Advance Information

MPC7457EC Rev. 4, 11/2003

MPC7457 **RISC Microprocessor** Hardware Specifications

MOTOROLA intelligence everywhere^{**} digital dna^{**}

This hardware specification is primarily concerned with the PowerPC[™] MPC7457; however, unless otherwise noted, all information here also applies to the MPC7447. The MPC7457 and MPC7447 are implementations of the PowerPC microprocessor family of reduced instruction set computer (RISC) microprocessors. This hardware specification describes pertinent electrical and physical characteristics of the MPC7457. For functional characteristics of the processor, refer to the MPC7450 RISC Microprocessor Family User's Manual.

This hardware specification contains the following topics:

Торіс	Page
Section 1.1, "Overview"	1
Section 1.2, "Features"	2
Section 1.3, "Comparison with the MPC7455, MPC7445, MPC7450, MPC and MPC7441"	C7451, 7
Section 1.4, "General Parameters"	10
Section 1.5, "Electrical and Thermal Characteristics"	10
Section 1.6, "Pin Assignments"	33
Section 1.7, "Pinout Listings"	35
Section 1.8, "Package Description"	41
Section 1.9, "System Design Information"	47
Section 1.10, "Document Revision History"	61
Section 1.11, "Ordering Information"	63

To locate any published updates for this hardware specification, refer to the website at http://www.motorola.com/semiconductors.

1.1 Overview

The MPC7457 is the fourth implementation of the fourth generation (G4) microprocessors from Motorola. The MPC7457 implements the full PowerPC 32-bit architecture and is targeted at networking and computing systems applications. The MPC7457 consists of a processor core, a 512-Kbyte L2, and an internal L3 tag and controller that support a glueless backside L3 cache through a dedicated high-bandwidth interface. The MPC7447 is identical to the MPC7457 except that it does not support the L3 cache interface.

Features

Figure 1 shows a block diagram of the MPC7457. The core is a high-performance superscalar design supporting a double-precision floating-point unit and a SIMD multimedia unit. The memory storage subsystem supports the MPX bus protocol and a subset of the 60x bus protocol to main memory and other system resources. The L3 interface supports 1, 2, or 4 Mbytes of external SRAM for L3 cache and/or private memory data. For systems implementing 4 Mbytes of SRAM, a maximum of 2 Mbytes may be used as cache; the remaining 2 Mbytes must be private memory.

Note that the MPC7457 is a footprint-compatible, drop-in replacement in a MPC7455 application if the core power supply is 1.3 V.

1.2 Features

This section summarizes features of the MPC7457 implementation of the PowerPC architecture.

Major features of the MPC7457 are as follows:

- High-performance, superscalar microprocessor
 - As many as four instructions can be fetched from the instruction cache at a time.
 - As many as three instructions can be dispatched to the issue queues at a time.
 - As many as 12 instructions can be in the instruction queue (IQ).
 - As many as 16 instructions can be at some stage of execution simultaneously.
 - Single-cycle execution for most instructions
 - One instruction per clock cycle throughput for most instructions
 - Seven-stage pipeline control
- Eleven independent execution units and three register files
 - Branch processing unit (BPU) features static and dynamic branch prediction
 - 128-entry (32-set, four-way set-associative) branch target instruction cache (BTIC), a cache of branch instructions that have been encountered in branch/loop code sequences. If a target instruction is in the BTIC, it is fetched into the instruction queue a cycle sooner than it can be made available from the instruction cache. Typically, a fetch that hits the BTIC provides the first four instructions in the target stream.
 - 2048-entry branch history (BHT) with two bits per entry for four levels of prediction—not-taken, strongly not-taken, taken, and strongly taken
 - Up to three outstanding speculative branches
 - Branch instructions that do not update the count register (CTR) or link register (LR) are often removed from the instruction stream.
 - Eight-entry link register stack to predict the target address of Branch Conditional to Link Register (bclr) instructions
 - Four integer units (IUs) that share 32 GPRs for integer operands
 - Three identical IUs (IU1a, IU1b, and IU1c) can execute all integer instructions except multiply, divide, and move to/from special-purpose register instructions
 - IU2 executes miscellaneous instructions including the CR logical operations, integer multiplication and division instructions, and move to/from special-purpose register instructions

Features

- Five-stage FPU and a 32-entry FPR file
 - Fully IEEE 754-1985-compliant FPU for both single- and double-precision operations
 - Supports non-IEEE mode for time-critical operations
 - Hardware support for denormalized numbers
 - Thirty-two 64-bit FPRs for single- or double-precision operands
- Four vector units and 32-entry vector register file (VRs)
 - Vector permute unit (VPU)
 - Vector integer unit 1 (VIU1) handles short-latency AltiVec[™] integer instructions, such as vector add instructions (for example, vaddsbs, vaddsbs, and vaddsws)
 - Vector integer unit 2 (VIU2) handles longer-latency AltiVec integer instructions, such as vector multiply add instructions (for example, vmhaddshs, vmhraddshs, and vmladduhm)
 - Vector floating-point unit (VFPU)
- Three-stage load/store unit (LSU)
 - Supports integer, floating-point, and vector instruction load/store traffic
 - Four-entry vector touch queue (VTQ) supports all four architected AltiVec data stream operations
 - Three-cycle GPR and AltiVec load latency (byte, half-word, word, vector) with one-cycle throughput
 - Four-cycle FPR load latency (single, double) with one-cycle throughput
 - No additional delay for misaligned access within double-word boundary
 - Dedicated adder calculates effective addresses (EAs)
 - Supports store gathering
 - Performs alignment, normalization, and precision conversion for floating-point data
 - Executes cache control and TLB instructions
 - Performs alignment, zero padding, and sign extension for integer data
 - Supports hits under misses (multiple outstanding misses)
 - Supports both big- and little-endian modes, including misaligned little-endian accesses
- Three issue queues FIQ, VIQ, and GIQ can accept as many as one, two, and three instructions, respectively, in a cycle. Instruction dispatch requires the following:
 - Instructions can be dispatched only from the three lowest IQ entries—IQ0, IQ1, and IQ2
 - A maximum of three instructions can be dispatched to the issue queues per clock cycle
 - Space must be available in the CQ for an instruction to dispatch (this includes instructions that are assigned a space in the CQ but not in an issue queue)
- Rename buffers
 - 16 GPR rename buffers
 - 16 FPR rename buffers
 - 16 VR rename buffers
- Dispatch unit
 - Decode/dispatch stage fully decodes each instruction

- Completion unit
 - The completion unit retires an instruction from the 16-entry completion queue (CQ) when all instructions ahead of it have been completed, the instruction has finished execution, and no exceptions are pending.
 - Guarantees sequential programming model (precise exception model)
 - Monitors all dispatched instructions and retires them in order
 - Tracks unresolved branches and flushes instructions after a mispredicted branch
 - Retires as many as three instructions per clock cycle
- Separate on-chip L1 instruction and data caches (Harvard architecture)
 - 32-Kbyte, eight-way set-associative instruction and data caches
 - Pseudo least-recently-used (PLRU) replacement algorithm
 - 32-byte (eight-word) L1 cache block
 - Physically indexed/physical tags
 - Cache write-back or write-through operation programmable on a per-page or per-block basis
 - Instruction cache can provide four instructions per clock cycle; data cache can provide four words per clock cycle
 - Caches can be disabled in software.
 - Caches can be locked in software.
 - MESI data cache coherency maintained in hardware
 - Separate copy of data cache tags for efficient snooping
 - Parity support on cache and tags
 - No snooping of instruction cache except for **icbi** instruction
 - Data cache supports AltiVec LRU and transient instructions
 - Critical double- and/or quad-word forwarding is performed as needed. Critical quad-word forwarding is used for AltiVec loads and instruction fetches. Other accesses use critical double-word forwarding.
- Level 2 (L2) cache interface
 - On-chip, 512-Kbyte, eight-way set-associative unified instruction and data cache
 - Fully pipelined to provide 32 bytes per clock cycle to the L1 caches
 - A total nine-cycle load latency for an L1 data cache miss that hits in L2
 - PLRU replacement algorithm
 - Cache write-back or write-through operation programmable on a per-page or per-block basis
 - 64-byte, two-sectored line size
 - Parity support on cache
- Level 3 (L3) cache interface (not implemented on MPC7447)
 - Provides critical double-word forwarding to the requesting unit
 - Internal L3 cache controller and tags
 - External data SRAMs
 - Support for 1-, 2-, and 4-Mbyte (MB) total SRAM space
 - Support for 1- or 2-MB of cache space
 - Cache write-back or write-through operation programmable on a per-page or per-block basis

- 64-byte (1-MB) or 128-byte (2-MB) sectored line size
- Private memory capability for half (1 MB minimum) or all of the L3 SRAM space for a total of 1-, 2-, or 4-MB of private memory
- Supports MSUG2 dual data rate (DDR) synchronous burst SRAMs, PB2 pipelined synchronous burst SRAMs, and pipelined (register-register) late write synchronous burst SRAMs
- Supports parity on cache and tags
- Configurable core-to-L3 frequency divisors
- 64-bit external L3 data bus sustains 64 bits per L3 clock cycle
- Separate memory management units (MMUs) for instructions and data
 - 52-bit virtual address; 32- or 36-bit physical address
 - Address translation for 4-Kbyte pages, variable-sized blocks, and 256-Mbyte segments
 - Memory programmable as write-back/write-through, caching-inhibited/caching-allowed, and memory coherency enforced/memory coherency not enforced on a page or block basis
 - Separate IBATs and DBATs (eight each) also defined as SPRs
 - Separate instruction and data translation lookaside buffers (TLBs)
 - Both TLBs are 128-entry, two-way set-associative, and use LRU replacement algorithm
 - TLBs are hardware- or software-reloadable (that is, on a TLB miss a page table search is performed in hardware or by system software)
- Efficient data flow
 - Although the VR/LSU interface is 128 bits, the L1/L2/L3 bus interface allows up to 256 bits
 - The L1 data cache is fully pipelined to provide 128 bits/cycle to or from the VRs
 - L2 cache is fully pipelined to provide 256 bits per processor clock cycle to the L1 cache
 - As many as eight outstanding, out-of-order, cache misses are allowed between the L1 data cache and L2/L3 bus
 - As many as 16 out-of-order transactions can be present on the MPX bus
 - Store merging for multiple store misses to the same line. Only coherency action taken (address-only) for store misses merged to all 32 bytes of a cache block (no data tenure needed).
 - Three-entry finished store queue and five-entry completed store queue between the LSU and the L1 data cache
 - Separate additional queues for efficient buffering of outbound data (such as castouts and write-through stores) from the L1 data cache and L2 cache
- Multiprocessing support features include the following:
 - Hardware-enforced, MESI cache coherency protocols for data cache
 - Load/store with reservation instruction pair for atomic memory references, semaphores, and other multiprocessor operations
- Power and thermal management
 - 1.3-V processor core
 - The following three power-saving modes are available to the system:
 - Nap—Instruction fetching is halted. Only those clocks for the time base, decrementer, and JTAG logic remain running. The part goes into the doze state to snoop memory operations on the bus and back to nap using a QREQ/QACK processor-system handshake protocol.

- Sleep—Power consumption is further reduced by disabling bus snooping, leaving only the PLL in a locked and running state. All internal functional units are disabled.
- Deep sleep—When the part is in the sleep state, the system can disable the PLL. The system
 can then disable the SYSCLK source for greater system power savings. Power-on reset
 procedures for restarting and relocking the PLL must be followed on exiting the deep sleep
 state.
- Thermal management facility provides software-controllable thermal management. Thermal
 management is performed through the use of three supervisor-level registers and an
 MPC7457-specific thermal management exception.
- Instruction cache throttling provides control of instruction fetching to limit power consumption
- Performance monitor can be used to help debug system designs and improve software efficiency
- In-system testability and debugging features through JTAG boundary-scan capability
- Testability
 - LSSD scan design
 - IEEE 1149.1 JTAG interface
 - Array built-in self test (ABIST)—factory test only
- Reliability and serviceability
 - Parity checking on system bus and L3 cache bus
 - Parity checking on the L2 and L3 cache tag arrays

1.3 Comparison with the MPC7455, MPC7445, MPC7450, MPC7451, and MPC7441

Table 1 compares the key features of the MPC7457 with the key features of the earlier MPC7455, MPC7445, MPC7450, MPC7451, and MPC7441. To achieve a higher frequency, the number of logic levels per cycle is reduced. Also, to achieve this higher frequency, the pipeline of the MPC7457 is extended (compared to the MPC7400), while maintaining the same level of performance as measured by the number of instructions executed per cycle (IPC).

Microarchitectural Specs	MPC7457/MPC7447	MPC7455/MPC7445	MPC7450/MPC7451/ MPC7441						
Basic Pipeline Functions									
Logic inversions per cycle	18	18	18						
Pipeline stages up to execute	5	5	5						
Total pipeline stages (minimum)	7	7	7						
Pipeline maximum instruction throughput	3 + Branch	3 + Branch	3 + Branch						
	Pipeline Resourc	es							
Instruction buffer size	12	12	12						
Completion buffer size	16	16	16						
Renames (integer, float, vector)	16, 16, 16	16, 16, 16	16, 16, 16						

Table 1	Microarchitecture	Comparison
---------	-------------------	------------

Microarchitectural Specs	MPC7457/MPC7447	MPC7455/MPC7445	MPC7450/MPC7451/ MPC7441
	Maximum Execution Th	roughput	
SFX	3	3	3
Vector	2 (any 2 of 4 units)	2 (any 2 of 4 units)	2 (any 2 of 4 units)
Scalar floating-point	1	1	1
Out-of-C	Order Window Size in Ex	kecution Queues	
SFX integer units	1 entry \times 3 queues	1 entry \times 3 queues	1 entry \times 3 queues
Vector units	In order, 4 queues	In order, 4 queues	In order, 4 queues
Scalar floating-point unit	In order	In order	In order
	Branch Processing Re	sources	
Prediction structures	BTIC, BHT, link stack	BTIC, BHT, link stack	BTIC, BHT, link stack
BTIC size, associativity	128-entry, 4-way	128-entry, 4-way	128-entry, 4-way
BHT size	2K-entry	2K-entry	2K-entry
Link stack depth	8	8	8
Unresolved branches supported	3	3	3
Branch taken penalty (BTIC hit)	1	1	1
Minimum misprediction penalty	6	6	6
Execut	ion Unit Timings (Laten	cy-Throughput)	
Aligned load (integer, float, vector)	3-1, 4-1, 3-1	3-1, 4-1, 3-1	3-1, 4-1, 3-1
Misaligned load (integer, float, vector)	4-2, 5-2, 4-2	4-2, 5-2, 4-2	4-2, 5-2, 4-2
L1 miss, L2 hit latency	9 data/13 instruction	9 data/13 instruction	9 data/13 instruction
SFX (aDd Sub, Shift, Rot, Cmp, logicals)	1-1	1-1	1-1
Integer multiply ($32 \times 8, 32 \times 16, 32 \times 32$)	3-1, 3-1, 4-2	3-1, 3-1, 4-2	3-1, 3-1, 4-2
Scalar float	5-1	5-1	5-1
VSFX (vector simple)	1-1	1-1	1-1
VCFX (vector complex)	4-1	4-1	4-1
VFPU (vector float)	4-1	4-1	4-1
VPER (vector permute)	2-1	2-1	2-1
	MMUs		
TLBs (instruction and data)	128-entry, 2-way	128-entry, 2-way	128-entry, 2-way
Tablewalk mechanism	Hardware + software	Hardware + software	Hardware + software
Instruction BATs/data BATs	8/8	8/8	4/4

Table 1. Microarchitecture Comparison (continued)

Microarchitectural Specs	MPC7457/MPC7447	MPC7455/MPC7445	MPC7450/MPC7451/ MPC7441
	L1 I Cache/D Cache Fe	eatures	
Size	32K/32K	32K/32K	32K/32K
Associativity	8-way	8-way	8-way
Locking granularity	Way	Way	Way
Parity on I cache	Word	Word	Word
Parity on D cache	Byte	Byte	Byte
Number of D cache misses (load/store)	5/1	5/1	5/1
Data stream touch engines	4 streams 4 streams 4		4 streams
	On-Chip Cache Feat	tures	
Cache level	L2	L2	L2
Size/associativity	512-Kbyte/8-way	256-Kbyte/8-way	256-Kbyte/8-way
Access width	256 bits	256 bits	256 bits
Number of 32-byte sectors/line	2	2	2
Parity	Byte	Byte	Byte
	Off-Chip Cache Sup	port ¹	
Cache level	L3	L3	L3
Total SRAM space supported	1 MB, 2MB, 4 MB ²	1 MB, 2 MB	1 MB, 2 MB
On-chip tag logical size (cache space)	1MB, 2MB	1MB, 2MB	1MB, 2MB
Associativity	8-way	8-way	8-way
Number of 32-byte sectors/line	2, 4	2, 4	2, 4
Off-Chip data SRAM support	MSUG2 DDR, LW, PB2	MSUG2 DDR, LW, PB2	MSUG2 DDR, LW, PB2
Data path width	64	64	64
Direct mapped SRAM sizes	1 MB, 2 MB, 4MB	1 MB, 2 MB	1 MB, 2 MB
Parity	Byte	Byte	Byte

Table 1. Microarchitecture Comparison (continued)

Notes:

1. Not implemented on MPC7447, MPC7445, or MPC7441

2. The MPC7457 supports up to 4 MB of SRAM, of which a maximum of 2 MB can be configured as cache memory; the remaining 2 MB may be unused or configured as private memory.

