80C286-16, 20MHz for the 80C286-20, and
25MHz tor the 80C286-25. Vi = 2.4V or 0.4V, V¢ = Vi (Max), outputs unloaded.

5. lgy should be measured after raising V\y to Ve and then towering to GND on pins 53 and 54.

B 430227) 0063544 305 mm 36

Specifications 80C286

A.C. Electrical Specifications vgg = +5V 5%, T = 09C to +70°C (C80G286-20,-25), Tp = -40°C to +850C (I8OC286-20)

A.C. Timings are Referenced to the 1.5V Point of the Signals
as lllustrated in Datasheet Waveforms, Unless Otherwise Specified.

20MHz 25MHz
SYMBOL PARAMETER MIN MAX MIN MAX UNIT TEST CONDITION
TIMING REQUIREMENTS
1 System Clock (CLK) Period 25 - 20 - ns
2 System Clock (CLK) LOW Time 6 - 5 - ns @ 1.0V
3 System Clock (CLK) HIGH Time 9 - 7 - ns @ 3.6V
17 System Clock (CLK) RISE Time - 4 - 4 ns 1.0Vie 3.6V
18 System Clock (CLK) FALL Time - 4 - 4 ns 3.6Vio 1.0V
4 Asynchronous Inputs SETUP Time 4 - 4 - ns (Note 1)
5 Asynchronous Inputs HOLD Time 4 - 4 - ns {Note 1)
6 RESET SETUP Time 10 - 10 - ns
7 RESET HOLD Time (o} - (o} - ns
8 Read Data SETUP Time 3 - 3 - ns
9 Read Data HOLD Time 2 - 2 - ns
10 READY SETUP Time 10 - 9 - ns
11 READY HOLD Time 3 - 3 - ns
20 Input RISE/FALL Times - 6 - 6 ns 0.8Vio 2.0V
TIMING RESPONSES
12A Status/PEACK Active Delay 1 15 1 12 ns 1, (Notes 3, 6)
128 Status/PEACK Inactive Delay 1 16 1 13 ns 1, (Notes 3, 6)
13 Address Valid Delay 1 23 1 20 ns 1,(Notes 2, 3)
14 Write Data Valid Delay 0 27 o] 24 ns 1, (Notes 2, 3)
15 Address/Status/Data Fioat Delay 0 25 0 24 ns 2, (Note 5)
16 HLDA Valiid Delay 0 20 0 19 ns 1,(Notes 2, 3)
19 Address Valid to Status SETUP Time 9 - 12 - ns 1, (Notes 3, 4)

NOTES: 1. Asynchronous inputs are INTR, NM|, HOLD, PEREQ, ERROR, and BUSY. This specification is given only for testing purposes, 1o assure

recognition at a specific CLK adge.

[3N AN)

. Delay from 1.0V on the CLK o 1.5V.
. Qutput load: Cy = 100pF.

. Delay measured from address reaching 1.5V to status reaching 1.5V.
. Delay from 1.0V on the CLK 1o Float {no current drive) condition.

. Delay from 1.0V on the CLK to 1.5V.

A.C. Test Conditions

TEST CONDITION I (CONSTANT CURRENT SOURCE) CL
1 | 2.0mA| 100pF
2 ~-6mA (VoH to Float) 100pF
8mA (VgL to Float)

B 4302271 00b3545 241 WA

38

OS5

80C286

A.C. Specifications (Continued)

c80C286-12, -18
180C286-10, -12, -16

A.C. DRIVE AND MEASURE POINTS-CLK INPUT

4.0v

CLK INPUT

0.45v

4.0v

CLK INPUT /

0.45V

OTHER
DEVICE
INPUT

0.4v

3.6v

1.0v

0.8v

je— IDELAY (Max.) ——o]
e tDELAY (Min.)—‘

m

VICE
TPUT

So
<

NOTE: For A.C. testing, input rise and fall times are driven at 1ns per voit.

B 4302271 00L354b 145 WM

39

\Q\"

80C286

A.C. Specifications (continued)

C80C286-20, -25
180C286-20
A.C. DRIVE AND MEASURE POINTS-CLK INPUT

.6v

a0V
CLK INPUT
0.45V
a.0v
/ 36V
CLK INPUT
\ 1.0V 1.0V
0.45V
" SETUP o tHOLD -—1
20V oo
QLKA 2.0v :
OTHER QRS
DEVICE SRARAKXY
INPUT 99 % %%
LN 0.8y
0.9.9:9:%% %
0.4V
R TSR
00000000 020%0%0 %% % %0 %%
LK XK X XK XD
SR KK XXX
ICE
SuTPuT SR SRR 1.5V

NOTES: 1. Typical Output Rise/Fall Time is 6ns.

2. For A.C. testing, input rise and fall times are driven at 1ns per volts.

4302271 00635u? OLH -
40

Specifications 80C286

A.C. Electrical Specifications (Continued) 82C284 and 82¢288 Timing Specifications are given for reference oniy and no
guarantee is implied.

82C284 TIMING
10MHz 12.5MHz 18MHz
SYMBOL PARAMETER MIN | MAX | MIN | MAX | MIN | MAX | UNIT |TEST CONDITION
TIMING REQUIREMENTS
11 "SRDY/SRDYEN Setup Time 15 | - 15 | - 10 | - ns
12 SRDY/SRDYEN Hold Time 2 - 2 - 1 - ns
13 ARDY/ARDYEN Setup Time 5 - 5 - 3 - ns {Note 1)
14 ARDY/ARDYEN Hold Time 30 - 25 - 20 - ns | (Note1)
TIMING RESPONSES
19 PCLK Delay o] 20 0 16 o 15 ns Cp =75pF
loL =5mA
loH = 1mA
82C288 TIMING
10MHz 12.5MHz 16MHz
SYMBOL PARAMETER MIN | MAX { MIN | MAX | MIN | MAX UNIT |TEST CONDITION
TIMING REQUIREMENTS
12 CMDLY Setup Time 15 - 15 - 10 - ns
13 CMDLY Hold Time 1 - 1 - o - ns
TIMING RESPONSES
16 ALE Active Delay 1 16 1 16 1 12 ns
17 ALE Inactive Delay - 19 - 19 - 15 ns
19 DT/R Read Active Delay - 23 - 23 - 18 ns Cy = 150pF
20 DEN Read Active Delay - 21 - 21 - 16 ns loL = 16mA Max
21 DEN Read Inactive Delay 3 23 3 21 5 14 ns lo = 1mA Max
22 DT/R Read Inactive Delay 5 24 5 18 5 14 ns
23 DEN Write Active Delay - 23 - 23 - 17 ns
24 DEN Write Inactive Delay 3 23 3 23 3 15 ns
29 Command Active Delay from CLK 3 21 3 21 3 15 ns Ci =300pF
30 Command Inactive Delay from CLK 3 20 3 20 3 15 ns loL = 32mA Max