1.4 General Parameters

The following list provides a summary of the general parameters of the MPC7457:

Technology	0.13 µm CMOS, nine-layer metal
Die size	9.1 mm \times 10.8 mm
Transistor count	58 million
Logic design	Fully-static
Packages	MPC7447: Surface mount 360 ceramic ball grid array (CBGA)
	MPC7457: Surface mount 483 ceramic ball grid array (CBGA)
Core power supply	$1.3 \text{ V} \pm 50 \text{ mV} \text{ DC}$ nominal
I/O power supply	$1.8 V \pm 5\% DC$, or
	$2.5 \text{ V} \pm 5\% \text{ DC}, \text{ or}$
	1.5 V \pm 5% DC (L3 interface only, not implemented on MPC7447)

1.5 Electrical and Thermal Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC7457.

1.5.1 DC Electrical Characteristics

The tables in this section describe the MPC7457 DC electrical characteristics. Table 2 provides the absolute maximum ratings.

Chara	Characteristic		Maximum Value	Unit	Notes
Core supply voltage		V _{DD}	-0.3 to 1.60	V	2
PLL supply voltage		AV _{DD}	-0.3 to 1.60	V	2
Processor bus supply voltage	BVSEL = 0	OV _{DD}	-0.3 to 1.95	V	3, 4
	$BVSEL = \overline{HRESET} \text{ or } OV_{DD}$	OV _{DD}	-0.3 to 2.7	V	3, 5
L3 bus supply voltage	L3VSEL = ¬HRESET	GV _{DD}	-0.3 to 1.65	V	3, 6
	L3VSEL = 0	GV _{DD}	-0.3 to 1.95	V	3, 7
	L3VSEL = $\overline{\text{HRESET}}$ or GV_{DD}	GV _{DD}	-0.3 to 2.7	V	3, 8
Input voltage	Processor bus	V _{in}	-0.3 to OV _{DD} + 0.3	V	9, 10
	L3 bus	V _{in}	–0.3 to GV _{DD} + 0.3	V	9, 10
	JTAG signals	V _{in}	-0.3 to OV _{DD} + 0.3	V	

Table 2. Absolute Maximum Ratings ¹

	• •	-		
Characteristic	Symbol	Maximum Value	Unit	Notes
Storage temperature range	T _{stg}	-55 to 150	°C	

 Table 2. Absolute Maximum Ratings ¹ (continued)

Notes:

- 1. Functional and tested operating conditions are given in Table 4. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.
- 2. **Caution**: V_{DD}/AV_{DD} must not exceed OV_{DD}/GV_{DD} by more than 1.0 V during normal operation; this limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 3. **Caution**: OV_{DD}/GV_{DD} must not exceed V_{DD}/AV_{DD} by more than 2.0 V during normal operation; this limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 4. BVSEL must be set to 0, such that the bus is in 1.8-V mode.
- 5. BVSEL must be set to HRESET or 1, such that the bus is in 2.5-V mode.
- 6. L3VSEL must be set to \neg HRESET (inverse of HRESET), such that the bus is in 1.5-V mode.
- 7. L3VSEL must be set to 0, such that the bus is in 1.8-V mode.
- 8. L3VSEL must be set to $\overline{\text{HRESET}}$ or 1, such that the bus is in 2.5-V mode.
- 9. Caution: Vin must not exceed OV_{DD} or GV_{DD} by more than 0.3 V at any time including during power-on reset.
- 10.V_{in} may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.

Figure 2 shows the undershoot and overshoot voltage on the MPC7457.

The MPC7457 provides several I/O voltages to support both compatibility with existing systems and migration to future systems. The MPC7457 core voltage must always be provided at nominal 1.3 V (see Table 4 for actual recommended core voltage). Voltage to the L3 I/Os and processor interface I/Os are provided through separate sets of supply pins and may be provided at the voltages shown in Table 3. The input voltage threshold for each bus is selected by sampling the state of the voltage select pins at the negation of the signal HRESET. The output voltage will swing from GND to the maximum voltage applied to the OV_{DD} or GV_{DD} power pins.

BVSEL Signal	Processor Bus Input Threshold is Relative to:	L3VSEL Signal ¹	L3 Bus Input Threshold is Relative to:	Notes
0	1.8 V	0	1.8 V	2, 3
HRESET	Not Available	¬HRESET	1.5 V	2, 4
HRESET	2.5 V	HRESET	2.5 V	2
1	2.5 V	1	2.5 V	2

 Table 3. Input Threshold Voltage Setting

Notes:

1. Not implemented on MPC7447

2. Caution: The input threshold selection must agree with the OV_{DD}/GV_{DD} voltages supplied. See notes in Table 2.

3. If used, pull-down resistors should be less than 250 $\boldsymbol{\Omega}.$

4. Applicable to L3 bus interface only. ¬HRESET is the inverse of HRESET.

Table 4 provides the recommended operating conditions for the MPC7457.

Table 4. Recommended Operating Conditions¹

Charac	Characteristic		Recommended Value		Unit	Notes
Charac		Symbol	Min	Max	onit	NOLES
Core supply voltage		V _{DD}	1.3 V ±	50 mV	V	
PLL supply voltage		AV _{DD}	1.3 V ±	50 mV	V	2
Processor bus supply voltage	BVSEL = 0	OV _{DD}	1.8 V ± 5%		V	
	$BVSEL = \overline{HRESET} \text{ or } OV_{DD}$	OV _{DD}	2.5 V ± 5%		V	
L3 bus supply voltage	L3VSEL = 0	GV _{DD}	1.8 V	± 5%	V	
	L3VSEL = $\overline{\text{HRESET}}$ or GV_{DD}	GV _{DD}	2.5 V	± 5%	V	
	L3VSEL = ¬HRESET	GV _{DD}	1.5 V ± 5%		V	3
Input voltage	Processor bus	V _{in}	GND	OV _{DD}	V	
	L3 bus	V _{in}	GND	GV _{DD}	V	
	JTAG signals	V _{in}	GND	OV _{DD}	V	
Die-junction temperature	·	Тj	0	105	°C	

Notes:

1. These are the recommended and tested operating conditions. Proper device operation outside of these conditions is not guaranteed.

2. This voltage is the input to the filter discussed in Section 1.9.2, "PLL Power Supply Filtering," and not necessarily the voltage at the AV_{DD} pin, which may be reduced from V_{DD} by the filter.

3. ¬HRESET is the inverse of HRESET.

Table 5 provides the package thermal characteristics for the MPC7457.

Characteristic	Symbol	Va	Unit	Notes	
Characteristic	Symbol	MPC7447	MPC7457	Onic	NOLES
Junction-to-ambient thermal resistance, natural convection	R _{θJA}	22	20	°C/W	2, 3
Junction-to-ambient thermal resistance, natural convection, four-layer (2s2p) board	R _{θJMA}	14	14	°C/W	2, 4
Junction-to-ambient thermal resistance, 200 ft/min airflow, single-layer (1s) board	R _{θJMA}	16	15	°C/W	2, 4
Junction-to-ambient thermal resistance, 200 ft/min airflow, four-layer (2s2p) board	R _{θJMA}	11	11	°C/W	2, 4
Junction-to-board thermal resistance	R _{θJB}	6	6	°C/W	5
Junction-to-case thermal resistance	R _{θJC}	<0.1	<0.1	°C/W	6

 Table 5. Package Thermal Characteristics ¹

Notes:

1. Refer to Section 1.9.8, "Thermal Management Information," for more details about thermal management.

- 2. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal resistance.
- 3. Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal
- 4. Per JEDEC JESD51-6 with the board horizontal
- 5. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 6. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the calculated case temperature. The actual value of $R_{\theta JC}$ for the part is less than 0.1°C/W.

Table 6 provides the DC electrical characteristics for the MPC7457.

Table 6. DC Electrical Specifications

At recommended operating conditions. See Table 4.

Characteristic	Nominal Bus Voltage ¹	Symbol	Min	Max	Unit	Notes
Input high voltage	1.5	V _{IH}	$\text{GV}_{\text{DD}} imes 0.65$	GV _{DD} + 0.3	V	2
(all inputs including SYSCLK)	1.8		$OV_{DD}/GV_{DD} \times 0.65$	$OV_{DD}/GV_{DD} + 0.3$	V	
	2.5		1.7	OV_{DD}/GV_{DD} + 0.3	V	
Input low voltage	1.5	V _{IL}	-0.3	$\text{GV}_{\text{DD}} imes 0.35$	V	2, 6
(all inputs including SYSCLK)	1.8		-0.3	$OV_{DD}/GV_{DD} imes 0.35$	V	
	2.5		-0.3	0.7	V	
Input leakage current, V _{in} = GV _{DD} /OV _{DD}	—	l _{in}	—	30	μA	2, 3

Table 6. DC Electrical Specifications (continued)

At recommended operating conditions. See Table 4.

Charao	cteristic	Nominal Bus Voltage ¹	Symbol	Min	Мах	Unit	Notes
High-impedance leakage current,	(off-state) V _{in} = GV _{DD} /OV _{DD}	_	I _{TSI}	—	30	μA	2, 3, 4
Output high volta	ige, I _{OH} = –5 mA	1.5	V _{OH}	$OV_{DD}/GV_{DD} - 0.45$	_	V	6
				$OV_{DD}/GV_{DD} - 0.45$	—	V	
		2.5		1.8	—	V	
Output low voltag	ge, I _{OL} = 5 mA	1.5	V _{OL}	—	0.45	V	6
		1.8		_	0.45	V	
		2.5		—	0.6	V	
Capacitance,	L3 interface	—	C _{in}	—	9.5	pF	5
V _{in} = 0 V, f = 1 MHz	All other inputs			—	8.0	pF	5

Notes:

1. Nominal voltages; see Table 4 for recommended operating conditions.

2. For processor bus signals, the reference is OV_{DD} while GV_{DD} is the reference for the L3 bus signals.

3. Excludes test signals and IEEE 1149.1 boundary scan (JTAG) signals

- 4. The leakage is measured for nominal OV_{DD}/GV_{DD} and V_{DD} , or both OV_{DD}/GV_{DD} and V_{DD} must vary in the same direction (for example, both OV_{DD} and V_{DD} vary by either +5% or -5%).
- 5. Capacitance is periodically sampled rather than 100% tested.

6. Applicable to L3 bus interface only

Table 7 provides the power consumption for the MPC7457.

Table 7. Power Consumption for MPC7457

		Processor (CPU) Frequency					
	867 MHz	1000 MHz	1200 MHz	1267 MHz	Unit	Notes	
		Full-Powe	r Mode	I			
Typical	14.8	15.8	17.5	18.3	W	1, 2	
Maximum	21.0	22.0	24.2	25.6	W	1, 3	
		Nap M	ode				
Typical	5.2	5.2	5.2	5.2	W	1, 2	
	i	Sleep N	lode				
Typical	5.1	5.1	5.1	5.1	W	1, 2	
	D	eep Sleep Mode	(PLL Disabled)				

		Unit	Notes			
	867 MHz	1000 MHz	1200 MHz	1267 MHz	Unit	NOLES
Typical	5.0	5.0	5.0	5.0	W	1, 2

 Table 7. Power Consumption for MPC7457 (continued)

Notes:

- 1. These values apply for all valid processor bus and L3 bus ratios. The values do not include I/O supply power (OV_{DD} and GV_{DD}) or PLL supply power (AV_{DD}). OV_{DD} and GV_{DD} power is system dependent, but is typically <5% of V_{DD} power. Worst case power consumption for AV_{DD} < 3 mW.
- 2. Typical power is an average value measured at the nominal recommended V_{DD} (see Table 4) and 65°C while running the Dhrystone 2.1 benchmark and achieving 2.3 Dhrystone MIPs/MHz.
- 3. Maximum power is the average measured at nominal V_{DD} and maximum operating junction temperature (see Table 4) while running an entirely cache-resident, contrived sequence of instructions which keep all the execution units maximally busy.
- 4. Doze mode is not a user-definable state; it is an intermediate state between full-power and either nap or sleep mode. As a result, power consumption for this mode is not tested.

1.5.2 AC Electrical Characteristics

This section provides the AC electrical characteristics for the MPC7457. After fabrication, functional parts are sorted by maximum processor core frequency as shown in Section 1.5.2.1, "Clock AC Specifications," and tested for conformance to the AC specifications for that frequency. The processor core frequency is determined by the bus (SYSCLK) frequency and the settings of the PLL_CFG[0:4] signals. Parts are sold by maximum processor core frequency; see Section 1.11, "Ordering Information."

1.5.2.1 Clock AC Specifications

Table 8 provides the clock AC timing specifications as defined in Figure 6and represents the tested operating frequencies of the devices. The maximum system bus frequency, f_{SYSCLK}, given in Table 8 is considered a practical maximum in a typical single-processor system. The actual maximum SYSCLK frequency for any application of the MPC7457 will be a function of the AC timings of the MPC7457, the AC timings for the system controller, bus loading, printed-circuit board topology, trace lengths, and so forth, and may be less than the value given in Table 8.

Table 8. Clock A	C Timing	Specifications
------------------	----------	----------------

At recommended operating conditions. See Table 4.

		Maximum Processor Core Frequency									
Characteristic	Symbol	867 MHz		1000 MHz		1200 MHz		1267 MHz		Unit	Notes
		Min	Max	Min	Max	Min	Max	Min	Max		
Processor frequency	f _{core}	600	867	600	1000	600	1200	600	1267	MHz	1
VCO frequency	f _{VCO}	1200	1733	1200	2000	1200	2400	1200	2534	MHz	1
SYSCLK frequency	f _{SYSCLK}	33	167	33	167	33	167	33	167	MHz	1, 2
SYSCLK cycle time	t _{SYSCLK}	6.0	30	6.0	30	6.0	30	6.0	30	ns	2
SYSCLK rise and fall time	t _{KR} , t _{KF}	_	1.0	_	1.0	_	1.0	_	1.0	ns	3

Table 8. Clock AC Timing Specifications (continued)

At recommended operating conditions. See Table 4.

			Max	imum F	Process	or Core	Freque	ency			
Characteristic	Symbol 867 I		67 MHz 1000 MHz		1200 MHz		1267 MHz		Unit	Notes	
		Min	Max	Min	Max	Min	Max	Min	Max		
SYSCLK duty cycle measured at OV _{DD} /2	t _{KHKL} / t _{SYSCLK}	40	60	40	60	40	60	40	60	%	4
SYSCLK jitter		_	± 150	_	± 150	_	± 150		± 150	ps	5, 6
Internal PLL relock time		_	100	_	100	_	100	_	100	μs	7

Notes:

 Caution: The SYSCLK frequency and PLL_CFG[0:4] settings must be chosen such that the resulting SYSCLK (bus) frequency, CPU (core) frequency, and PLL (VCO) frequency do not exceed their respective maximum or minimum operating frequencies. Refer to the PLL_CFG[0:4] signal description in Section 1.9.1, "PLL Configuration," for valid PLL_CFG[0:4] settings.

- 2. Assumes lightly-loaded, single-processor system
- 3. Rise and fall times for the SYSCLK input measured from 0.4 to 1.4 V
- 4. Timing is guaranteed by design and characterization.
- 5. This represents total input jitter-short term and long term combined-and is guaranteed by design.
- 6. The SYSCLK driver's closed loop jitter bandwidth should be <500 kHz at -20 dB. The bandwidth must be set low to allow cascade connected PLL-based devices to track SYSCLK drivers with the specified jitter.
- 7. Relock timing is guaranteed by design and characterization. PLL-relock time is the maximum amount of time required for PLL lock after a stable V_{DD} and SYSCLK are reached during the power-on reset sequence. This specification also applies when the PLL has been disabled and subsequently re-enabled during sleep mode. Also note that HRESET must be held asserted for a minimum of 255 bus clocks after the PLL-relock time during the power-on reset sequence.