NOTE 1. These times are given for testing purposes to ensure a predetarmined action.

B 43022

7?1 00b35u48 T50 WA

41

Lo

80C286

T

" READ CYCLE

WRITE CYCLE

ILLUSTRATED WITH ZERO ILLUSTRATED WITH ONE
WAIT STATES WAIT STATE
Ts Tc Ts Te
92 @ 02 @1 #2 o1 Y] o *2 81

Waveforms
BUS CYCLE TYPE
p—
. Vou
CLK
- Voo
§iesD
A23-Ap
@ | mfiD, coD iNTA
&
= —
BHE, LOCK
D15-Dg

820284

‘ /
19 wj‘
2l @
VALID ADDRESS VALID ADDRESS Y At ik s
=~ ~®
VALID CONTROL VALID CONTRORR////////////, C
@~
<@k ~®
............................. - .- VALID WRITE DATA

/3
(129~

/N

READ
(T{ OR Tg)

$2 o1

/

READY ;AANAAAEAIANNAANAANNAARN AN

VALID READ DATA

@J‘ ‘—

-@E |
B

T 1111/

T

TN

oo
’
L4

!
| i

82c288

MROC

DT/R

ol = 29)
#(.

__.

A

(SEE NOTE - 1)

l

s

-@

@ =~

MAJOR CYCLE TIMING

NOTE: 1. The modified timing is due to the CMDLY signal being active.

B 4302271 00b3549 997

42

80C286

Waveforms (Continued)

80C286 RESET INPUT TIMING AND

80C286 ASYNCHRONOUS INPUT SIGNAL TIMING SUBSEQUENT PROCESSOR CYCLE PHASE
B v)
8US CYCLE TYPE | T ' :
Vel X | CLK .
CLk fw ver —
ve_|@9),. 09 :
PCLK ! RESET
(SEE NOTE 1) |
®

INTR, NMI
HOLD, PEREQ
(SEE NDTE 2)

[

i

e v/

@) "= ® |

ERAOR, BUSY
{SEE NOTE 2} i

5@#

NOTES: NOTE:

1. PCLK indicates which processor cycle phase will occur on the next When RESET meets the setup time shown, the next CLK will start or repeat
CLK. PCLK may not indicate the correct phase until the tirst cycle is @81 of a processor cycle.
performed.

2. These inputs are asynchronous. The setup and hold times shown
assure recognition for testing purposes.

EXITING AND ENTERING HOLD

BUS CYCLE TYPE Ta TSORT) i TH
— VCH #1 #2 #1 »2 o1 *2 o1 *2
veL '
HLDA I | "'
| (SEE NOTE 4)
B ‘—. oTE]
Se& _________ | A\ - ; —o (15— (SEENOTE3)
----- FT 7 1 T
g PEACK —weem -} l £6 ﬁr'_ —————————
o % IF NPX TRANSFER A,(SEE NOTE 1)
BHE, LOCK e f— @
A723 - Ag, (SEE NOTE 5) 55
- EIEE N T
con/iINTA y (SEE NOTE 2}
a9
: -1 é@:s_:"»%r
15-0f ~~———— e e KL ., = mmme e m e
- —s
VALID
~ IF WRITE
=
8 PCLK / \ / AN ;/—_/_—_/—
SN
= —
NOTES:

1. These signals may not be driven by the 80C286 during the time shown. The worst case in terms of latest float time is shown.
. The data bus will be driven as shown if the last cycte before T| in the diagram was a write Tg.

. The 80C286 puts its status pins in a high impedance logic one state during TH.

. For HOLD request set up to HLDA, refer to Figure 29.

. BHE and LOCK are anven at this time but will not become valid until Tg,

DA WN

. The data bus will remain in a high impedance state if a read cycle is performed.

mm u30227?)3 0063550 L09
43

80C286

Waveforms (Continued)

———
80C286 PEREQ/PEACK TIMING FOR ONE TRANSFER ONLY

BUSCYCLETYPE
ven ! ez

CLK L/N

Ve

STe 3D

A23-Ag

Ts

170 READ IF PROC. EXT. TO MEMORY

M/EMDRV R

LI+

O

Ts Tc

[} LY ot 82

MEMORY WRITE IF PROC. E

EAD |F MEMORY T0 PROC. EXT-/_IID WRITE IF MEMORY TO PROC. EXT.

[}

XT. TO MEMORY l

MEMORY ADDRESS IF PROC. EXT, TO M|
ADDRESS 00FA(H) IF MEMORY TO PRO

EMORY TRANSFER /0 PORT
C. EXT. TRANSFER

M0, COD iNTA

AV

4 A

PEACK \

— @

L (SEE NOTE -1

—

t 1/0 PORT ADDRESS 00OFA(H) if PROC. EXT. TO MEMORY TRANSFER
MEMORY ADDRESS IF MEMORY TO PROC. EXT, TRANSFER

4

le(SEE NOTE - 2) =

%@)

ASSUMING WORD-ALIGNED MEMORY OPERAND., IF QDD ALIGNED, 30C286 TRANSFERS TO/FROM MEMORY BYTE-AT-A-TIME WITH TWO MEMORY CYCLES.