Figure 3 provides the SYSCLK input timing diagram.

Figure 3. SYSCLK Input Timing Diagram

1.5.2.2 Processor Bus AC Specifications

Table 9 provides the processor bus AC timing specifications for the MPC7457 as defined in Figure 4 and Figure 5. Timing specifications for the L3 bus are provided in Section 1.5.2.3, "L3 Clock AC Specifications."

Table 9. Processor Bus AC Timing Specifications ¹

At recommended operating conditions. See Table 4.

Barometer	Symbol ²	All Speed	d Grades	Unit	Notoo
Parameter	Symbol -	Min	Max	Unit	Notes
Input setup times: A[0:35], AP[0:4] D[0:63], DP[0:7] AACK, ARTRY, BG, CKSTP_IN, DBG, DTI[0:3], GBL, TT[0:3], QACK, TA, TBEN, TEA, TS, EXT_QUAL, PMON_IN, SHD[0:1], BMODE[0:1], BMODE[0:1], BVSEL, L3VSEL	t _{AVKH} t _{DVKH} tivkh	1.8 1.8 1.8 1.8		ns	8
Input hold times: A[0:35], AP[0:4] D[0:63], DP[0:7] AACK, ARTRY, BG, CKSTP_IN, DBG, DTI[0:3], GBL, TT[0:3], QACK, TA, TBEN, TEA, TS, EXT_QUAL, PMON_IN, SHD[0:1] BMODE[0:1], BVSEL, L3VSEL	^t ахкн t _{DXKH} tIXKH tIXKH	0 0 0 0		ns	8
Output valid times: A[0:35], AP[0:4] D[0:63], DP[0:7] AACK, ARTRY, BR, CI, CKSTP_IN, DRDY, DTI[0:3], GBL, HIT, PMON_OUT, QREQ, TBST, TSIZ[0:2], TT[0:3], TS, SHD[0:1], WT	t _{khav} t _{khdv} t _{khov}		2.0 2.0 2.0	ns	
Output hold times: A[0:35], AP[0:4] D[0:63], DP[0:7] AACK, ARTRY, BR, CI, CKSTP_IN, DRDY, DTI[0:3], GBL, HIT, PMON_OUT, QREQ, TBST, TSIZ[0:2], TT[0:3], TS, SHD[0:1], WT	t _{khax} t _{khdx} t _{khox}	0.5 0.5 0.5		ns	
SYSCLK to output enable	t _{KHOE}	0.5	_	ns	
$\frac{\text{SYSCLK to output high impedance (all except TS, \overline{\text{ARTRY}}, \overline{\text{SHD0}}, \overline{\text{SHD1}})}{}$	^t кноz	—	3.5	ns	
SYSCLK to \overline{TS} high impedance after precharge	t _{KHTSPZ}	—	1	t _{SYSCLK}	3, 4, 5
Maximum delay to ARTRY/SHD0/SHD1 precharge	t _{KHARP}	_	1	t _{SYSCLK}	3, 5 6, 7

Table 9. Processor Bus AC Timing Specifications ¹ (continued)

At recommended operating conditions. See Table 4.

Parameter	Symbol ²	All Spee	d Grades	Unit	Notes	
i diditeter	Cymbol	Min	Мах	Onic	10165	
SYSCLK to ARTRY/SHD0/SHD1 high impedance after precharge	t _{KHARPZ}	_	2	t _{SYSCLK}	3, 5 6, 7	

Notes:

- All input specifications are measured from the midpoint of the signal in question to the midpoint of the rising edge of the input SYSCLK. All output specifications are measured from the midpoint of the rising edge of SYSCLK to the midpoint of the signal in question. All output timings assume a purely resistive 50-Ω load (see Figure 4). Input and output timings are measured at the pin; time-of-flight delays must be added for trace lengths, vias, and connectors in the system.
- 2. The symbology used for timing specifications herein follows the pattern of t_{(signal)(state)(reference)(state)} for inputs and t_{(reference)(state)(signal)(state)} for outputs. For example, t_{IVKH} symbolizes the time input signals (I) reach the valid state (V) relative to the SYSCLK reference (K) going to the high (H) state or input setup time. And t_{KHOV} symbolizes the time from SYSCLK(K) going high (H) until outputs (O) are valid (V) or output valid time. Input hold time can be read as the time that the input signal (I) went invalid (X) with respect to the rising clock edge (KH) (note the position of the reference and its state for inputs) and output hold time can be read as the time from the rising edge (KH) until the output went invalid (OX).
- 3. t_{sysclk} is the period of the external clock (SYSCLK) in ns. The numbers given in the table must be multiplied by the period of SYSCLK to compute the actual time duration (in ns) of the parameter in question.
- 4. According to the bus protocol, \overline{TS} is driven only by the currently active bus master. It is asserted low then precharged high before returning to high impedance as shown in Figure 6. The nominal precharge width for \overline{TS} is $0.5 \times t_{SYSCLK}$, that is, less than the minimum t_{SYSCLK} period, to ensure that another master asserting \overline{TS} on the following clock will not contend with the precharge. Output valid and output hold timing is tested for the signal asserted. Output valid time is tested for precharge. The high-impedance behavior is guaranteed by design.
- 5. Guaranteed by design and not tested.
- 6. According to the bus protocol, ARTRY can be driven by multiple bus masters through the clock period immediately following AACK. Bus contention is not an issue because any master asserting ARTRY will be driving it low. Any master asserting it low in the first clock following AACK will then go to high impedance for one clock before precharging it high during the second cycle after the assertion of AACK. The nominal precharge width for ARTRY is 1.0 t_{SYSCLK}; that is, it should be high impedance as shown in Figure 6 before the first opportunity for another master to assert ARTRY. Output valid and output hold timing is tested for the signal asserted. The high-impedance behavior is guaranteed by design.
- 7. According to the MPX bus protocol, SHD0 and SHD1 can be driven by multiple bus masters beginning the cycle of TS. Timing is the same as ARTRY, that is, the signal is high impedance for a fraction of a cycle, then negated for up to an entire cycle (crossing a bus cycle boundary) before being three-stated again. The nominal precharge width for SHD0 and SHD1 is 1.0 t_{SYSCLK}. The edges of the precharge vary depending on the programmed ratio of core to bus (PLL configurations).
- 8. BMODE[0:1] and BVSEL are mode select inputs and are sampled before and after HRESET negation. These parameters represent the input setup and hold times for each sample. These values are guaranteed by design and not tested. These inputs must remain stable after the second sample. See Figure 5 for sample timing.

Figure 4 provides the AC test load for the MPC7457.

Figure 6 provides the input/output timing diagram for the MPC7457.

At recommended operating conditions. See Table 4.

1.5.2.3 L3 Clock AC Specifications

The L3_CLK frequency is programmed by the L3 configuration register core-to-L3 divisor ratio. See Table 18 for example core and L3 frequencies at various divisors. Table 10 provides the potential range of L3_CLK output AC timing specifications as defined in Figure 7.

The maximum L3_CLK frequency is the core frequency divided by two. Given the high core frequencies available in the MPC7457, however, most SRAM designs will be not be able to operate in this mode using current technology and, as a result, will select a greater core-to-L3 divisor to provide a longer L3_CLK period for read and write access to the L3 SRAMs. Therefore, the typical L3_CLK frequency shown in Table 10 is considered to be the practical maximum in a typical system. The maximum L3_CLK frequency for any application of the MPC7457 will be a function of the AC timings of the MPC7457, the AC timings for the SRAM, bus loading, and printed-circuit board trace length, and may be greater or less than the value given in Table 10. Note that SYSCLK input jitter and L3_CLK[0:1] output jitter are already comprehended in the L3 bus AC timing specifications and do not need to be separately accounted for in an L3 AC timing analysis. Clock skews, where applicable, do need to be accounted for in an AC timing analysis.

Motorola is similarly limited by system constraints and cannot perform tests of the L3 interface on a socketed part on a functional tester at the maximum frequencies of Table 10. Therefore, functional operation and AC timing information are tested at core-to-L3 divisors which result in L3 frequencies at 250 MHz or lower.

Parameter	Symbol	All	Speed Grad	les	Unit	Notes
Falameter	Symbol	Minimum	Typical	Maximum	onit	NUCCS
L3 clock frequency	f _{L3_CLK}	—	200	—	MHz	1
L3 clock cycle time	t _{L3_CLK}	—	5.0	—	ns	1
L3 clock duty cycle	t _{CHCL} /t _{L3_CLK}	—	50	—	%	2
L3 clock output-to-output skew (L3_CLK0 to L3_CLK1)	t _{L3CSKW1}	—	_	100	ps	3
L3 clock output-to-output skew (L3_CLK[0:1] to L3_ECHO_CLK[1,3])	t _{L3CSKW2}	_	—	100	ps	4
L3 clock jitter		—		± 75	ps	5

Table 10. L3_CLK Output AC Timing Specifications

Notes:

- The maximum L3 clock frequency (and minimum L3 clock period) will be system dependent. See Section 1.5.2.3, "L3 Clock AC Specifications," for an explanation that this maximum frequency is not functionally tested at speed by Motorola. The minimum L3 clock frequency and period are f_{SYSCLK} and t_{SYSCLK}, respectively.
- 2. The nominal duty cycle of the L3 output clocks is 50% measured at midpoint voltage.
- 3. Maximum possible skew between L3_CLK0 and L3_CLK1. This parameter is critical to the address and control signals which are common to both SRAM chips in the L3.
- 4. Maximum possible skew between L3_CLK0 and L3_ECHO_CLK1 or between L3_CLK1 and L3_ECHO_CLK3 for PB2 or Late Write SRAM. This parameter is critical to the read data signals because the processor uses the feedback loop to latch data driven from the SRAM, each of which drives data based on L3_CLK0 or L3_CLK1.
- 5. Guaranteed by design and not tested. The input jitter on SYSCLK affects L3 output clocks and the L3 address, data, and control signals equally and, therefore, is already comprehended in the AC timing and does not have to be considered in the L3 timing analysis. The clock-to-clock jitter shown here is uncertainty in the internal clock period caused by supply voltage noise or thermal effects. This is also comprehended in the AC timing specifications and need not be considered in the L3 timing analysis.

The L3_CLK timing diagram is shown in Figure 7.

Figure 7. L3_CLK_OUT Output Timing Diagram

1.5.2.4 L3 Bus AC Specifications

The MPC7457 L3 interface supports three different types of SRAM: source-synchronous, double data rate (DDR) MSUG2 SRAM, Late Write SRAMs, and pipeline burst (PB2) SRAMs. Each requires a different protocol on the L3 interface and a different routing of the L3 clock signals. The type of SRAM is programmed in L3CR[22:23] and the MPC7457 then follows the appropriate protocol for that type. The designer must connect and route the L3 signals appropriately for each type of SRAM. Following are some observations about the L3 interface.

- The routing for the point-to-point signals (L3_CLK[0:1], L3DATA[0:63], L3DP[0:7], and L3_ECHO_CLK[0:3]) to a particular SRAM must be delay matched.
- For 1-Mbyte of SRAM, use L3_ADDR[16:0] (L3_ADDR[0] is LSB)
- For 2-Mbyte of SRAM, use L3_ADDR[17:0] (L3_ADDR[0] is LSB)
- For 4-Mbyte of SRAM, use L3_ADDR[18:0] (L3_ADDR[0] is LSB)
- No pull-up resistors are required for the L3 interface
- For high speed operations, L3 interface address and control signals should be a 'T' with minimal stubs to the two loads; data and clock signals should be point-to-point to their single load. Figure 8 shows the AC test load for the L3 interface.

Figure 8. AC Test Load for the L3 Interface

In general, if routing is short, delay-matched, and designed for incident wave reception and minimal reflection, there is a high probability that the AC timing of the MPC7457 L3 interface will meet the maximum frequency operation of appropriately chosen SRAMs. This is despite the pessimistic, guard-banded AC specifications (see Table 12, Table 13, and Table 14), the limitations of functional testers described in Section 1.5.2.3, "L3 Clock AC Specifications," and the uncertainty of clocks and signals which inevitably make worst-case critical path timing analysis pessimistic.

Electrical and Thermal Characteristics

More specifically, certain signals within groups should be delay-matched with others in the same group while intergroup routing is less critical. Only the address and control signals are common to both SRAMs and additional timing margin is available for these signals. The double-clocked data signals are grouped with individual clocks as shown in Figure 9 or Figure 11, depending on the type of SRAM. For example, for the MSUG2 DDR SRAM (see Figure 9); L3DATA[0:31], L3DP[0:3], and L3_CLK[0] form a closely coupled group of outputs from the MPC7457; while L3DATA[0:15], L3DP[0:1], and L3_ECHO_CLK[0] form a closely coupled group of inputs.

The *MPC7450 RISC Microprocessor Family User's Manual* refers to logical settings called 'sample points' used in the synchronization of reads from the receive FIFO. The computation of the correct value for this setting is system-dependent and is described in the *MPC7450 RISC Microprocessor Family User's Manual*. Three specifications are used in this calculation and are given in Table 11. It is essential that all three specifications are included in the calculations to determine the sample points, as incorrect settings can result in errors and unpredictable behavior. For more information, see the *MPC7450 RISC Microprocessor Family User's Manual*.

Parameter	Symbol	Мах	Unit	Notes
Delay from processor clock to internal_L3_CLK	t _{AC}	3/4	t _{L3_CLK}	1
Delay from internal_L3_CLK to L3_CLK[<i>n</i>] output pins	t _{CO}	3	ns	2
Delay from L3_ECHO_CLK[<i>n</i>] to receive latch	t _{ECI}	3	ns	3

 Table 11. Sample Points Calculation Parameters

Notes:

- 1. This specification describes a logical offset between the internal clock edge used to launch the L3 address and control signals (this clock edge is phase-aligned with the processor clock edge) and the internal clock edge used to launch the L3_CLK[n] signals. With proper board routing, this offset ensures that the L3_CLK[n] edge will arrive at the SRAM within a valid address window and provide adequate setup and hold time. This offset is reflected in the L3 bus interface AC timing specifications, but must also be separately accounted for in the calculation of sample points and, thus, is specified here.
- 2. This specification is the delay from a rising or falling edge on the internal_L3_CLK signal to the corresponding rising or falling edge at the L3CLK[*n*] pins.
- 3. This specification is the delay from a rising or falling edge of L3_ECHO_CLK[*n*] to data valid and ready to be sampled from the FIFO.

1.5.2.4.1 Effects of L3OHCR Settings on L3 Bus AC Specifications

The AC timing of the L3 interface can be adjusted using the L3 Output Hold Control Register (L3OCHR). Each field controls the timing for a group of signals. The AC timing specifications presented herein represent the AC timing when the register contains the default value of 0x0000_0000. Incrementing a field delays the associated signals, increasing the output valid time and hold time of the affected signals. In the special case of delaying an L3_CLK signal, the net effect is to decrease the output valid and output hold times of all signals being latched relative to that clock signal. The amount of delay added is summarized in Table 12. Note that these settings affect output timing parameters only and do not impact input timing parameters of the L3 bus in any way.

Table 12. Effect of L3OHCR Settings on L3 Bus AC Timing

At recommended operating conditions. See Table 4.

Field name ¹	Affected	Malasa	Output V	alid Time	Output H	old Time	Unit	Note s
	Signals	Value	Parameter Symbol ²	Change ³	Parameter Symbol ²	Change ³		
L3AOH	L3_ADDR[18:0],	0b00	t _{L3CHOV}	0	t _{L3CHOX}	0	ps	4
	L3_CNTL[0:1]	0b01		+50		+50		
		0b10		+100		+100		
		0b11		+150		+150		
L3CLKn_OH	All signals	0b000	t _{L3CHOV} ,	0	t _{L3CHOX} , t _{L3CHDX} , t _{L3CLDX} ,	0		4
	latched by SRAM	0b001	t _{L3CHDV} , t _{L3CLDV}	- 50		- 50		5
	connected to L3_CLKn	0b010	_	- 100	,	- 100		5
		0b011		- 150	_	- 150		5
		0b100		- 200		- 200		5
		0b101		- 250		- 250		5
		0b110		- 300		- 300		5
		0b111		- 350		- 350		5
L3DOH <i>n</i>	L3_DATA[<i>n</i> : <i>n</i> +7]	0b000	t _{L3CHDV} ,	0	t _{L3CHDX} ,	0		4
	, L3_DP[<i>n</i> /8]	0b001	t _{L3CLDV}	+ 50	t _{L3CLDX} ,	+ 50		
		0b010		+ 100		+ 100		
		0b011		+ 150		+ 150		
		0b100	1	+ 200		+ 200		
		0b101	1	+ 250		+ 250		
		0b111	1	+ 300		+ 300		
		0b111]	+ 350		+ 350		

Notes:

1. See the MPC7450 RISC Microprocessor Family User's Manual for specific information regarding L3OHCR.

2. See Table 13 and Table 14 for more information.

3. Approximate delay verified by simulation; not tested or characterized

4. Default value

5. Increasing values of L3CLK*n*_OH delay the L3_CLK*n* signal, effectively decreasing the output valid and output hold times of all signals latched relative to that clock signal by the SRAM; see Figure 9 and Figure 11.

1.5.2.4.2 L3 Bus AC Specifications for DDR MSUG2 SRAMs

When using DDR MSUG2 SRAMs at the L3 interface, the parts should be connected as shown in Figure 9. Outputs from the MPC7457 are actually launched on the edges of an internal clock phase-aligned to SYSCLK (adjusted for core and L3 frequency divisors). L3_CLK0 and L3_CLK1 are this internal clock output with 90° phase delay, so outputs are shown synchronous to L3_CLK0 and L3_CLK1. Output valid

Electrical and Thermal Characteristics

times are typically negative when referenced to L3_CLK*n* because the data is launched one-quarter period before L3_CLK*n* to provide adequate setup time at the SRAM after the delay-matched address, control, data, and L3_CLK*n* signals have propagated across the printed-wiring board.

Inputs to the MPC7457 are source-synchronous with the CQ clock generated by the DDR MSUG2 SRAMs. These CQ clocks are received on the L3_ECHO_CLK*n* inputs of the MPC7457. An internal circuit delays the incoming L3_ECHO_CLK*n* signal such that it is positioned within the valid data window at the internal receiving latches. This delayed clock is used to capture the data into these latches which comprise the receive FIFO. This clock is asynchronous to all other processor clocks. This latched data is subsequently read out of the FIFO synchronously to the processor clock. The time between writing and reading the data is set by the using the sample point settings defined in the L3CR register.

Table 13 provides the L3 bus interface AC timing specifications for the configuration as shown in Figure 9, assuming the timing relationships shown in Figure 10 and the loading shown in Figure 8.

Parameter	Symbol	All Spee	d Grades	Unit	Notes
Falanielei	Symbol	Min	Мах	Unit	NOLES
L3_CLK rise and fall time	t _{L3CR} , t _{L3CF}	—	0.75	ns	1
Setup times: Data and parity	t _{L3DVEH} , t _{L3DVEL}	- 0.35	_	ns	2, 3, 4, 9
Input hold times: Data and parity	t _{L3DXEH} , t _{L3DXEL}	2.1	_	ns	2, 4, 9
Valid times: Data and parity	t _{L3CHDV} , t _{L3CLDV}		(– t _{L3CLK} /4) + 0.60	ns	5, 6, 7, 8
Valid times: All other outputs	t _{L3CHOV}	—	(t _{L3CLK} /4) + 0.65	ns	5, 7, 8
Output hold times: Data and parity	t _{L3CHDX} , t _{L3CLDX} ,	(t _{L3CLK} /4) – 0.60	_	ns	5, 6, 7, 8
Output hold times: All other outputs	t _{L3CHOX}	(t _{L3CLK} /4) – 0.50	_	ns	5, 7, 8
L3_CLK to high impedance: Data and parity	t _{l3CLDZ}	—	(– t _{L3CLK} /4) + 0.60	ns	

Table 13. L3 Bus Interface AC Timing Specifications for MSUG2

At recommended operating conditions. See Table 4.

Table 13. L3 Bus Interface AC Timing Specifications for MSUG2 (continued)

At recommended operating conditions. See Table 4.

Parameter	Symbol	All Spee	Unit	Notes	
	Gymbol	Min	Мах	Onic	Notes
L3_CLK to high impedance: All other outputs	t _{L3CHOZ}	—	(t _{L3CLK} /4) + 0.65	ns	

Notes:

- 1. Rise and fall times for the L3_CLK output are measured from 20% to 80% of GV_{DD}.
- 2. For DDR, all input specifications are measured from the midpoint of the signal in question to the midpoint voltage of the rising or falling edge of the input L3_ECHO_CLK*n* (see Figure 10). Input timings are measured at the pins.
- 3. For DDR, the input data will typically follow the edge of L3_ECHO_CLK*n* as shown in Figure 10. For consistency with other input setup time specifications, this will be treated as negative input setup time.
- 4. t_{L3_CLK}/4 is one-fourth the period of L3_CLK*n*. This parameter indicates that the MPC7457 can latch an input signal that is valid for only a short time before and a short time after the midpoint between the rising and falling (or falling and rising) edges of L3_ECHO_CLK*n* at any frequency.
- 5. All output specifications are measured from the midpoint voltage of the rising (or for DDR write data, also the falling) edge of L3_CLK to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 8).
- 6. For DDR, the output data will typically lead the edge of L3_CLK*n* as shown in Figure 10. For consistency with other output valid time specifications, this will be treated as negative output valid time.
- 7. t_{L3_CLK}/4 is one-fourth the period of L3_CLK*n*. This parameter indicates that the specified output signal is actually launched by an internal clock delayed in phase by 90°. Therefore, there is a frequency component to the output valid and output hold times such that the specified output signal will be valid for approximately one L3_CLK period starting three-fourths of a clock before the edge on which the SRAM will sample it and ending one-fourth of a clock period after the edge it will be sampled.
- 8. Assumes default value of L3OHCR. See Section 1.5.2.4.1, "Effects of L3OHCR Settings on L3 Bus AC Specifications" for more information.
- 9. L3 input setup and hold times are actually functions of L3 clock frequency in a manner similar to L3 output timing characteristics. The timing parameter values shown are based upon characterization at 200 MHz. Motorola is currently studying these parameters in order to provide the values in a format that accurately reflects this frequency dependence.

Electrical and Thermal Characteristics

Figure 9 shows the typical connection diagram for the MPC7457 interfaced to MSUG2 DDR SRAMs.

Note:

1. Or as recommended by SRAM manufacturer for single-ended clocking.

Figure 9. Typical Source Synchronous 4-Mbyte L3 Cache DDR Interface

Figure 10 shows the L3 bus timing diagrams for the MPC7457 interfaced to MSUG2 SRAMs.

1.5.2.4.3 L3 Bus AC Specifications for PB2 and Late Write SRAMs

When using PB2 or Late Write SRAMs at the L3 interface, the parts should be connected as shown in Figure 11. These SRAMs are synchronous to the MPC7457; one L3_CLK*n* signal is output to each SRAM to latch address, control, and write data. Read data is launched by the SRAM synchronous to the delayed L3_CLK*n* signal it received. The MPC7457 needs a copy of that delayed clock which launched the SRAM read data to know when the returning data will be valid. Therefore, L3_ECHO_CLK1 and L3_ECHO_CLK3 must be routed halfway to the SRAMs and returned to the MPC7457 inputs L3_ECHO_CLK0 and L3_ECHO_CLK2, respectively. Thus, L3_ECHO_CLK0 and L3_ECHO_CLK2 are phase-aligned with the input clock received at the SRAMs. The MPC7457 will latch the incoming data on the rising edge of L3_ECHO_CLK0 and L3_ECHO_CLK2.

Table 14 provides the L3 bus interface AC timing specifications for the configuration shown in Figure 11, assuming the timing relationships of Figure 12 and the loading of Figure 8.

Table 14. L3 Bus Interface AC Timing Specifications for PB2 and Late Write SRAMs

At recommended operating conditions. See Table 4.

Parameter	Symbol	All Spee	d Grades	Unit	Notes
Falameter		Min	Мах	Onic	
L3_CLK rise and fall time	t _{L3CR} , t _{L3CF}	_	0.75	ns	1, 2
Setup times: Data and parity	t _{L3DVEH}	0.1	-	ns	2, 3
Input hold times: Data and parity	t _{L3DXEH}	_	0.7	ns	2, 3
Valid times: Data and parity	t _{L3CHDV}	_	2.5	ns	2, 4, 5, 6
Valid times: All other outputs	t _{L3CHOV}	-	1.8	ns	5, 6
Output hold times: Data and parity	t _{L3CHDX}	1.4	—	ns	2, 4, 5, 6
Output hold times: All other outputs	t _{L3CHOX}	1.0	—	ns	2, 5, 6
L3_CLK to high impedance: Data and parity	t _{L3CHDZ}	—	3.0	ns	2
L3_CLK to high impedance: All other outputs	t _{L3CHOZ}	_	3.0	ns	2

Notes:

1. Rise and fall times for the L3_CLK output are measured from 20% to 80% of GV_{DD}.

2. Timing behavior and characterization are currently being evaluated.

- 3. All input specifications are measured from the midpoint of the signal in question to the midpoint voltage of the rising edge of the input L3_ECHO_CLK*n* (see Figure 10). Input timings are measured at the pins.
- 4. All output specifications are measured from the midpoint voltage of the rising edge of L3_CLK*n* to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 10).
- 5. t_{L3_CLK}/4 is one-fourth the period of L3_CLK*n*. This parameter indicates that the specified output signal is actually launched by an internal clock delayed in phase by 90°. Therefore, there is a frequency component to the output valid and output hold times such that the specified output signal will be valid for approximately one L3_CLK period starting three-fourths of a clock before the edge on which the SRAM will sample it and ending one-fourth of a clock period after the edge it will be sampled.
- 6. Assumes default value of L3OHCR. See Section 1.5.2.4.1, "Effects of L3OHCR Settings on L3 Bus AC Specifications" for more information.

SRAM 0 L3_ADDR[16:0] MPC7457 SA[16:0] L3 CNTL[0] SS L3_CNTL[1] SW L3_ECHO_CLK[0] Denotes Receive (SRAM {L3_DATA[0:15], L3_DP[0:1]} DQ[0:17] GND ΖZ to MPC7457) L3_CLK[0] **Aligned Signals** G -GND Κ {L3_DATA[16:31], L3_DP[2:3]} -GV_{DD}/2¹ DQ[18:36] ĸ L3_ECHO_CLK[1] Denotes Transmit SRAM 1 (MPC7457 to SA[16:0] SRAM) SS Aligned Signals SW L3_ECHO_CLK[2] {L3_DATA[32:47], L3_DP[4:5]} _GND ΖZ DQ[0:17] L3_CLK[1] G _GND Κ {L3_DATA[48:63], L3_DP[6:7]} DQ[18:36] ĸ -GV_{DD}/2 ¹ L3_ECHO_CLK[3]

Figure 11 shows the typical connection diagram for the MPC7457 interfaced to PB2 SRAMs or Late Write SRAMs.

Note:

1. Or as recommended by SRAM manufacturer for single-ended clocking.

Electrical and Thermal Characteristics

Figure 12 shows the L3 bus timing diagrams for the MPC7457 interfaced to PB2 or Late Write SRAMs.

Figure 12. L3 Bus Timing Diagrams for Late Write or PB2 SRAMs

1.5.2.5 IEEE 1149.1 AC Timing Specifications

Table 15 provides the IEEE 1149.1 (JTAG) AC timing specifications as defined in Figure 14 through Figure 17.

Table 15. JTAG	AC Timing Spec	ifications (Index	pendent of SYSCLK)	1

At recommended operating conditions. See Table 4.

Parameter	Symbol	Min	Max	Unit	Notes
TCK frequency of operation	f _{TCLK}	0	33.3	MHz	
TCK cycle time	t _{TCLK}	30	—	ns	
TCK clock pulse width measured at 1.4 V	t _{JHJL}	15		ns	
TCK rise and fall times	t_{JR} and t_{JF}	0	2	ns	
TRST assert time	t _{TRST}	25		ns	2
Input setup times: Boundary-scan data TMS, TDI	t _{DVJH} ti∨JH	4 0		ns	3
Input hold times: Boundary-scan data TMS, TDI	t _{DXJH} t _{IXJH}	20 25		ns	3
Valid times: Boundary-scan data TDO	t _{JLDV} t _{JLOV}	4 4	20 25	ns	4

Table 15. JTAG AC Timing Specifications (Independent of SYSCLK)¹ (continued)

At recommended operating conditions. See Table 4.

Parameter	Symbol	Min	Max	Unit	Notes
Output hold times: Boundary-scan data TDO	t _{JLDX} t _{JLOX}	30 30		ns	4
TCK to output high impedance: Boundary-scan data TDO	t _{JLDZ} t _{JLOZ}	3 3	19 9	ns	4, 5

Notes:

 All outputs are measured from the midpoint voltage of the falling/rising edge of TCLK to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 13). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

- 2. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
- 3. Non-JTAG signal input timing with respect to TCK.
- 4. Non-JTAG signal output timing with respect to TCK.
- 5. Guaranteed by design and characterization.

Figure 13 provides the AC test load for TDO and the boundary-scan outputs of the MPC7457.

Figure 14 provides the JTAG clock input timing diagram.

Figure 14. JTAG Clock Input Timing Diagram

Figure 15 provides the $\overline{\text{TRST}}$ timing diagram.

Figure 15. TRST Timing Diagram

Electrical and Thermal Characteristics

Figure 16 provides the boundary-scan timing diagram.

Figure 16. Boundary-Scan Timing Diagram

1.6 Pin Assignments

Figure 18 (Part A) shows the pinout of the MPC7447, 360 CBGA package as viewed from the top surface. Part B shows the side profile of the CBGA package to indicate the direction of the top surface view.

Part A

Part B

Figure 18. Pinout of the MPC7447, 360 CBGA Package as Viewed from the Top Surface

Figure 19 (Part A) shows the pinout of the MPC7457, 483 CBGA package as viewed from the top surface. Part B shows the side profile of the CBGA package to indicate the direction of the top surface view.

Part A

Figure 19. Pinout of the MPC7457, 483 CBGA Package as Viewed from the Top Surface

1.7 Pinout Listings

Table 16 provides the pinout listing for the MPC7447, 360 CBGA package. Table 17 provides the pinout listing for the MPC7457, 483 CBGA package.

NOTE

This pinout is not compatible with the MPC750, MPC7400, or MPC7410 360 BGA package.