NOTES:

1. PEACK always goes active during the first bus operation of a processor extension data operand transfer sequence. The first bus operation will be either
a memory read at operand address or i/O read at port address 00FA(H). *_

2. To prevent a second processor extension data operand transfer, the worst case maximum time (Shown above) is 3 x (D - 12Amax. * Omin.- The actual,
configuration dependent, maximum time is: 3 x @ - 12Amay. - Dmin, * N x2x (. N is the number of extra T states added to either the first or second

bus operation of the processor extension data operand transfer sequence.

INITIAL 80C286 PIN STATE DURING RESET

-

BUS CYCLE TYPE
VeH 22 ot T 02 o1 Tx 82 o1 T 02 o1 T »2
ANV e Ve Wa Wa e Ve Wa W S .
—(8) (SEE NOTE - 1) (7),
—E’ 1o ST o s
§i oS . T 55
AR UNKNOWN o
Azs;-:—: UNKNOWN — j_ *
_ B
con/%(: UNKNOWN {_ -
e =i
LocK UNKNOWN)*l %
— @ (SEE NOTE - 3)
BATA) N IV NI 390 1IN) 22D PV Y NI I I DY DD Y0 o === == $rmmmmmman
-—-
HLDA UNKNOWN J;_

NOTES:

1. Setup time for RESET ! may be violated with the consideration that ¢1 of the processor clock may begin one system CLK period later,
2. Setup and hold times for RESET . must be met for proper operation, but RESET | may occur during &1 or ¢2.
3. The data bus is only guaranteed to be in a high impedance state at the time shown.

B 4302271 0063551 545 WM

44

- 80C286

BYTE 1 BYTE 2

BYTE 3 BYTE 4 BYTES BYTE6
7 6 5§ 4 3 2 1 0 7 6 5 4 3 210
[T LTI e T R N 1
i
LOW DISP/DATA HIGH DISP/DATA LOW DATA HIGH DATA '
OPCODE dlwjmod reg r/m | | !
_______ e e ok - e e ——— o J
3 4\ Ir 3
L REGISTER OPERAND/REGISTERS TO USE IN OFFSET CALCULATION
REGISTER OPERAND/EXTENSION OF OPCODE
REGISTER MODE/MEMORY MODE WITH DISPLACEMENT LENGTH
WORD/BYTE OPERATION
DIRECTION IS TO REGISTER/DIRECTION IS FROM REGISTER
OPERATION (INSTRUCTION) CODE
A. SHORT OPCODE FORMAT EXAMPLE
BYTE 1 BYTE 2 BYTE3 BYTE 4 BYTE 5
75543210755‘321075543210
LTIy o N b
LOW DISP HIGH DISP
LONG OPCODE mod| reg m | |
——————— [QT P U |

B. LONG OPCODE FORMAT EXAMPLE

FIGURE 33. 80C286 INSTRUCTION FORMAT EXAMPLES

80C286 Instruction Set Summary
Instruction Timing Notes

The instruction clock counts listed below establish the
maximum execution rate of the 80C286. With no delays in
bus cycles, the actual clock count of an 80C286 program
will average 5% more than the calculated clock count, due
to instruction sequences which execute faster than they
can be fetched from memory.

To calculate elapsed times for instruction sequences,
multiply the sum of all instruction clock counts, as listed
in the table below, by the processor clock period. An
12.6MHz processor clock has a clock period of 80
nanoseconds and requires an 80C286 system clock (CLK
input) of 25MHz.

Instruction Clock Count Assumptions

1. The instruction has been prefetched, decoded and is
ready for execution. Control transfer instruction clock
counts include all time required to fetch, decode, and
prepare the next instruction for execution.

Bus cycles do not require wait states.

There are no processor extension data transfer or local
bus HOLD requests.

4. No exceptions occur during instruction execution.

B 4302271 00b3552 441 W i

80C286

Instruction Set Summary Notes

Addressing displacements selected by the MOD field are
not shown. If necessary they appear after the instruction
fields shown.

Above/below refers to unsigned vaiue

Greater refers to more positive signed values

Less refers to less positive (more negative) signed values

if d =1, then “to” register; if d =0 then “from” register

if w =1, then word instruction; if w = 0, then byte
instruction

if s =0, then 16-bit immediate data form the operand

if s = 1 then an immediate data byte is sign-extended to
form the 16-bit operand

x don'’t care

z used for string primitives for comparison with ZF
FLAG

It two clock counts are given, the smaller refers to a
register operand and the larger refers to a memory
operand

* —

= add one clock if offset calculation requires summing
3 elements

n = number of times repeated

m = number of bytes of code in next instruction

Level (L)—Lexical nesting level of the procedure

The following comments describe possible exceptions,
side effects and allowed usage for instructions in both
operating modes of the 80C286.

Real Address Mode Only

1. This is a protected mode instruction. Attempted
execution in real address mode wiil result in an
undefined opcode exception (6).

2. A segment overrun exception (13) will occur if a word
operand reference at offset FFFF(H) is attempted.

3. This instruction may be executed in real address mode
to initialize the CPU for protected mode.

4. The IOPL and NT fields will remain 0.

5. Processor extension segment averrun interrupt (9) will
occur if the operand exceeds the segment limit.

Either Mode

6. An exception may occur, depending on the value of
the operand.

7. LOCK is automatically asserted regardless of the
presence or absence of the LOCK instruction prefix.

8. LOCK does not reamain active between all operand
transfers.

Protected Virtual Address Mode Only

9. A general protection exception (13) will occur if the
memory operand cannot be used due to either a
segment limit or access rights violation. If a stack
segment limit is violated, a stack segment overrun
exception (12) occurs.

10. For segment load operations, the CPL, RPL and DPL
must agree with privilege rules to avoid an exception.
The segment must be present to avoid a not-present
exception (11). If the SS register is the destination
and a segment not-present violation occurs, a stack
exception (12) occurs.

11. All segment descriptor accesses in the GDT or LDT
made by this instruction will automatically assert
LOCK to maintain descriptor integrity in multiproces-
sor systems.

12. JMP, CALL, INT, RET, IRET instructions referring to
another code segment will cause a general protection
exception (13) if any privilege rule is violated.

13. A general protection exception (13) occurs if CPL #0.

14. A general protection exception (13) occurs if CPL >
10PL.

15. The IF field of the flag word is not updated if CPL >
IOPL. The IOPL field is updated only if CPL = 0.

16. Any violation of privilege rules as applied to the
selector operand does not cause a protection
exception; rather, the instruction does not return a
result and the zero flag is cleared.

17. If the starting address of the memory operand
violates a segment limit, or an invalid access is
attempted, a general protection exception (13} will
occur before the ESC instruction is executed. A stack
segment overrun exception (12) will occur if the stack
limit is violated by the operand’s starting address. If a
segment limit is violated during an attempted data
transfer then a processor extension segment overrun
exception (9) occurs.

18. The destination of an INT, JMP, CALL, RET or IRET
instruction must be in the defined limit of a code
segment or a general protection exception (13) will
occeur.

B 4302271 00b3553 318 WA

46

pat

. 21

80C286

80C286 Instruction Set Summary

CLOCK COUNT COMMENTS
Protected Protected
FUNCTION FORMAT Real Victusd Real Victusi
Address Address
Mode i Mode
Mode Mode
DATA TRANSFER
V =Move:
egister to Register/Memory b 000100w [modreg (/m] 23" 23 2 9
Register/memory to register I 1000101w I mod reg r/m_] 2,5° 2,5* 2 9
Immediate to register/memory l 110001 1w l mod 000 r/m l data I dataifw = 1 23° 23 2 9
jmmediate 10 register [1011w reg [data] data if w=1 I 2 2
Memory to accumulator I 1010000w I addr-low l addr-high] 5 5 2 9
Accumulator to memory I 1010001 w l addr-low [addr-high I 3 3 2 9
Register/memory to segment register | 10001110 l mod 0 reg ¢/m] 2,5 17,19¢ 2 9,10,11
[Begment register to register/ memory boo 01100 [mod 0 reg r/nn 2,3° 23 2 9
PUSH = Push:
Memory |11111111|mod110r/m] 5 s* 2 9
Fegister 01010 reg 3 3 2 9
ment register 000reg110 3 3 2 9

N
formmered

0110100

data | owawswo I o b o3} wil e
01100000 - o bt wbh e e

{
&

[10001111 |modooo0 r/m| 5 5° 2 9

01011 reg 5 5 2 9
000reg111 (reg=01) 5 20 2 9,10,11

A= Pop Al ’ 01100001 | o w] ow e bioe

3
@
3
&
@
g

CHG = Exhcange:

egister/memory with register [100001 1w]mod reg r/m 3,5 3.5° 2,7 79

egister with accumuiator 10010 reg 3 3

N = Input from:

Fixed port [1110010wl port 5 5 14
b o s | s "
QUT = Qutput to:

Fixed port I1110011WJ port 3 3 14
bl po s | s y
LAT= Tnganslate byte to AL 5 5 9

10001101

——

A = Load EA to register mod reg t/ rrq 3° 3

= Load pointer to DS 11000101 lmodreg r/m] (mod=11) 7 2a1° 2 9,10,11

11000100

——

ES = Load pointer to ES mod reg r/m] {(mod+1) 7 21° 2 9,101

Shaded areas indicate instructions not available in 80C86/88 microsystems.

271 00b355H 254 1

m 4302 47

80C286

80C286 Instruction Set Summary (Continued)

* CLOCK COUNT COMMENTS
FUNCTION FORMAT Row |Promstid] pogy [Protaciad
Address Address
Mode Addrese Mode Address
. Mode Mode
DATA TRANSFER (Continued)
LAHF Load AH with flags 2 2
HF = Store AH into flags 2 2
SHF = Push flags 3 3 2 9
PF =Pop flags - 5 5 24 9,15
RITHMETIC
DD = Add:
Reg/memory with register to either |;oo 0000dw I modreg r/m | 2.7 2,7 2 9
jmmediate to register/memory I 100000sw] mod 000 r/m I data ldataifsw = 011 3.7 37 2 9
Jmmediate to accumulator | 0000010w l data | dataifw=1 l 3 3
ADC = Add with carry:
Reg/memory with register to either | 000100dw l modreg f/m I 2,7 a7 2 9
mmediate to register/memory | 100000sw l mod010 r/m I data l dataifsw = 01 3,7° 3,7° 2 9
immediate to accumulator l 0001010w l data dataifw=1 I 3 3
NC = Increment:
egister/ memory [1111111w l mod000 r/m] 2,7 2,7° 2 9
egister 2 2
UB = Subtract:
Reg/memory and register to either I 001010dw l mod reg r/m1 27 2,7* 2 9
mmediate from register/memory b 00000sw rmod 101 r/m l data ldata itsw = 01 37 37° 2 9
Jmmediate from accumulator 1 0010110w ! data l data if w=1 l 3 3
BB = Subtract with borrow:
Fleg/memory and register to aither l 000110dw [mod reg r/m] 2,7 2,7 2 9
mmediate from register/memory l 100000sw l mod011 r/m] data l dataifsw=01 3,7 37° 2 9
Immediate from accumulator l 0001110w r data l data if w=1] 3 3
DEC = Decrement
Register/memory [1111111w lmod 001 r/ml 2,7* 2,7 2 9
Register 2 2
ICMP = Compare
Register/memory with register LD 011101w]mod reg r/ m] 2,8* 2,6°* 2 9
Register with register/memory | 0011100w]:\od reg r/m] 27° 2,7 2 9
rmmediate with register/ memory I 100000sw 1mod 111 r/mI data Ldata ifsw=01] 3,6° 3.6° 2 9
lmmediate with accumulator I 0011110w I data l data if w= ﬂ 3 3
NEG = Change sign b 11101 1w lmod01 1 r/m] 2 7° 2 7
AAA = ASCIt adjust for add 3 3
DAA = Decimal adjust for add 3 3

4302271 00L3555 1490 W

48

80C286

80C286 Instruction Set Summary (Continued)