Signal Name	Pin Number	Active	I/O	I/F Select ¹	Notes
A[0:35]	E11, H1, C11, G3, F10, L2, D11, D1, C10, G2, D12, L3, G4, T2, F4, V1, J4, R2, K5, W2, J2, K4, N4, J3, M5, P5, N3, T1, V2, U1, N5, W1, B12, C4, G10, B11	High	I/O	BVSEL	2
AACK	R1	Low	Input	BVSEL	
AP[0:4]	C1, E3, H6, F5, G7	High	I/O	BVSEL	
ARTRY	N2	Low	I/O	BVSEL	3
AV _{DD}	A8	_	Input	N/A	
BG	M1	Low	Input	BVSEL	
BMODE0	G9	Low	Input	BVSEL	4
BMODE1	F8	Low	Input	BVSEL	5
BR	D2	Low	Output	BVSEL	
BVSEL	B7	High	Input	BVSEL	1, 6
CI	J1	Low	Output	BVSEL	3
CKSTP_IN	A3	Low	Input	BVSEL	
CKSTP_OUT	B1	Low	Output	BVSEL	
CLK_OUT	H2	High	Output	BVSEL	
D[0:63]	R15, W15, T14, V16, W16, T15, U15, P14, V13, W13, T13, P13, U14, W14, R12, T12, W12, V12, N11, N10, R11, U11, W11, T11, R10, N9, P10, U10, R9, W10, U9, V9, W5, U6, T5, U5, W7, R6, P7, V6, P17, R19, V18, R18, V19, T19, U19, W19, U18, W17, W18, T16, T18, T17, W3, V17, U4, U8, U7, R7, P6, R8, W8, T8	High	I/O	BVSEL	
DBG	M2	Low	Input	BVSEL	
DP[0:7]	T3, W4, T4, W9, M6, V3, N8, W6	High	I/O	BVSEL	
DRDY	R3	Low	Output	BVSEL	7
DTI[0:3]	G1, K1, P1, N1	High	Input	BVSEL	8
EXT_QUAL	A11	High	Input	BVSEL	9
GBL	E2	Low	I/O	BVSEL	

Signal Name	Pin Number	Active	I/O	I/F Select ¹	Notes
GND	B5, C3, D6, D13, E17, F3, G17, H4, H7, H9, H11, H13, J6, J8, J10, J12, K7, K3, K9, K11, K13, L6, L8, L10, L12, M4, M7, M9, M11, M13, N7, P3, P9, P12, R5, R14, R17, T7, T10, U3, U13, U17, V5, V8, V11, V15		_	N/A	
HIT	B2	Low	Output	BVSEL	7
HRESET	D8	Low	Input	BVSEL	
INT	D4	Low	Input	BVSEL	
L1_TSTCLK	G8	High	Input	BVSEL	9
L2_TSTCLK	B3	High	Input	BVSEL	10
No Connect	A6, A13, A14, A15, A16, A17, A18, A19, B13, B14, B15, B16, B17, B18, B19, C13, C14, C15, C16, C17, C18, C19, D14, D15, D16, D17, D18, D19, E12, E13, E14, E15, E16, E19, F12, F13, F14, F15, F16, F17, F18, F19, G11, G12, G13, G14, G15, G16, G19, H14, H15, H16, H17, H18, H19, J14, J15, J16, J17, J18, J19, K15, K16, K17, K18, K19, L14, L15, L16, L17, L18, L19, M14, M15, M16, M17, M18, M19, N12, N13, N14, N15, N16, N17, N18, N19, P15, P16, P18, P19	_			11
LSSD_MODE	E8	Low	Input	BVSEL	6, 12
MCP	C9	Low	Input	BVSEL	
OV _{DD}	B4, C2, C12, D5, E18, F2, G18, H3, J5, K2, L5, M3, N6, P2, P8, P11, R4, R13, R16, T6, T9, U2, U12, U16, V4, V7, V10, V14	_	_	N/A	
PLL_CFG[0:4]	B8, C8, C7, D7, A7	High	Input	BVSEL	
PMON_IN	D9	Low	Input	BVSEL	13
PMON_OUT	A9	Low	Output	BVSEL	
QACK	G5	Low	Input	BVSEL	
QREQ	P4	Low	Output	BVSEL	
SHD[0:1]	E4, H5	Low	I/O	BVSEL	3
SMI	F9	Low	Input	BVSEL	
SRESET	A2	Low	Input	BVSEL	
SYSCLK	A10		Input	BVSEL	
TA	Кб	Low	Input	BVSEL	
TBEN	E1	High	Input	BVSEL	
TBST	F11	Low	Output	BVSEL	

Table 16. Pinout Listing for the MPC7447, 360 CBGA Package (continued)
Signal Name	Pin Number	Active	I/O	I/F Select ¹	Notes
тск	C6	High	Input	BVSEL	
TDI	В9	High	Input	BVSEL	6
TDO	A4	High	Output	BVSEL	
TEA	L1	Low	Input	BVSEL	
TEST[0:3]	A12, B6, B10, E10	_	Input	BVSEL	12
TEST[4]	D10	_	Input	BVSEL	9
TMS	F1	High	Input	BVSEL	6
TRST	A5	Low	Input	BVSEL	6, 14
TS	L4	Low	I/O	BVSEL	3
TSIZ[0:2]	G6, F7, E7	High	Output	BVSEL	
TT[0:4]	E5, E6, F6, E9, C5	High	I/O	BVSEL	
WT	D3	Low	Output	BVSEL	3
V _{DD}	H8, H10, H12, J7, J9, J11, J13, K8, K10, K12, K14, L7, L9, L11, L13, M8, M10, M12		_	N/A	

Table 16. Pinout Listing for the MPC7447, 360 CBGA Package (continued)

Notes:

- OV_{DD} supplies power to the processor bus, JTAG, and all control signals; and V_{DD} supplies power to the processor core and the PLL (after filtering to become AV_{DD}). To program the I/O voltage, connect BVSEL to either GND (selects 1.8 V) or to HRESET (selects 2.5 V). If used, the pull-down resistor should be less than 250 Ω. For actual recommended value of V_{in} or supply voltages see Table 4.
- 2. Unused address pins must be pulled down to GND.
- 3. These pins require weak pull-up resistors (for example, 4.7 k Ω) to maintain the control signals in the negated state after they have been actively negated and released by the MPC7447 and other bus masters.
- 4. This signal selects between MPX bus mode (asserted) and 60x bus mode (negated) and will be sampled at HRESET going high.
- 5. This signal must be negated during reset, by pull up to OV_{DD} or negation by ¬HRESET (inverse of HRESET), to ensure proper operation.
- 6. Internal pull up on die.
- 7. Ignored in 60x bus mode.
- 8. These signals must be pulled down to GND if unused, or if the MPC7447 is in 60x bus mode.
- 9. These input signals are for factory use only and must be pulled down to GND for normal machine operation.
- 10. This test signal is recommended to be tied to HRESET; however, other configurations will not adversely affect performance.
- 11. These signals are for factory use only and must be left unconnected for normal machine operation.
- 12. These input signals are for factory use only and must be pulled up to OV_{DD} for normal machine operation.
- 13. This pin can externally cause a performance monitor event. Counting of the event is enabled via software.
- 14. This signal must be asserted during reset, by pull down to GND or assertion by HRESET, to ensure proper operation.

Signal Name	Pin Number	Active	I/F Select ¹	Notes	
A[0:35]	E10, N4, E8, N5, C8, R2, A7, M2, A6, M1, A10, U2, N2, P8, M8, W4, N6, U6, R5, Y4, P1, P4, R6, M7, N7, AA3, U4, W2, W1, W3, V4, AA1, D10, J4, G10, D9	High	I/O	BVSEL	2
AACK	U1	Low	Input	BVSEL	
AP[0:4]	L5, L6, J1, H2, G5	High	I/O	BVSEL	
ARTRY	T2	Low	I/O	BVSEL	3
AV _{DD}	B2	_	Input	N/A	
BG	R3	Low	Input	BVSEL	
BMODE0	C6	Low	Input	BVSEL	4
BMODE1	C4	Low	Input	BVSEL	5
BR	К1	Low	Output	BVSEL	
BVSEL	G6	High	Input	N/A	6, 7
CI	R1	Low	Output	BVSEL	3
CKSTP_IN	F3	Low	Input	BVSEL	
CKSTP_OUT	K6	Low	Output	BVSEL	
CLK_OUT	N1	High	Output	BVSEL	
D[0:63]	AB15, T14, R14, AB13, V14, U14, AB14, W16, AA11, Y11, U12, W13, Y14, U13, T12, W12, AB12, R12, AA13, AB11, Y12, V11, T11, R11, W10, T10, W11, V10, R10, U10, AA10, U9, V7, T8, AB4, Y6, AB7, AA6, Y8, AA7, W8, AB10, AA16, AB16, AB17, Y18, AB18, Y16, AA18, W14, R13, W15, AA14, V16, W6, AA12, V6, AB9, AB6, R7, R9, AA9, AB8, W9	High	I/O	BVSEL	
DBG	V1	Low	Input	BVSEL	
DP[0:7]	AA2, AB3, AB2, AA8, R8, W5, U8, AB5	High	I/O	BVSEL	
DRDY	Т6	Low	Output	BVSEL	8
DTI[0:3])	P2, T5, U3, P6 High Input		Input	BVSEL	9
EXT_QUAL	B9	High	Input	BVSEL	10
GBL	M4	Low	I/O	BVSEL	

Table 17. Pinout Listing for the MPC7457, 483 CBGA Package

Signal Name	Pin Number	Active	I/O	I/F Select ¹	Notes
GND	A22, B1, B5, B12, B14, B16, B18, B20, C3, C9, C21, D7, D13, D15, D17, D19, E2, E5, E21, F10, F12, F14, F16, F19, G4, G7, G17, G21, H13, H15, H19, H5, J3, J10, J12, J14, J17, J21, K5, K9, K11, K13, K15, K19, L10, L12, L14, L17, L21, M3, M6, M9, M11, M13, M19, N10, N12, N14, N17, N21, P3, P9, P11, P13, P15, P19, R17, R21, T13, T15, T19, T4, T7, T9, U17, U21, V2, V5, V8, V12, V15, V19, W7, W17, W21, Y3, Y9, Y13, Y15, Y20, AA5, AA17, AB1, AB22		_	N/A	
GV _{DD}	B13, B15, B17, B19, B21, D12, D14, D16, D18, D21, E19, F13, F15, F17, F21, G19, H12, H14, H17, H21, J19, K17, K21, L19, M17, M21, N19, P17, P21, R15, R19, T17, T21, U19, V17, V21, W19, Y21			N/A	11
HIT	К2	Low	Output	BVSEL	8
HRESET	АЗ	Low	Input	BVSEL	
INT	J6	Low	Input	BVSEL	
L1_TSTCLK	H4	High	Input	BVSEL	10
L2_TSTCLK	J2	High	Input	BVSEL	12
L3VSEL	A4	High	Input	N/A	6, 7
L3ADDR[18:0]	H11, F20, J16, E22, H18, G20, F22, G22, H20, K16, J18, H22, J20, J22, K18, K20, L16, K22, L18	High	Output	L3VSEL	
L3_CLK[0:1]	V22, C17	High	Output	L3VSEL	
L3_CNTL[0:1]	L20, L22	Low	Output	L3VSEL	
L3DATA[0:63]	AA19, AB20, U16, W18, AA20, AB21, AA21, T16, W20, U18, Y22, R16, V20, W22, T18, U20, N18, N20, N16, N22, M16, M18, M20, M22, R18, T20, U22, T22, R20, P18, R22, M15, G18, D22, E20, H16, C22, F18, D20, B22, G16, A21, G15, E17, A20, C19, C18, A19, A18, G14, E15, C16, A17, A16, C15, G13, C14, A14, E13, C13, G12, A13, E12, C12	High	I/O	L3VSEL	
L3DP[0:7]	AB19, AA22, P22, P16, C20, E16, A15, A12	High	I/O	L3VSEL	
L3_ECHO_CLK[0,2]	V18, E18	High	Input	L3VSEL	
L3_ECHO_CLK[1,3]	P20, E14	Hlgh	I/O	L3VSEL	
LSSD_MODE	F6	Low	Input	BVSEL	7, 13
MCP	B8	Low	Input	BVSEL	
No Connect	A8, A11, B6, B11, C11, D11, D3, D5, E11, E7, F2, F11, G2, H9		—	N/A	14

Table 17. Pinout Listing for the MPC7457, 483 CBGA Package (continued)

Signal Name	Pin Number	Active	I/O	I/F Select ¹	Notes
OV _{DD}	B3, C5, C7, C10, D2, E3, E9, F5, G3, G9, H7, J5, K3, L7, M5, N3, P7, R4, T3, U5, U7, U11, U15, V3, V9, V13, Y2, Y5, Y7, Y10, Y17, Y19, AA4, AA15		_	N/A	
PLL_CFG[0:4]	A2, F7, C2, D4, H8	High	Input	BVSEL	
PMON_IN	E6	Low	Input	BVSEL	15
PMON_OUT	B4	Low	Output	BVSEL	
QACK	К7	Low	Input	BVSEL	
QREQ	Y1	Low	Output	BVSEL	
SHD[0:1]	L4, L8	Low I/O BVS		BVSEL	3
SMI	G8	Low	Input	BVSEL	
SRESET	G1	Low	Input	BVSEL	
SYSCLK	D6		Input	BVSEL	
TA	N8	Low	Input	BVSEL	
TBEN	L3	High	Input	BVSEL	
TBST	B7	Low	Output	BVSEL	
ТСК	J7	High	Input	BVSEL	
TDI	E4	High	Input	BVSEL	7
TDO	H1	High	Output	BVSEL	
TEA	T1	Low	Input	BVSEL	
TEST[0:5]	B10, H6, H10, D8, F9, F8		Input	BVSEL	13
TEST[6]	A9		Input	BVSEL	10
TMS	К4	High	Input	BVSEL	7
TRST	C1	Low	Input	BVSEL	7, 16
TS	P5	Low	I/O	BVSEL	3
TSIZ[0:2]	L1,H3,D1	High	Output	BVSEL	
TT[0:4]	F1, F4, K8, A5, E1	High	I/O	BVSEL	
WT	L2	Low	Output	BVSEL	3
V _{DD}	J9, J11, J13, J15, K10, K12, K14, L9, L11, L13, L15, M10, M12, M14, N9, N11, N13, N15, P10, P12, P14	_	_	N/A	

Table 17. Pinout Listing for the MPC7457, 483 CBGA Package (continued)

Signal Name	Pin Number	Active	I/O	I/F Select ¹	Notes
VDD_SENSE[0:1]	G11, J8			N/A	17

Notes:

- OV_{DD} supplies power to the processor bus, JTAG, and all control signals except the L3 cache controls (L3CTL[0:1]); GV_{DD} supplies power to the L3 cache interface (L3ADDR[0:17], L3DATA[0:63], L3DP[0:7], L3_ECHO_CLK[0:3], and L3_CLK[0:1]) and the L3 control signals L3_CNTL[0:1]; and V_{DD} supplies power to the processor core and the PLL (after filtering to become AV_{DD}). For actual recommended value of V_{in} or supply voltages, see Table 4.
- 2. Unused address pins must be pulled down to GND.
- 3. These pins require weak pull-up resistors (for example, 4.7 k Ω) to maintain the control signals in the negated state after they have been actively negated and released by the MPC7457 and other bus masters.
- 4. This signal selects between MPX bus mode (asserted) and 60x bus mode (negated) and will be sampled at HRESET going high.
- 5. This signal must be negated during reset, by pull up to OV_{DD} or negation by ¬HRESET (inverse of HRESET), to ensure proper operation.
- 6. To program the processor interface I/O voltage, connect BVSEL to either GND (selects 1.8 V) or to HRESET (selects 2.5 V). To program the L3 interface, connect L3VSEL to either GND (selects 1.8 V) or to HRESET (selects 2.5 V). If used, pull-down resistors should be less than 250 Ω.
- 7. Internal pull up on die.
- 8. Ignored in 60x bus mode.
- 9. These signals must be pulled down to GND if unused or if the MPC7457 is in 60x bus mode.
- 10. These input signals for factory use only and must be pulled down to GND for normal machine operation.
- 11.Power must be supplied to GV_{DD}, even when the L3 interface is disabled or unused.
- 12. This test signal is recommended to be tied to HRESET; however, other configurations will not adversely affect performance.
- 13. These input signals are for factory use only and must be pulled up to OV_{DD} for normal machine operation.
- 14. These signals are for factory use only and must be left unconnected for normal machine operation.
- 15. This pin can externally cause a performance monitor event. Counting of the event is enabled via software.
- 16. This signal must be asserted during reset, by pull down to GND or assertion by HRESET, to ensure proper operation.
- 17. These pins are internally connected to V_{DD}. They are intended to allow an external device to detect the core voltage level present at the processor core. If unused, they must be connected directly to V_{DD} or left unconnected.

1.8 Package Description

The following sections provide the package parameters and mechanical dimensions for the CBGA package.

1.8.1 Package Parameters for the MPC7447, 360 CBGA

The package parameters are as provided in the following list. The package type is 25×25 mm, 360-lead ceramic ball grid array (CBGA).

Package outline	$25 \times 25 \text{ mm}$
Interconnects	360 (19 × 19 ball array – 1)
Pitch	1.27 mm (50 mil)
Minimum module height	2.72 mm
Maximum module height	3.24 mm
Ball diameter	0.89 mm (35 mil)

1.8.2 Mechanical Dimensions for the MPC7447, 360 CBGA

Figure 20 provides the mechanical dimensions and bottom surface nomenclature for the MPC7447, 360 CBGA package.

Figure 20. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC7447, 360 CBGA Package

Pad Number

-2

 V_{DD}

 V_{DD}

-1

GND

GND

1.8.3 Substrate Capacitors for the MPC7447, 360 CBGA

Figure 21 shows the connectivity of the substrate capacitor pads for the MPC7447, 360 CBGA. All capacitors are 100 nF.