CLOCK COUNT COMMENTS
Protected Protected
FUNCTION FORMAT Real Virtual Real Victual
Address Address
Address Address
Mode Mode
RITHMETIC (Continued)
= ASCI| adjust for subtract 00111111 3 3
DAS = Decimal adjust for subtract 00101111 3 3
MUL = Muitiply (unsigned): L111101 1w Imod100 r/m
Register-Byte 13 13
Register-Word 21 21
Memory-Byte 16* 16° 2 9
Memory-Word 24° 24° 2 9
MUL = Integer muitiply (signed): [1111011w [mod10t r/m
Register-Byte 13 13
Register-Word 1 21
Memory-Byte 16* 16° 2 9
Memory-Word 24" 24 2 9
wumm [ot1010¢e1 [modrag wm| cew | demws=0 || 2m2e | at3e 2
PIV = Divide (unsigned) l 111101 1w [mod 110 r/;|
Register-Byte 14 14 6 6
Register-Word 22 22 6 3
Memory-Byte 17¢ 17° 26 6,9
Memory-Word 25° 25° 2.6 8.9
JDIV =integer divide (signed) L1 111011w {mod11t r/m
Register-Byte 17 17 6 <]
Register-Word 25 25 8 6
Memory-Byte 20°* 20° 26 6.9
Memory-Word 28° 28° 26 6,9
AAM = ASC!| adjust for multiply u1o1o1oo] 0000101 ﬂ 18 16
AAD = ASCII adjust for divide [11010101 [00001010 l 14 14
CBW == Convert byte to word - 10011000 2 2
CWD = Convert word to double word 10011001 2 2
LOGIC
ift/Rotate instructions:
egister/Memory by 1 [1101000w |mod 1T r/ml 2,7¢ 2,7¢ 2 9
egister/Memory by CL L1 10100tw]EodﬂT mﬂ) 5+n8+n*|5+n8+n* 2 9
/Memary by Count }1100000w ImdTTT wml ook -} . A5+asen|sensene 2 - ¢
7T instruction
000 AOL
001 ROR
010 RCL
011 RCR
100 SHL/SAL
101 SHR
111 SAR

Shaded areas indicate instructions not availabie in 80C86/88 microsystems.

Bm 4302271 00b3556 027 WA

49

80C286

80C286 Instruction Set Summary (Continued)

CLOCK COUNT COMMENTS

Lunc‘nou FORMAT Real m Real w
Address Address
Mode Mode
ITHMETIC (Continued)
= And:
Reg/memory and register 10 either [001000dw | modreg r/m | 27 27 2 ®
meedhtetorogisterlmonmy [1000000w I mod 100 r/m I data l dataifw=1 J 37 37 2 9
Jmmediate to accumulator IT)MOMOwl data Idmifw=-1] 3 3
TEST = And function to flags, no resutt:
Register/memory and register l 1000010w [modrog r/ﬂ 28 26° 2 9
mmediate data and register/memory | 1111011 w] mod 000 r/ml data | damitw=1 || 3s° 36° 2 9
mmediate data and accumuiator I 1010100w l data Ldataifw=1 l 3 3
=0r:

Reg/memory and register to aither r000010dw | mod reg r/m‘ 2,7° _2,7° 2 9
mmediate to register/ memory l 1000000w I mod001 r/m l data l dataifw=1] 3.7 3,7 2 8
mmediate to accumulator l 0000110wl data Idatai!w=1l 3 3
XOR = Exclusive or:
Reg/memory and register to either LOOHOOdw l mod reg r/m] 2.7 27 2 9
mmediate to register/memory [1000000w l mod110 r/ml data [dataifw = 1] 37 3,7 2 8
mmediate to accumulator I 0011010w l data ldataifw=1| 3 3

OT = Invert register/ memory I 1111011 w [mod010 r/m I 2,7 2,7° 2 8

RING MANIPULATION:

DVS =Move byte/word 5 5 2 9
MPS = Compare byte/word 8 8 2 9
BCAS = Scan byte/word 7 7 2 9
ODS = Load byte/wd t0 AL/AX 2 9
BTOS = Stor byte/wd from AL/A 2 9

" s

epeated by count in CX

OV = Move string l 11110011 l 1010010wJ 5+4n 5+4n 2 9
MPS = Compare string | 11110012 l 1010011w4| 5+9n 5+9n 28 89
BCAS = Scan string r1111001z l1010111w| 5+8n 5+8n 28 8.8
0DS = Load string [11110011] 1010110w] 5+4n | S5+4n 28 8.9
BTOS = Store string [11110011|1o1o1o1w|

Shaded areas indicate instructtons not available in 80C86/88 microsystems.

B 4302271 0063557 Th3 HA

50

80C286

80C286 Instruction Set Summary (Continued)

CLOCK COUNT COMMENTS
Protected Protected
FUNCTION FORMAT Real Real
Virtual Virtual
Address Address
Address Address
Mode Mode
ICONTROL TRANSFER
JCALL =Cail:
Direct within segment [11101000 l disp-low l disp-high I 7+m 7+m 2 18
Registef/r'nemon/ l 11111111 lmod010 r/rnl 7+m11+m*| 7+m, 11+ m* 28 89,18
fndirect within segment
Direct intersegment [10011010 [segment offset l 13+m 26+m 2. 11,1218
Protected Mode Only (Direct intersegment): I segment selector I
Via call gate to same privilege lével 41+m 8,11,12,18
Via call gate to different privilage level, no parameters 82+m 8,11,12,18
Via call gate to different privilege level, x parameters 86 +4x+m 8,11,12,18
Via TSS 177+m 8,11,12,18
Via task gate 182+m 8.,11,12,18
Indirect intersegment 11111111 lmod01 1 o/m| (mod=11) 16+m 29+m* 2 8,9,11,12,18
Protected Mode Only (Indirect Intersegment):
Via call gate to same privilege level 44+ m* 8,9,11,12,18
Via call gate to different privilege level, no parameters 83 +m” 89,11,12,18
Via call gate to different privilege level, x parameters 90+4x +m* 8,9,11,12,18
Via TSS 180+ m* 89,11,12,18
Via task gate 185+ m*® 8,9,11,12,18
WMP = Unconditionat jump:
Short/long I 11101011 [disp-low I 7+m 7+m 18
Direct within segment I 11101001 ’ disp-low T disp-high l 7+m 7+m 18
Register/ memory indirect within segment I 1T1111111 lmod100 r/ml 7+m11+m* | 7+m 11+m* 2 9,18
Direct intersegment I 11101010 [segment offset] 11+m 23+m 11,12,18
Protected Mode Only (Direct intersegment): L segment selector I
Via call gate to same privilege ievel 38+m 8,11,12,18
ViaTSS 175+m 8,11,12,18
Via task gate 180+ m 8,11,12,18
Indirect intersegment t1111111 lmod101 r/m (mod+11) 15+m* 26+m* 2 8,9,11,12,18
Protected Mode Only (Indirect Intersegment):
Via call gate to same privilege level 41+m* 8,9,11,12,18
Via TSS 178+ m* 8,9,11,12,18
Via task gate 183+ m* 8,9,11,12,18
RET = Return from CALL:
[Within segment ‘ 11000011 l 1M+m 11+m 2 8,9,18
IWithin seg adding immed to SP L 11000010 I data-low l data-high —l 11+m 11+m 2 8.9,18
intersegment 15+m 25+m 2 8,9,11,12,18
Intersagment adding immediate to SP | 11001010 l data-low l data-high l 15+m 2 8,9,11,12,18
Protected Mode Only (RET):
To different privilege level 55+m 9,11,12,18

B 4302271 0063558 977 MM 51

80C286

80C286 Instruction Set Summary (Continued)

INT = Interrupt:
Type specified
Type 3

INTO = Intarrupt on overflow

[11001101 | type |

11001100

23+m

23+m
24 +mor3

(3ifno

intertupt)

Qifno
interrupt)

278
278

268

CLOCK COUNT COMMENTS
fruncTiON FORMAT Reat | PUecRd | poat | Provected
Address Address
Mode Addvess Mode Address
Mode Mode
CONTROL TRANSFER (Continued)

- [VE£9Z= Jump on equai zero [01110100 | disp | 7+mor3 | 7+mor3 18
JL/INGE = Jump on less/not greater or equal L01 111100 [disp—| 7+mor3 7+mor3 18
JLE/JNG = Jump on less or equal/not greater [01111110 [diap—l 7+mor3 7+mord 18
JB/JINAE = Jump on below/not above or equal L01110010 I disp] 7+mor3 7+mor3 18
JBE/JNA = Jump on below or equal/not above [01110110 I disp I 7+mor3 7+mor3 18
JP/JPE = Jump on parity/parity even I 01111010 [disp] 7+mord 7+mor3 18
JO = Jump on overflow Lo111oooo [disp] 7+mor3 | 7+mor3 |= 18
JS = Jump on sign I 01111000 I disp —l 7+ mor3 7+mor3 18
JNE/JNZ = Jump on not equal/not zero l 01110101 [disp] 7+mor3 7+mor3 '18
JNL/JGE = Jump on not less/greater or equal I 01111101 ’ disp j 7+mord 7+mor3 18
JNLE/JG = Jump on not less or equal/greater l 01111111 I disp] 7+mord 7+mor3 18
JNB/JAE = Jump on not below/above or equal [01110011 I disp] 7+mor3 7+mor3 18
JNBE/JA = Jump on not below or equal/above l 01110111 l disp] 7+mord 7+mor3 18
JNP/JPO = Jump on not par/par odd [01111011 1 disp] 7+mord 7+mor3 ©18
JNO = Jump on not overflow I 01110001 I disp —l 7+mor3 7+mor3 18
JNS = Jjump on not sign | 01111001 I disp] 7 +mord 7+mor3 18
LOOP =Loop CX times [11100010 [disp I 8+mor4 8+mord 18
LOOPZ/LOOPE = Loop while zero/equal I 11100001 l dispj 8+mor4 8+mor4d 18
LOOPNZ/LOOPNE = Loop while not zero/equal l 11100000 [disp] 8+mor4 8+mor4 18
JCXZ = Jump on CX zero L11100011 l

Shaded areas indicate instructions not availabie in 80C86/88 microsystems.

g 4302271 006

3559 836 W

52

. v-d

80C286

80C286‘ Instruction Set Summary (Continued)

CLOCK COUNT COMMENTS
Protected Protected
FUNCTION FORMAT Resl Resl
Virtual Virtual
Address Address
Mode Mode
Mode Mode
CONTROL TRANSFER (Continued)
Protected Mode Only:
Via interrupt or trap gate to same privilege level 40+ m 7.8,11,12,18
Via interrupt or trap gate to fit different privilege level 78+ m 7.8,11,12,18
Via Task Gate 167+m 7.8,11,12,18
RET = interrupt retum 17+m 3t+m 24 8,9,11,12,15,18
tected Mode Only:
To different privilege level 55+m 8,9,11,12,1518
To different task (NT=1) 189+ m 8,9,11,12,18
PROCESSOR CONTROL
L = Cloarcary 2 2
MC = Complament cary 2 2
BTG~ Set cary 2 2
LD = Clear direction 2 2
BTD= Set roction 2 2
L1 = Clear interrupt 11111010 3 3 14
ST1= Set interrupt 2 2 14
LT=Hal 2 2 0
AIT = Wait 3 3
OCK = Bus lock prefix 11110000
SC = Processor Extension Escape I 11011TTY I modLLL r/m 9-20* 9-20° 58 8,17
(TTT LLL are opcode to processor extension)
001 reg 110

g 4302271 0063560 556 53

80C286

80C286 Instruction Set Summary (Continued)

CLOCK COUNT COMMENTS
Protected Protected
FUNCTION FORMAT ot vierwst | PO v

Shaded areas indicate instructions not available in 80C86/88 microsystems.