A1 CORNER	Capacitor
	C1
C1-1 C2-1 C3-1 C4-1 C5-1 C6-1	C2
	C3
C1-2 C2-2 C3-2 C4-2 C5-2 C6-2	C4
	C5
C24-2	C6
	C7
C23-1 C23-2 C23-2 C23-2 C23-1	C8
C22-1 C22-2 C22-2 C22-2 C22-1 C2-1 C2-1	C9
	C10
C21-2 C21-2 C10-2	C11
	C12
C20-1 C21-1 C20-2 C21-2 C20-2 C21-2 C21-2 C10-2	C13
	C14
1 0 0 0 <td>C15</td>	C15
	C16
	C17
C18-1 C17-1 C16-1 C15-1 C14-1 C13-1	C18
	C19
	C20
	C21
	C22

		- 00
C3	GND	OV_{DD}
C4	GND	V _{DD}
C5	GND	V _{DD}
C6	GND	V _{DD}
C7	GND	V _{DD}
C8	GND	V _{DD}
C9	GND	OV _{DD}
C10	GND	V _{DD}
C11	GND	V _{DD}
C12	GND	V _{DD}
C13	GND	V _{DD}
C14	GND	V _{DD}
C15	GND	V_{DD}
C16	GND	OV_{DD}
C17	GND	V _{DD}
C18	GND	OV_{DD}
C19	GND	V _{DD}
C20	GND	V _{DD}
C21	GND	OV_{DD}
C22	GND	V _{DD}
C23	GND	V _{DD}
C24	GND	V _{DD}

Figure 21. Substrate Bypass Capacitors for the MPC7447, 360 CBGA

1.8.4 Package Parameters for the MPC7457, 483 CBGA

The package parameters are as provided in the following list. The package type is 29×29 mm, 483-lead ceramic ball grid array (CBGA).

Package outline	$29 \times 29 \text{ mm}$
Interconnects	483 (22 × 22 ball array – 1)
Pitch	1.27 mm (50 mil)
Minimum module height	_
Maximum module height	3.22 mm
Ball diameter	0.89 mm (35 mil)

1.8.5 Mechanical Dimensions for the MPC7457, 483 CBGA

Figure 21 provides the mechanical dimensions and bottom surface nomenclature for the MPC7457, 483 CBGA package.

Figure 22. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC7457, 483 CBGA Package

1.8.6 Substrate Capacitors for the MPC7457, 483 CBGA

Figure 23 shows the connectivity of the substrate capacitor pads for the MPC7457, 483 CBGA. All capacitors are 100 nF.

	Consoitor	Pad N	umber
	Capacitor	-1	-2
C1-1 C2-1 C3-1 C4-1 C5-1 C6-1	C1	GND	OV _{DD}
	C2	GND	V _{DD}
C1-2 C2-2 C3-2 C4-2 C5-2 C6-2	C3	GND	GV _{DD}
	C4	GND	V _{DD}
C24-1 C24-2 C24-2 C2-2-2 C2-2	C5	GND	V _{DD}
	C6	GND	GV _{DD}
C23-1 C23-2	C7	GND	V _{DD}
	C8	GND	V _{DD}
C22-2-2 C22-2 C9-1 C9-1	C9	GND	GV _{DD}
	C10	GND	V _{DD}
C21-2	C11	GND	V _{DD}
	C12	GND	GV _{DD}
C20-2	C13	GND	V _{DD}
	C14	GND	V _{DD}
¹ / ₆ <td< td=""><td>C15</td><td>GND</td><td>V_{DD}</td></td<>	C15	GND	V _{DD}
	C16	GND	OV _{DD}
	C17	GND	V _{DD}
C18-1 C17-1 C16-1 C15-1 C14-1 C13-1	C18	GND	OV _{DD}
	C19	GND	V _{DD}
	C20	GND	V _{DD}
	C21	GND	OV _{DD}
	C22	GND	V _{DD}
	C23	GND	V _{DD}
	C24	GND	V _{DD}

Figure 23. Substrate Bypass Capacitors for the MPC7457, 483 CBGA

1.9 System Design Information

This section provides system and thermal design recommendations for successful application of the MPC7457.

1.9.1 PLL Configuration

The MPC7457 PLL is configured by the PLL_CFG[0:4] signals. For a given SYSCLK (bus) frequency, the PLL configuration signals set the internal CPU and VCO frequency of operation. The PLL configuration for the MPC7457 is shown in Table 18 for a set of example frequencies. In this example, shaded cells represent settings that, for a given SYSCLK frequency, result in core and/or VCO frequencies that do not comply with the 1-GHz column in Table 8. Note that these configurations were different in devices before Rev F; see Section 1.11.2, "Part Numbers Not Fully Addressed by This Document," for more information regarding documentation of prior revisions.

		Example B	us-to-Co	ore Freq	uency in	MHz (VC	O Frequ	ency in N	/Hz)	
PLL_	Bus-to-	Core-to-		Bus (SYSCLK) Frequency						
CFG[0:4]	Core Multiplier	VCO Multiplier	33.3 MHz	50 MHz	66.6 MHz	75 MHz	83 MHz	100 MHz	133 MHz	167 MHz
01000	2x	2x								
10000	Зх	2x								
10100	4x	2x								667 (1333)
10110	5x	2x							667 (1333)	835 (1670)
10010	5.5x	2x							733 (1466)	919 (1837)
11010	6x	2x						600 (1200)	800 (1600)	1002 (2004)
01010	6.5x	2x						650 (1300)	866 (1730)	1086 (2171)
00100	7x	2x						700 (1400)	931 (1862)	1169 (2338)
00010	7.5x	2x					623 (1245)	750 (1500)	1000 (2000)	1253 (2505)
11000	8x	2x				600 (1200)	664 (1328)	800 (1600)	1064 (2128)	
01100	8.5x	2x				638 (1276)	706 (1412)	850 (1700)	1131 (2261)	
01111	9x	2x			600 (1200)	675 (1350)	747 (1494)	900 (1800)	1197 (2394)	
01110	9.5x	2x			633 (1266)	712 (1524)	789 (1578)	950 (1900)	1264 (2528)	

Table 18. MPC7457 Microprocessor PLL Configuration Example for 1267 MHz Parts

	Example Bus-to-Core Frequency in MHz (VCO Frequency in MHz)										
PLL_	Bus-to-	Core-to-									
CFG[0:4]	Core Multiplier	VCO Multiplier	33.3 MHz	50 MHz	66.6 MHz	75 MHz	83 MHz	100 MHz	133 MHz	167 MHz	
10101	10x	2x			667 (1333)	750 (1500)	830 (1660)	1000 (2000)			
10001	10.5x	2x			700 (1400)	938 (1876)	872 (1744)	1050 (2100)			
10011	11x	2x			733 (1466)	825 (1650)	913 (1826)	1100 (2200)			
00000	11.5x	2x			766 (532)	863 (1726)	955 (1910)	1150 (2300)			
10111	12x	2x		600 (1200)	800 (1600)	900 (1800)	996 (1992)	1200 (2400)			
11111	12.5x	2x		600 (1200)	833 (1666)	938 (1876)	1038 (2076)	1250 (2500)			
01011	13x	2x		650 (1300)	865 (1730)	975 (1950)	1079 (2158)				
11100	13.5x	2x		675 (1350)	900 (1800)	1013 (2026)	1121 (2242)				
11001	14x	2x		700 (1400)	933 (1866)	1050 (2100)	1162 (2324)				
00011	15x	2x		750 (1500)	1000 (2000)	1125 (2250)	1245 (2490)				
11011	16x	2x		800 (1600)	1066 (2132)	1200 (2400)					
00001	17x	2x		850 (1900)	1132 (2264)						
00101	18x	2x	600 (1200)	900 (1800)	1200 (2400)						
00111	20x	2x	667 (1334)	1000 (2000)							
01001	21x	2x	700 (1400)	1050 (2100)							
01101	24x	2x	800 (1600)	1200 (2400)							
11101	28x	2x	933 (1866)								
00110	PLL b	ypass		PLL off, S	SYSCLK	clocks co	re circuit	ry directly	1		

Table 18. MPC7457 Microprocessor PLL Configuration Example for 1267 MHz Parts (continued)

PLL_ CFG[0:4]		Example B	us-to-Co	ore Frequ	iency in	MHz (VC	O Frequ	ency in N	/Hz)	
	Bus-to-	Core-to-			Bus	(SYSCL	K) Frequ	ency		
	Core Multiplier	VCO Multiplier	33.3 MHz	50 MHz	66.6 MHz	75 MHz	83 MHz	100 MHz	133 MHz	167 MHz
11110	PLI	PLL off PLL off, no core clocking occurs								

Notes:

1. PLL_CFG[0:4] settings not listed are reserved.

2. The sample bus-to-core frequencies shown are for reference only. Some PLL configurations may select bus, core, or VCO frequencies which are not useful, not supported, or not tested for by the MPC7455; see Section 1.5.2.1, "Clock AC Specifications," for valid SYSCLK, core, and VCO frequencies.

3. In PLL-bypass mode, the SYSCLK input signal clocks the internal processor directly and the PLL is disabled. However, the bus interface unit requires a 2x clock to function. Therefore, an additional signal, EXT_QUAL, must be driven at one-half the frequency of SYSCLK and offset in phase to meet the required input setup t_{IVKH} and hold time t_{IXKH} (see Table 9). The result is that the processor bus frequency is one-half SYSCLK while the internal processor is clocked at SYSCLK frequency. This mode is intended for factory use and emulator tool use only. **Note**: The AC timing specifications given in this document do not apply in PLL-bypass mode.

4. In PLL-off mode, no clocking occurs inside the MPC7455 regardless of the SYSCLK input.

The MPC7457 generates the clock for the external L3 synchronous data SRAMs by dividing the core clock frequency of the MPC7457. The core-to-L3 frequency divisor for the L3 PLL is selected through the L3_CLK bits of the L3CR register. Generally, the divisor must be chosen according to the frequency supported by the external RAMs, the frequency of the MPC7457 core, and timing analysis of the circuit board routing. Table 19 shows various example L3 clock frequencies that can be obtained for a given set of core frequencies.

Core Frequency (MHz)	÷2	÷2.5	÷.3	÷3.5	÷4	÷4.5	-2 -	÷5.5	9	÷6.5	÷7	÷7.5	8 .
500	250	200	167	143	125	111	100	91	83	77	71	67	63
533	266	213	178	152	133	118	107	97	89	82	76	71	67
550	275	220	183	157	138	122	110	100	92	85	62	73	69
600	300	240	200	171	150	133	120	109	100	92	86	80	75
650	325	260	217	186	163	144	130	118	108	100	93	87	81
666	333	266	222	190	167	148	133	121	111	102	95	89	83
200	350	280	233	200	175	156	140	127	117	108	100	93	88
733	367	293	244	209	183	163	147	133	122	113	105	98	92
800	400	320	266	230	200	178	160	145	133	123	114	107	100
866	433	347	289	248	217	192	173	157	145	133	124	115	108
933	467	373	311	266	233	207	187	170	156	144	133	124	117
1000	500	400	333	285	250	222	200	182	166	154	143	133	125
1050 ²	525	420	350	300	263	233	191	191	175	162	150	140	131
1100 ²	550	440	367	314	275	244	200	200	183	169	157	147	138
1150 ²	575	460	383	329	288	256	209	209	192	177	164	153	144
1200 ²	600	480	400	343	300	267	218	218	200	185	171	160	150
1250 ²	638	500	417	357	313	278	227	227	208	192	179	167	156
1300 ²	650	520	433	371	325	289	236	236	217	200	186	173	163
Notes:													

Table 19. Sample Core-to-L3 Frequencies¹

Notes:

1. The core and L3 frequencies are for reference only. Note that maximum L3 frequency is design dependent. Some examples may represent core or L3 frequencies which are not useful, not supported, or not tested for the MPC7457; see Section 1.5.2.3, "L3 Clock AC Specifications," for valid L3_CLK frequencies and for more information regarding the maximum L3 frequency.

2. These core frequencies are not supported by all speed grades; see Table 8.

1.9.2 PLL Power Supply Filtering

The AV_{DD} power signal is provided on the MPC7457 to provide power to the clock generation PLL. To ensure stability of the internal clock, the power supplied to the AV_{DD} input signal should be filtered of any noise in the 500 kHz to 10 MHz resonant frequency range of the PLL. A circuit similar to the one shown in Figure 22 using surface mount capacitors with minimum effective series inductance (ESL) is recommended.

The circuit should be placed as close as possible to the AV_{DD} pin to minimize noise coupled from nearby circuits. It is often possible to route directly from the capacitors to the AV_{DD} pin, which is on the periphery of the 360 CBGA footprint and very close to the periphery of the 483 CBGA footprint, without the inductance of vias.

The PLL power supply filter previously provided in the MPC7457 RISC Microprocessor Hardware Specifications has been found to be less effective for Rev 1.1 devices with the low core voltages described in this specification. As a result, the recommended value for the resistor in the circuit is being evaluated and a new recommendation is indicated in Figure 24. If the value indicated is not available, the nearest standard value resistor may be used instead; a higher resistor value is recommended over a lower one. Motorola continues to evaluate the filtering requirements of the MPC7457 and plans to make updated recommendations as needed. Note that this recommendation applies to Rev. 1.1 devices only.

Figure 24. PLL Power Supply Filter Circuit

1.9.3 Decoupling Recommendations

Due to the MPC7457 dynamic power management feature, large address and data buses, and high operating frequencies, the MPC7457 can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the MPC7457 system, and the MPC7457 itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer place at least one decoupling capacitor at each V_{DD} , OV_{DD} , and GV_{DD} pin of the MPC7457. It is also recommended that these decoupling capacitors receive their power from separate V_{DD} , OV_{DD} , and GND power planes in the PCB, utilizing short traces to minimize inductance.

These capacitors should have a value of 0.01 or 0.1 μ F. Only ceramic surface mount technology (SMT) capacitors should be used to minimize lead inductance, preferably 0508 or 0603 orientations where connections are made along the length of the part. Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993) and contrary to previous recommendations for decoupling Motorola microprocessors, multiple small capacitors of equal value are recommended over using multiple values of capacitance.

In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the V_{DD} , GV_{DD} , and OV_{DD} planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should have a low equivalent series resistance (ESR) rating to ensure the quick response time necessary. They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors: 100–330 μ F (AVX TPS tantalum or Sanyo OSCON).

1.9.4 Connection Recommendations

To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal level. Unused active low inputs should be tied to OV_{DD} . Unused active high inputs should be connected to GND. All NC (no-connect) signals must remain unconnected.

Power and ground connections must be made to all external V_{DD} , OV_{DD} , GV_{DD} , and GND pins in the MPC7457. If the L3 interface is not used, GV_{DD} should be connected to the OV_{DD} power plane, and L3VSEL should be connected to BVSEL; the remainder of the L3 interface may be left unterminated.

1.9.5 Output Buffer DC Impedance

The MPC7457 processor bus and L3 I/O drivers are characterized over process, voltage, and temperature. To measure Z_0 , an external resistor is connected from the chip pad to OV_{DD} or GND. Then, the value of each resistor is varied until the pad voltage is $OV_{DD}/2$ (see Figure 23).

The output impedance is the average of two components, the resistances of the pull-up and pull-down devices. When data is held low, SW2 is closed (SW1 is open), and R_N is trimmed until the voltage at the pad equals $OV_{DD}/2$. R_N then becomes the resistance of the pull-down devices. When data is held high, SW1 is closed (SW2 is open), and R_P is trimmed until the voltage at the pad equals $OV_{DD}/2$. R_P then becomes the resistance of the pull-down devices. When data is held high, SW1 is closed (SW2 is open), and R_P is trimmed until the voltage at the pad equals $OV_{DD}/2$. R_P then becomes the resistance of the pull-up devices. R_P and R_N are designed to be close to each other in value. Then, $Z_0 = (R_P + R_N)/2$.

Figure 25. Driver Impedance Measurement

Table 20 summarizes the signal impedance results. The impedance increases with junction temperature and is relatively unaffected by bus voltage.

	Impedance	Processor Bus	L3 Bus	Unit
Z ₀	Typical	33–42	34–42	Ω
	Maximum	31–51	32–44	Ω

Table 20. Impedance Characteristics

 $V_{DD} = 1.5 \text{ V}, \text{ OV}_{DD} = 1.8 \text{ V} \pm 5\%, \text{ T}_{j} = 5^{\circ}\text{--}85^{\circ}\text{C}$

1.9.6 Pull-Up/Pull-Down Resistor Requirements

The MPC7457 requires high-resistive (weak: 4.7-k Ω) pull-up resistors on several control pins of the bus interface to maintain the control signals in the negated state after they have been actively negated and released by the MPC7457 or other bus masters. These pins are: TS, ARTRY, SHDO, and SHD1.

Some pins designated as being for factory test must be pulled up to OV_{DD} or down to GND to ensure proper device operation. For the MPC7447, 360 BGA, the pins that must be pulled up to OV_{DD} are: <u>LSSD_MODE</u> and TEST[0:3]; the pins that must be pulled down to GND are: <u>L1_TSTCLK</u> and TEST[4]. For the MPC7457, 483 BGA, the pins that must be pulled up to OV_{DD} are: <u>LSSD_MODE</u> and TEST[0:5]; the pins that must be pulled down are: L1_TSTCLK and TEST[0:5]; the pins that must be pulled down are: L1_TSTCLK and TEST[6]. The <u>CKSTP_IN</u> signal should likewise be pulled up through a pull-up resistor (weak or stronger: 4.7–1 k Ω) to prevent erroneous assertions of this signal.