B 4302271 0063561 494 M 54

80C286

80C286 Machine Instruction Encoding Matrix

w/i'm wy/s'q w/+'m | wa'g
gdin | gdig | ais alo 1S 170 018 210 Ldioj1dio| OWD | LTH | 2d3H | 43y ¥o01 4
m'xa | a'xa | wxa | a'xa p'is P P p M q M q 34001 | INDOO1
1No | Lno NI NI dWr | dnr | awr | Tivo | tno | 1no NI N1 zXor | 4001 |/zd001 [/ZNdoo|| 3
2 9 S ¥ £ 4 1 0 19'a | 109 m q
083 083 053 0%3 0s3 083 083 083 | 1VIX avy | Wyv | wus | wus Hiys uys a
(Aue) | € edAy I (dS+)'t w/rm | warq (dS+) 1'm 1'q
134 | OINI | 1INt AN 134 134 | 3Avat |g3iN3| aow | Aow | san s 134 13y s mus bo]
1a-! 15-1 dg-! ds-! Xg-t xQa- X0~ Xy~ HE-t | Ha-t | HO-t | Hv-! Ig-1 1a- 0! Tt
AOW | AOW | AOW | AOW | Aow | AOW | AOWN | AOW | Ao | AOW | AOW | AOW | AOW | AOW AOW AOW g
e'r'm e'l'q w-xy | w-y | xy-w Ty-w
Msvos|asvos msaot|8saoi1|msols|asors| 1831 | 1531 |MSIWO| 8SdNDIMSAOWIBSAOW| AOW | AOW AOW AOW v
Pl 1a IS d€ ds X8 xa X0 XY
4Hv1 | dHVYS | 4dOd [4HSNd] Livm | 1TvO | OMO | maD | DHOX | DHOX | DHOX | DHOX | DHOX | DHOX | DHOX OHOX 6
w4 wi/s'y'as warisf wavym | warg fwaym fwayrg | warm wyl'q Wi/t m w/l'q wy/)'st wy/rq wi/a'm wy'q
dOd | AOW | v31 | AOW | Aow | row | Aow | Ao | DHOX | DHOX | 1531 | 1S3L | pewun | peww) | pawiw] | paww 8
or ONI | 39r | 3ONF | Odr 3dr vr VNP ZNr zZr avr | awvnr
/AINE | /3 | AN aly /dNF /dr SNP sr | /aane | /380 | /3NC /ar /8NP /ar ONr or L
1'w/v'q I'q rw'ym m
MSLNOJESLNO | MSNI § aSNI | 1NWI | HSNd | 1NW! | HSNd 1ddY [aNNog| vdOd | YHSNd 9
Ta] IS dg ds b] xa X0 Xy le] 1S dg dS xg xa X0 Xy
dOd | d0d | dOd | dOd | dOd | dOd | dOd | dOd | HSNd | HSNd | HSNd | HSNd | HSNd | HSNd | HSNd HSNd S
1a 1S 49 ds b] xa XD Xy 1a 1S dg ds xg xa XD Xy
930 | 93 | o3a | 23g | 093a | 03a@ | 030 | Q23a ONI ONI ONI ONI ONI ONI ONI ONI v
sQ= rm g warm | wavg | weys | way'q S8= er'm erq | warrm | wavg | way'm |owayg
Syy | 938 [dWD | dWD | WD | dWD | dWD | dWO | Y¥Y [D3IS | HOX | HOX | HOX | HOX HOX HOX £
0= m ra fuwaerm | worg fwaem fwayq S3= er’'m er'q [warm | wavg | waps |owayq
sva | 93as |ans | eans | ans | 8ns | ans | ans | wvvO | ©3Ss | aNv | anv | anv | anv any aNv z
sa sa 'm g | waym | wavag fways jwayal ss SS BI'm erg |waem | weeva boways |owyryq
dOod | HSNd | 99s | 88s a8s aas gas 888 | d4Od | HSNd | 2av | oav | oav | Doav oav oav 1
[Sie) "M Q. warm | wevqluaym |woyg| o S3 S3 BI'M er'q | waym | wayg | wapm |owsryg
U WYAd| HSNd | HO HO Ho HO HO HO dod | HSnd | aav | gav | oav | aav aav aav 0
4 3 a 2 a v 6 8 L 9] v £ 2 8 0
H
ol

B 4302271 00b35k2 320 M

55

80C286

80C286 Machine Instruction Encoding Matrix (Continued)

where:
mod r/m 000 001 010 011 100 101 110 111
Immed ADD OR ADC SBB AND sus XOR CMP
Shift ROL ROR RCL RCR | SHL/SAL| SHR - SAR
Grp 1 TEST - NOT NEG MUL IMUL Div DIV
Grp 2 INC DEC CALL CALL JMP JMP PUSH -
id lid id l,ig

PVAM 0 SLOT STR LLDT LTR VERR VERW — —
PVAM 1 SGDT SIDT LGDT LIDT SMSw - LMSW -
PVAM 2 LAR
PVAM 3 LSL
PVAM 6 CLTS

b = byte operation m = memory

d = direct r/m = EA is second byte

f = from CPU reg si = short intrasegment

i = immediate sr = segment register

ia = immediate to AX t = to CPU register

id = indirect v = variable

is = immediate byte sign extension w = word operation

| = long ie. intersegment Z =zero

n = 2nd. byte of PVAM instruction

Footnotes

The Effective Address (EA) of the memory operand is
computed according to the mod and r/m fields:

if mod = 11 then r/m is treated as a REG field
if mod = 00 then DISP = 0", disp-low and disp-high are absent

if mod = 01 then DISP =disp-low sign extended to 16 bits, disp-
high is absent

if mod = 10 then DISP = disp-high: disp-low

if r/m =000 then EA = (BX) + (Sl) + DISP
if r/m =001 then EA = (BX) + (Dt) + DISP
it r/m =010 then EA = (BP) + (SI) + DISP
if r/m = 011 then EA = (BP) + (DI) + DISP
it r/m =100 then EA = (SI) + DISP

if /m = 101 then EA = (DI) + DISP .

if r/m =110 then EA + (BP) + DISP*

if r/m =111 then EA = (BX) + DISP

DISP follows 2nd byte of instruction (before data is
required)

* except if mod =00 and r'm = 110 then EQ = disp-high:
disp-low.

Segment Override Prefix

001reg110

reg is assigned according to the following:

REG SEGMENT REGISTER
00 ES
01 CSs
10 8§
11 DS

REG is assigned according to the following table:

16-BIT (w=1) 8-BIT (w=10)
000 AX 000 AL
001 CX 001 CL
010 DX 010 DL
011 BX on BL
100 SP 100 AH
101 BP 1N CH
110 Si 110 DH
111 DI m BH

The physical addresses of all operands addressed by the
BP register are computed using the SS segment register.
The physical addresses of the destination operands of the
string primitive operations (those addressed by the DI
register) are computed using the ES segment, which may
not be overridden.

M 4302271 00L3563 2L7 MW

56

80C286

Ceramic Pin Grid Array Packages (CPGA)

(G68.B MIL-STD-1835 CMGA3-P68D (P-AC)

e 68 LEAD CERAMIC PIN GRID ARRAY PACKAGE
D INCHES MILLIMETERS
s1 (o1} symBoL| MIN MAX MIN MAX | NOTES
A - A 0215 | 0.345 | 546 8.76 -
TTOOPEEREEOEE®O®DT A1 | 0070 | 015 | 178 | 368 3
CEEEEERIPEEEEE b 0.016 | 00215 0.41 0.55 B
CEOEROEEIEEO®EO®E b1 0.016 | 0.020 | 041 0.51 -
OEE e -B-] b2 0.042 | 0058 | 1.07 1.47 4
q '0]0]0) '0]0]0) C - 0.080 - 2.03 -
S E OO D 1.140 | 1.180 | 2896 | 29.97 ;
e + P00 [E] = D1 1.000 BSC 25.4BSC -
E 1140 | 1.180 | 28.96 | 29.97 :
g % 8 % g g E1 1.000 BSC 25.4 BSC -
oYololololo|lololoYololo]) 0.100 BSC 2.54 BSC 6
0.008 REF 0.20 REF -
R IOSOOJOLONO XPTR CRPTI MET R
© @ @ROOB®OEBEH Q1 0.025 | 0060 | 0.64 1.52 5
o - E 3 0.000 BSC 0.00 BSC 10
INDEX CORNER 01 S1 0003 | - 008 | - -
SEE NOTE 9 _ M 11 11 1
see N - | 121 .] 121 2
NOTE 7 — Rev. 0 6/20/95
- A — SECTIONB-B © NOTES:
D[o.008 B 1. “M" represents the maximum pin matrix size.
si‘%’é’%&"&ﬁ?ﬁ 2. “N” represents the maximum allowable number of pins. Number
e of pins and location of pins within the matrix is shown on the

pinout listing in this data sheet.
4—‘ Al 3. Dimension “A1” includes the package body and Lid for both cav-

ity-up and cavity-down configurations. This package is cavity
down. Dimension “A1” does not include heatsinks or other
attached features.

4. Standoffs are required and shall be located on the pin matrix di-
agonals. The seating plane is defined by the standoffs at dimen-

L
b2
sion “Q1".
I 5. Dimension “Q1” applies to cavity-down configurations only.
[——

6. Ali pins shall be on the 0.100 inch grid.
7. Datum C is the plane of pin to package interface for both cavity

SECTION A-A up and down configurations.
) b 8. Pin diameter includes solder dip or custom finishes. Pin tips shall
A & [T0030 ®]c A®l B®| have a radius or chamfer.
1 Y1 30010 @ c 9. Corner shape (charpfer, notph, radius, etc.) may vary from Fhat
T | =] T shown on the drawing. The index corner shall be cleariy unique.
{ 10. Dimension “S” is measured with respect to datums A and B.
4L ‘<, . 11. Dimensioning and tolerancing per ANSI Y14.5M-1982.
o < A1 12. Controlling dimension: INCH.
> i—«— [#}]

M 4302271 00L3S5LY 1IT3I MR 57

80C286

Plastic Leaded Chip Carrier Packages (PLCC)

0.042 (1.07)

hh il LS 0.042 (1.07) NG68.95 (JEDEC MS-018AE ISSUE A)
0.048 ‘;;f(’moemmﬂ 0T56(142) O] 0004(010) [C | g5 FAD PLASTIC LEADED CHIP CARRIER PACKAGE
— 0.050 (1.27) TP ggi_: f‘,’fi} R INCHES MILLIMETERS
I“ € symMBoL| MIN MAX MIN MAX | NOTES
7 Y A 0.165 0.180 4.20 457 -
_rc \,O r Al 0.080 0.120 2.29 3.04 -
d —— D2/E2
a D 0.985 0.995 | 25.02 25.27 -
J_'E + E1E G_ D1 0.950 0.958 | 24.13 24.33 3
O D2 0.441 0.469 | 11.21 11.91 4,5
g DYE2
i) e E 0.985 0.995 [25.02 2527 -
g N VIEW “A
0 E1 0.950 0.958 | 24.13 24.33 3
u......u.....u............-l Y 0020051 | E2 0441 | 0469 | 1121 | 11.91 4,5
L“ o1 | MIN N 68 68 6
| D Rev. 1 3/95
0.020 (0.51) MAX SEAuNG
3PLCS 0.026 (0.66)
0.032 (0.81) 0.013 (0.33)
* !l! 0.021 (0.53)
d . l 0.025 (0.64)
0.045(1.14) 5| | wWN
MIN VIEW “A” TYP.
NOTES:

1. Controlling dimension: INCH. Converted millimeter dimensions
are not necessarily exact.

2. Dimensions and tolerancing per ANSI Y14.5M-1982.

3. Dimensions D1 and E1 do not include mold protrusions. Allow-
able mold protrusion is 0.010 inch (0.25mm) per side.

4, To be measured at seating plane contact point.
5. Centeriine to be determined where canter leads exit plastic body.
6. “N” is the number of terminal positions.

B 4302271 0063565 03T B 28