In addition, the MPC7457 has one open-drain style output that requires a pull-up resistor (weak or stronger: 4.7–1 k Ω) if it is used by the system. This pin is CKSTP_OUT.

If pull-down resistors are used to configure BVSEL or L3VSEL, the resistors should be less than 250 Ω (see Table 16). Because PLL_CFG[0:4] must remain stable during normal operation, strong pull-up and pull-down resistors (1 k Ω or less) are recommended to configure these signals in order to protect against erroneous switching due to ground bounce, power supply noise or noise coupling.

During inactive periods on the bus, the address and transfer attributes may not be driven by any master and may, therefore, float in the high-impedance state for relatively long periods of time. Because the MPC7457 must continually monitor these signals for snooping, this float condition may cause excessive power draw by the input receivers on the MPC7457 or by other receivers in the system. These signals can be pulled up through weak (10-k Ω) pull-up resistors by the system, address bus driven mode enabled (see the *MPC7450 RISC Microprocessor Family Users' Manual* for more information about this mode), or they may be otherwise driven by the system during inactive periods of the bus to avoid this additional power draw. Preliminary studies have shown the additional power draw by the MPC7457 input receivers to be negligible and, in any event, none of these measures are necessary for proper device operation. The snooped address and transfer attribute inputs are: A[0:35], AP[0:4], TT[0:4], CI, WT, and GBL.

If extended addressing is not used, A[0:3] are unused and must be pulled low to GND through weak pull-down resistors. If the MPC7457 is in 60x bus mode, DTI[0:3] must be pulled low to GND through weak pull-down resistors.

The data bus input receivers are normally turned off when no read operation is in progress and, therefore, do not require pull-up resistors on the bus. Other data bus receivers in the system, however, may require pull-ups, or that those signals be otherwise driven by the system during inactive periods by the system. The data bus signals are: D[0:63] and DP[0:7].

If address or data parity is not used by the system, and the respective parity checking is disabled through HID0, the input receivers for those pins are disabled, and those pins do not require pull-up resistors and should be left unconnected by the system. If all parity generation is disabled through HID0, all parity checking should also be disabled through HID0, and all parity pins may be left unconnected by the system.

The L3 interface does not normally require pull-up resistors.

1.9.7 JTAG Configuration Signals

Boundary-scan testing is enabled through the JTAG interface signals. The $\overline{\text{TRST}}$ signal is optional in the IEEE 1149.1 specification, but is provided on all processors that implement the PowerPC architecture. While it is possible to force the TAP controller to the reset state using only the TCK and TMS signals, more reliable power-on reset performance will be obtained if the TRST signal is asserted during power-on reset.

System Design Information

Because the JTAG interface is also used for accessing the common on-chip processor (COP) function, simply tying TRST to HRESET is not practical.

The COP function of these processors allows a remote computer system (typically, a PC with dedicated hardware and debugging software) to access and control the internal operations of the processor. The COP interface connects primarily through the JTAG port of the processor, with some additional status monitoring signals. The COP port requires the ability to independently assert **HRESET** or **TRST** in order to fully control the processor. If the target system has independent reset sources, such as voltage monitors, watchdog timers, power supply failures, or push-button switches, the COP reset signals must be merged into these signals with logic.

The arrangement shown in Figure 24 allows the COP port to independently assert HRESET or TRST, while ensuring that the target can drive HRESET as well. If the JTAG interface and COP header will not be used, TRST should be tied to HRESET through a 0- Ω isolation resistor so that it is asserted when the system reset signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during power-on. While Motorola recommends that the COP header be designed into the system as shown in Figure 24, if this is not possible, the isolation resistor will allow future access to TRST in the case where a JTAG interface may need to be wired onto the system in debug situations.

The COP header shown in Figure 24 adds many benefits—breakpoints, watchpoints, register and memory examination/modification, and other standard debugger features are possible through this interface—and can be as inexpensive as an unpopulated footprint for a header to be added when needed.

The COP interface has a standard header for connection to the target system, based on the 0.025" square-post, 0.100" centered header assembly (often called a Berg header). The connector typically has pin 14 removed as a connector key.

There is no standardized way to number the COP header shown in Figure 24; consequently, many different pin numbers have been observed from emulator vendors. Some are numbered top-to-bottom then left-to-right, while others use left-to-right then top-to-bottom, while still others number the pins counter clockwise from pin 1 (as with an IC). Regardless of the numbering, the signal placement recommended in Figure 24 is common to all known emulators.

The \overline{QACK} signal shown in Figure 24 is usually connected to the PCI bridge chip in a system and is an input to the MPC7457 informing it that it can go into the quiescent state. Under normal operation this occurs during a low-power mode selection. In order for COP to work, the MPC7457 must see this signal asserted (pulled down). While shown on the COP header, not all emulator products drive this signal. If the product does not, a pull-down resistor can be populated to assert this signal. Additionally, some emulator products implement open-drain type outputs and can only drive \overline{QACK} asserted; for these tools, a pull-up resistor can be implemented to ensure this signal is deasserted when it is not being driven by the tool. Note that the pull-up and pull-down resistors on the \overline{QACK} signal are mutually exclusive and it is never necessary to populate both in a system. To preserve correct power-down operation, \overline{QACK} should be merged via logic so that it also can be driven by the PCI bridge.

Notes:

- 1. RUN/STOP, normally found on pin 5 of the COP header, is not implemented on the MPC7457. Connect pin 5 of the COP header to OV_{DD} with a 10-k Ω pull-up resistor.
- 2. Key location; pin 14 is not physically present on the COP header.
- 3. Component not populated. Populate only if debug tool does not drive \overline{QACK} .
- 4. Populate only if debug tool uses an open-drain type output and does not actively deassert QACK.
- 5. If the JTAG interface is implemented, connect $\overline{\text{HRESET}}$ from the target source to $\overline{\text{TRST}}$ from the COP header though an AND gate to $\overline{\text{TRST}}$ of the part. If the JTAG interface is not implemented, connect $\overline{\text{HRESET}}$ from the target source to $\overline{\text{TRST}}$ of the part through a 0- Ω isolation resistor.
- 6. Though defined as a No-Connect, it is a common and recommended practice to use pin 12 as an

Figure 26. JTAG Interface Connection

1.9.8 Thermal Management Information

This section provides thermal management information for the ceramic ball grid array (CBGA) package for air-cooled applications. Proper thermal control design is primarily dependent on the system-level design—the heat sink, airflow, and thermal interface material. To reduce the die-junction temperature, heat sinks may be attached to the package by several methods—spring clip to holes in the printed-circuit board or package, and mounting clip and screw assembly (see Figure 25); however, due to the potential large mass of the heat sink, attachment through the printed-circuit board is suggested. If a spring clip is used, the spring force should not exceed 10 pounds.

Printed-Circuit Board

Figure 27. Package Exploded Cross-Sectional View with Several Heat Sink Options

The board designer can choose between several types of heat sinks to place on the MPC7457. There are several commercially available heat sinks for the MPC7457 provided by the following vendors:

Aavid Thermalloy 80 Commercial St. Concord, NH 03301 Internet: www.aavidthermalloy.com	603-224-9988
Alpha Novatech 473 Sapena Ct. #15 Santa Clara, CA 95054 Internet: www.alphanovatech.com	408-749-7601
International Electronic Research Corporation (IERC) 413 North Moss St. Burbank, CA 91502 Internet: www.ctscorp.com	818-842-7277
Tyco Electronics Chip Coolers [™] P.O. Box 3668 Harrisburg, PA 17105-3668 Internet: www.chipcoolers.com	800-522-6752

603-635-5102

Wakefield Engineering 33 Bridge St. Pelham, NH 03076 Internet: www.wakefield.com

Ultimately, the final selection of an appropriate heat sink depends on many factors, such as thermal performance at a given air velocity, spatial volume, mass, attachment method, assembly, and cost.

1.9.8.1 Internal Package Conduction Resistance

For the exposed-die packaging technology, shown in Table 3, the intrinsic conduction thermal resistance paths are as follows:

- The die junction-to-case (actually top-of-die since silicon die is exposed) thermal resistance
- The die junction-to-ball thermal resistance

Figure 26 depicts the primary heat transfer path for a package with an attached heat sink mounted to a printed-circuit board.

Figure 28. C4 Package with Heat Sink Mounted to a Printed-Circuit Board

Heat generated on the active side of the chip is conducted through the silicon, through the heat sink attach material (or thermal interface material), and finally to the heat sink where it is removed by forced-air convection.

Because the silicon thermal resistance is quite small, for a first-order analysis, the temperature drop in the silicon may be neglected. Thus, the thermal interface material and the heat sink conduction/convective thermal resistances are the dominant terms.

1.9.8.2 Thermal Interface Materials

A thermal interface material is recommended at the package lid-to-heat sink interface to minimize the thermal contact resistance. For those applications where the heat sink is attached by spring clip mechanism, Figure 27 shows the thermal performance of three thin-sheet thermal-interface materials (silicone, graphite/oil, floroether oil), a bare joint, and a joint with thermal grease as a function of contact pressure. As shown, the performance of these thermal interface materials improves with increasing contact pressure.

The use of thermal grease significantly reduces the interface thermal resistance. That is, the bare joint results in a thermal resistance approximately seven times greater than the thermal grease joint.

Often, heat sinks are attached to the package by means of a spring clip to holes in the printed-circuit board (see Figure 25). Therefore, the synthetic grease offers the best thermal performance, considering the low interface pressure and is recommended due to the high power dissipation of the MPC7457. Of course, the selection of any thermal interface material depends on many factors—thermal performance requirements, manufacturability, service temperature, dielectric properties, cost, etc.

Figure 29. Thermal Performance of Select Thermal Interface Material

The board designer can choose between several types of thermal interface. Heat sink adhesive materials should be selected based on high conductivity, yet adequate mechanical strength to meet equipment shock/vibration requirements. There are several commercially available thermal interfaces and adhesive materials provided by the following vendors:

The Bergquist Company800-347-457218930 West 78th St.Chanhassen, MN 55317Internet: www.bergquistcompany.com781-935-4850Chomerics, Inc.781-935-485077 Dragon Ct.Woburn, MA 01888-4014Internet: www.chomerics.com781-935-4850

800-248-2481 **Dow-Corning Corporation Dow-Corning Electronic Materials** 2200 W. Salzburg Rd. Midland, MI 48686-0997 Internet: www.dow.com Shin-Etsu MicroSi, Inc. 888-642-7674 10028 S. 51st St. Phoenix, AZ 85044 Internet: www.microsi.com Thermagon Inc. 888-246-9050 4707 Detroit Ave. Cleveland, OH 44102 Internet: www.thermagon.com

The following section provides a heat sink selection example using one of the commercially available heat sinks.

1.9.8.3 Heat Sink Selection Example

For preliminary heat sink sizing, the die-junction temperature can be expressed as follows:

$$T_{j} = T_{I} + T_{r} + (R_{\theta JC} + R_{\theta int} + R_{\theta sa}) \times P_{d}$$

where:

T_j is the die-junction temperature

T_I is the inlet cabinet ambient temperature

 T_r is the air temperature rise within the computer cabinet

 $R_{\theta JC}$ is the junction-to-case thermal resistance

 $R_{\theta int}$ is the adhesive or interface material thermal resistance

 $R_{\theta sa}$ is the heat sink base-to-ambient thermal resistance

P_d is the power dissipated by the device

During operation, the die-junction temperatures (T_j) should be maintained less than the value specified in Table 4. The temperature of air cooling the component greatly depends on the ambient inlet air temperature and the air temperature rise within the electronic cabinet. An electronic cabinet inlet-air temperature (T_a) may range from 30° to 40°C. The air temperature rise within a cabinet (T_r) may be in the range of 5° to 10°C. The thermal resistance of the thermal interface material $(R_{\theta int})$ is typically about 1.5°C/W. For example, assuming a T_a of 30°C, a T_r of 5°C, a CBGA package $R_{\theta JC} = 0.1$, and a typical power consumption (P_d) of 18.7 W, the following expression for T_j is obtained:

Die-junction temperature: $T_i = 30^{\circ}C + 5^{\circ}C + (0.1^{\circ}C/W + 1.5^{\circ}C/W + \theta_{sa}) \times 18.7 W$

For this example, a $R_{\theta sa}$ value of 2.1°C/W or less is required to maintain the die junction temperature below the maximum value of Table 4.

Though the die junction-to-ambient and the heat sink-to-ambient thermal resistances are a common figure-of-merit used for comparing the thermal performance of various microelectronic packaging technologies, one should exercise caution when only using this metric in determining thermal management because no single parameter can adequately describe three-dimensional heat flow. The final die-junction operating temperature is not only a function of the component-level thermal resistance, but the system-level design and its operating conditions. In addition to the component's power consumption, a number of factors

affect the final operating die-junction temperature—airflow, board population (local heat flux of adjacent components), heat sink efficiency, heat sink attach, heat sink placement, next-level interconnect technology, system air temperature rise, altitude, etc.

Due to the complexity and the many variations of system-level boundary conditions for today's microelectronic equipment, the combined effects of the heat transfer mechanisms (radiation, convection, and conduction) may vary widely. For these reasons, we recommend using conjugate heat transfer models for the board, as well as system-level designs.

For system thermal modeling, the MPC7447 and MPC7457 thermal model is shown in Figure 28. Four volumes will be used to represent this device. Two of the volumes, solder ball, and air and substrate, are modeled using the package outline size of the package. The other two, die, and bump and underfill, have the same size as the die. The silicon die should be modeled $9.64 \times 11.0 \times 0.74$ mm with the heat source applied as a uniform source at the bottom of the volume. The bump and underfill layer is modeled as $9.64 \times 11.0 \times 0.69$ mm (or as a collapsed volume) with orthotropic material properties: $0.6 \text{ W/(m} \cdot \text{K})$ in the xy-plane and $2 \text{ W/(m} \cdot \text{K})$ in the direction of the z-axis. The substrate volume is $25 \times 25 \times 1.2$ mm (MPC7447) or $29 \times 29 \times 1.2$ mm (MPC7457), and this volume has $18 \text{ W/(m} \cdot \text{K})$ isotropic conductivity. The solder ball and air layer is modeled with the same horizontal dimensions as the substrate and is 0.9 mm thick. It can also be modeled as a collapsed volume using orthotropic material properties: $0.034 \text{ W/(m} \cdot \text{K})$ in the xy-plane direction and $3.8 \text{ W/(m} \cdot \text{K})$ in the direction of the z-axis.

				A	Die	
				z	Bump and Underfill	
Conductivity	Value	Unit			Substrate	
Bum	p and Underfill			Sido	Solder and Air	
k _x	0.6	W/(m • K)		Side	View of Model (Not to Sc	ale)
k _y	0.6			х	→	
k _z	2					
	Substrate					
k	18				Substrate	
Solo	ler Ball and Air				Die	
k _x	0.034		•			
k _y	0.034		T			
k _z	3.8					

Top View of Model (Not to Scale)

Figure 30. Recommended Thermal Model of MPC7447 and MPC7457

1.10 Document Revision History

Table 21 provides a revision history for this hardware specification.

Revision Number	Substantive Change(s)
0	Initial release.
1	 Removed support for 1.5 V L3 interface voltage from Tables 3 and 4. 1.5 V I/O voltage is not supported in current MPC7457 devices. Added package thermal characteristics values to Table 5, made minor revisions to Section 1.9.8. Added preliminary AC timing values to Tables 10 and 12. Added footnotes to Table 17.
1.1	Nontechnical reformatting
2	 Added substrate capacitor information in Sections 1.8.3 and 1.8.6. Increased minimum processor and VCO frequencies in Table 8 from 500 MHz and 1000 MHz to 600 MHz and 1200 MHz (respectively). Corrected maximum processor frequency for 1300 MHz devices in Table 8 (changed from 1333 MHz to 1300 MHz). Added value for to t_{L3CSKW1} Table 10. Added L3OHCR information in Section 1.5.2.4.1. Added values for t_{CO} and t_{ECI} to Table 11. Added Note 8 to Table 13 and Note 6 to Table 14. Changed resistor value in PLL filter in Figure 24 from 10 Ω to 400 Ω. Added 867 MHz speed grade. Corrected Product Code in Tables 22 and 23. Added pull-up/pull-down recommendations for CKSTP_IN and PLL_CFG[0:4] to Section 1.9.6.
3	Corrected numerous errors in lists of pins associated with t_{KHOV} , t_{KHOX} , t_{IVKH} , and t_{IXKH} in Table 9.
	Added support for 1.5 V L3 interface voltage; issues fixed in Rev 1.1.
	Corrected typos in Table 12.
	Added data to Table 2.
	Clarified address bus pull-up resistor recommendations in Section 1.9.6.
	Modified Table 9, Figure 5, and Figure 6 to more accurately show when the mode select inputs (BMODE[0:1], L3VSEL, BVSEL) are sampled and AC timing requirements
	Table 10: Added skew and jitter values.
	Table 14: Added AC timing values.
	Table 23: Updated to reflect past and current part numbers not fully covered by this document.
	Table 6: Removed CV_{IH} and CV_{IL} ; V_{IH} and V_{IL} for SYSCLK input is the same as for other input signals, and is now noted accordingly in this table.
	Table 7: Removed Doze mode power entry (but left footnote 4 for clarity); documentation change only.
	Nontechnical formatting

Revision Number	Substantive Change(s)
4	Table 9:Corrected pin lists for input and output AC timing to correctly show HIT as an output-only signal
	Added specifications for 1267 MHz devices; removed specs for 1300 MHz devices.
	Changed recommendations regarding use of L3 clock jitter in AC timing analysis in Section 1.5.2.3, "L3 Clock AC Specifications"; the L3 jitter is now fully comprehended in the AC timing specs and does not need to be included in the timing analysis.

Table 21. Document Revision History (continued)

1.11 Ordering Information

Ordering information for the parts fully covered by this specification document is provided in Section 1.11.1, "Part Numbers Fully Addressed by This Document." Note that the individual part numbers correspond to a maximum processor core frequency. For available frequencies, contact your local Motorola sales office. In addition to the processor frequency, the part numbering scheme also includes an application modifier which may specify special application conditions. Each part number also contains a revision level code which refers to the die mask revision number. Section 1.11.2, "Part Numbers Not Fully Addressed by This Document," lists the part numbers which do not fully conform to the specifications of this document. These special part numbers require an additional document called a part number specification.

1.11.1 Part Numbers Fully Addressed by This Document

Table 22 provides the Motorola part numbering nomenclature for the MPC7457.

Table 22.	Part	Numbering	Nomenclature
-----------	------	-----------	--------------

PPC	74 <i>x</i> 7	RX	nnnn	L	X
Product Code	Part Identifier	Package	Processor Frequency ¹	Application Modifier	Revision Level
PPC ²	7457 7447	RX = CBGA	867 1000 1200 1267	L: 1.3 V ± 50 mV 0 to 105°C	B: 1.1; PVR = 8002 0101

Notes:

1. Processor core frequencies supported by parts addressed by this specification only. Parts addressed by part number specifications may support other maximum core frequencies.

2. The P prefix in a Motorola part number designates a "Pilot Production Prototype" as defined by Motorola SOP 3-13. These parts have only preliminary reliability and characterization data. Before pilot production prototypes may be shipped, written authorization from the customer must be on file in the applicable sales office acknowledging the qualification status and the fact that product changes may still occur while shipping pilot production prototypes.

1.11.2 Part Numbers Not Fully Addressed by This Document

Parts with application modifiers or revision levels not fully addressed in this specification document are described in separate part number specifications which supplement and supersede this document. As such parts are released, these specifications will be listed in this section.

PPC	74x7	RX	nnnn	Ν	X
Product Code	Part Identifier	Package	Processor Frequency	Application Modifier	Revision Level
PPC	7457	7 RX = CBGA	1000	N: 1.1 V ± 50 mV 0 to 105°C	B: 1.1; PVR = 8002 0101
			867		
			733		
			600		
	7447		1000		
			867		
MC	7447		1000		
			867		
			733		
			600		

MPC7457 RISC Microprocessor Hardware Specifications

Table 23. Part Numbering Nomenclature

1.11.3 Part Marking

Parts are marked as the example shown in Figure 29.

Notes:

MMMMMM is the 6-digit mask number.

ATWLYYWWA is the traceability code.

CCCCC is the country of assembly. This space is left blank if parts are assembled in the United States.

Figure 31. Part Marking for BGA Device

THIS PAGE INTENTIONALLY LEFT BLANK

THIS PAGE INTENTIONALLY LEFT BLANK

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution P.O. Box 5405, Denver, Colorado 80217 1-480-768-2130 (800) 521-6274

JAPAN:

Motorola Japan Ltd. SPS, Technical Information Center 3-20-1, Minami-Azabu Minato-ku Tokyo 106-8573 Japan 81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd. Silicon Harbour Centre, 2 Dai King Street Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26668334

TECHNICAL INFORMATION CENTER:

(800) 521-6274

HOME PAGE:

www.motorola.com/semiconductors

Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. digital dna is a trademark of Motorola, Inc. The described product is a PowerPC microprocessor. The PowerPC name is a trademark of IBM Corp. and used under license. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2003

MPC7457EC

Launched by Motorola

Part Number

<u>Register</u> ▶ <u>Login</u> ▶

Keyword

Advanced | Parametrics

Where to Buy | Contact Us

<u>Home Products Applications Support</u> About Freescale

<u>Freescale</u> > <u>PowerPC'' Processors</u> > <u>MPC7XXX</u>, <u>MPC7XX</u> and <u>MPC6XX Host Processors</u> > MPC7447

MPC7447 : Host Processor

Building on Freescale Semiconductor's (formerly Motorola, Inc., Semiconductor Products Sector) continued innovation and performance leadership in the high-performance host processor market, the MPC7447 achieves two major milestones in the embedded world: It delivers 1.3 GHz of performance—making it Freescale's fastest PowerPC'' processor available for embedded applications. It also dissipates less than 10W while running at 1GHz—a critical threshold for many power-sensitive embedded designs.

The MPC7447 host processor is a high-performance, low-power 32-bit implementation of the PowerPC RISC architecture with a full 128-bit implementation of Freescale's AltiVec[™] technology. Delivering a high level of performance with efficient power consumption across virtually all speeds, this innovative PowerPC processor provides networking and computing product OEMs with a best-in-class solution for a wide range of host processor applications—including high-performance network infrastructure and telecommunications equipment, computing products and embedded systems.

Offered in a 360-pin CBGA package, the MPC7447 processor is footprint-compatible with Freescale's MPC7445 processor, providing an easy migration path for OEMs seeking higher performance for their new or existing PowerPC processor-based applications. The 360-pin MPC7447 is an ideal choice for space-constrained applications requiring a smaller **SUBSCRIBE**

Rate this Page

-- - 0 + ++

Care to Comment?

embedded CPU footprint. The MPC7447 can reach speeds of 1.3 GHz with a core voltage of 1.3V and includes 512KB of on-chip L2 cache (a 2X increase over the MPC7445's L2 cache). A lower-power version of the MPC7447 is available, operating at speeds of up to 1 GHz with a core voltage of 1.0V.

The MPC7447 is manufactured on Freescale's 0.13-micron HiPerMOS silicon-on-insulator (SOI) copper interconnect process technology, enabling it to deliver superior performance over bulk CMOS technology. In addition to increased performance, SOI technology offers excellent low power capability, making the devices ideal for embedded applications in the wired and wireless telecommunications, networking and imaging arenas.

In addition to achieving a new clock speed milestone, the MPC7447 processor offers the following features designed to optimize performance and functionality in embedded applications:

- AltiVec[™] technology All members of Freescale's G4 family of PowerPC processors include a full 128-bit implementation of Freescale's advanced AltiVec Single Instruction Multiple Data (SIMD) vector processing technology. AltiVec technology allows designers to leverage existing PowerPC code and add AltiVec performance as market and customers' requirements change—helping speed time-to-market and increase system performance without upgrading hardware.
- Block address translation (BAT) registers The MPC7447 offers 8 instruction BAT and data BAT registers to support efficient embedded operating systems through high-speed mapping of additional large blocks of data.
- Cache locking The L1 cache supports cache way locking, allowing key performance algorithms and code to be locked in the L1 cache.
- Full symmetric multiprocessing (SMP) support SMP capability enables customers to achieve significantly higher system performance by scaling their embedded system designs with multiple Freescale PowerPC processors.

Product Picture

Block Diagram

MPC7447 Features

Superscalar Microprocessor

The MPC7447 microprocessor features a high-frequency superscalar G4 core capable of issuing four instructions per clock cycle (three instructions + branch) into eleven independent execution units:

- Four integer units (3 simple + 1 complex)
- Double-precision floating-point unit
- Four AltiVec units (simple, complex, floating, and permute)
- Load/store unit
- Branch processing unit

Compatibility and Support

- Footprint compatible with MPC7455 and MPC7445 processors.
- As with all PowerPC processors, the MPC7447 is compatible with the MPC7xx family of processors from Freescale.
- PowerPC processors enjoy the broadest set of operating systems, compilers, and development tools from third-party tool vendors belonging to Freescale's Smart Networks Alliance.

Product Features

The MPC7447 processor's 32-bit superscalar core contains:

- Three issue (plus branch) capability
- 128-bit wide vector unit—AltiVec technology
- Integrated 512K on-chip L2 cache (twice the size of previous generation)
- Full Symmetric Multi-Processing capability (SMP)
- 36-bit physical address space for direct addressability of 64 Gigabytes of memory
- Hardware and Software Tablewalk
- High-bandwidth 133 MHz 64-bit MPX Bus/60x Bus
- 8 BAT registers
- Three power-saving user-programmable modes to reduce power drawn by processor
- Parity checking support on L1 and L2 cache arrays
- ▲ <u>Return to Top</u>

CPU Performance (Max) (MIPS)	Operating Frequency (Max) (MHz)	Power Dissipation (Typ) (W)	Power Dissipation (Max) (W)	Core Operating Voltage (Spec) (V)	I/O Operating Voltage (Max) (V)	Ambient Temp (Min) (oC)	Junction Operating Temperature (Max) (oC)
		5.3,	7.9,				
1386,	600,	6.3,	8.1,				
1693,	733,	7.3,	10.3,				
2003,	867,	8.3,	11.5,	1.1,	2.5	0	105
2310,	1000,	14.8,	21,	1.3	2.3	0	105
2772,	1200,	15.8,	22,				
2926.8	1267	17.5,	24.2,				
		18.3	25.6				

L1 Cache	L1 Cache	L2 Cache	E	xternal Bu	IS	
Instructional	Data	Internal	Bus Interface	Speed	Package Description	
(Max)	(Max)	(Max)	Bus merrace	(Max)	Fackage Description	
(KByte)	(KByte)	(KByte)		(MHz)		
32	32	256	60x, MPX	133	FCCBGA 360 25SQ*3.2P1.27	

▲ <u>Return to Top</u>

MPC7447 Parametrics
MPC7447 Documentation

Documentation

Application Note

ID	Name	Vendor ID	Format	Size K	Rev #	Date Last Modified	Order Availability
<u>AN1795/D</u>	Designing PowerPC(TM) MPC7400 Systems	FREESCALE	pdf	97	1.1	6/05/2003	<u>ا</u>
<u>AN1809</u>	Minimal Boot Sequence for Executing Compiled C Programs on PowerPC(TM) Devices	FREESCALE	pdf	270	1.2	11/11/2003	.∰.
<u>AN2077</u>	Design Checklist for Freescale Semiconductor PowerPC(TM) Microprocessors	FREESCALE	pdf	309	1.6	11/11/2003	ĴЩ.
<u>AN2097</u>	PowerPC(TM) 60X Bus Implementation Differences	FREESCALE	pdf	135	0.3	8/06/2003	<u>,</u> щ.
<u>AN2106/D</u>	PowerPC(TM) MPX Bus Implementation Differences	FREESCALE	pdf	76	0.1	6/05/2003	بی ر
<u>AN2114/D</u>	Complex Fixed-Point Fast Fourier Transform Optimization for Altivec(TM)	FREESCALE	pdf	158	2.1	6/03/2003	.
<u>AN2115/D</u>	Complex Floating Point Fast Fourier Transform Optimization for AltiVec(TM)	FREESCALE	pdf	151	2.1	6/03/2003	آن
<u>AN2161</u>	Outstanding Data Tenures on the MPX Bus	FREESCALE	pdf	95	0.1	8/04/2003	<u>ا</u>
<u>AN2180</u>	Cache Latencies of the 7451	FREESCALE	pdf	87	0.2	8/04/2003	.
<u>AN2182</u>	Setting the Sample Points for the MPC7450 L3 Cache	FREESCALE	pdf	137	0	8/14/2001	` ₩
<u>AN2203/D</u>	MPC7450 RISC Microprocessor Family Software Optimization Guide	FREESCALE	pdf	1152	1	7/30/2002	` ₩
<u>AN2273</u>	Building an NFS DHCP/BOOTP Server for Use with Sandpoint and MVP Linux	FREESCALE	pdf	213	1.1	6/10/2003	` ₩
<u>AN2323</u>	PowerPC(TM) MPC7455 I/O Power Evaluation	FREESCALE	pdf	101	0.2	11/11/2003	,
<u>AN2435</u>	Thermal Solutions for PowerPC(TM) Processors	FREESCALE	pdf	125	0	7/28/2003	,
<u>AN2436</u>	Specifying Power Consumption	FREESCALE	pdf	225	0.2	11/11/2003	<u>این</u>

<u>AN2491</u>	Simplified Mnemonics for PowerPC Instructions	FREESCALE	pdf	524	0	9/30/2003	јщ.
<u>AN2540</u>	Synchronizing Instructions for PowerPC(TM) Instruction Set Architecture	FREESCALE	pdf	67	0.1	7/03/2003	<u>ا</u>
<u>AN2581</u>	AltiVec Performance Enhancement in a Multiprocessing Environment	FREESCALE	pdf	224	0	10/10/2003	јщ.
<u>AN2656</u>	Common Footprint for the MPC7441, MPC7445, MPC7447, MPC7447A, and Future Generations	FREESCALE	pdf	95	0.1	6/04/2004	آ

Data Sheets

ID	Name	Vendor ID	Format	Size K	Rev #	Date Last Modified	Order Availability
<u>MPC7457EC</u>	MPC7457 RISC Microprocessor Hardware Specifications	FREESCALE	pdf	1435	4	11/10/2003	јщ.
MPC7457RXNXPNS	MPC7457 Part Number Specification for the MPC74x7RXnnnnNx Series	FREESCALE	pdf	107	2	10/07/2003	ЪЩ.
MPC7457TRXNXPNS	MPC7457 Part Number Specification for the MPC74x7TRXnnnnNx Series	FREESCALE	pdf	42	0	5/21/2004	јщ.

Errata - Click here for important errata information

ID	Name	Vendor ID Forma	ut Size Rev K #	Date Last Order Modified Availability
<u>MPC7457CE</u>	MPC7450 Family Chip Errata for the MPC7457 and MPC7447	FREESCALE pdf	³¹⁰ 7.1	6/18/2004 -

Fact Sheets

ID	Name	Vendor ID Forma	ut Size Rev K #	Date Last Order Modified Availability
MPC7457FS UPDATED	MPC7457 MPC7447 Host Processors	FREESCALE pdf	¹¹⁷ 2	8/09/2004
ALTIVECFACT	AltiVec Fact Sheet	FREESCALE pdf	¹⁶⁰ 2	2/20/2003
ALTIVECWP	Freescale Semiconductor's AltiVec Technology	FREESCALE pdf	¹⁷¹ 0	1/01/1998
PPCSALESFACT/I	PowerPC Processors At-A-Glance	FREESCALE pdf	234 1	2/17/2003

Packaging Information

ID	Name	Vendor ID	Format	Size K	Rev #	Date Last Modified	Order Availability
<u>CBGAPRES</u>	CBGA Packing Customer Tutorial	FREESCALE	pdf	1014	1.0	7/02/2004	-
PBGAPRES	PBGA Packaging Customer Tutorial	FREESCALE	pdf	1923	1	8/05/2003	-
TBGAPRESPKG	TBGA Packaging Customer Tutorial	FREESCALE	pdf	1784	0	8/05/2003	-

Product Brief

ID	Name	Vendor ID Format Size Rev Date Last Order K # Modified Availability
<u>MPC7450TS</u>	MPC7450 RISC Microprocessor Family Technical Summary	FREESCALE pdf 596 4 3/24/2004

Product Change Notices

ID	Name	Vendor ID	Format	Size K	Rev #	Date Last Modified	Order Availability
PCN9023	CARRIER TAPE CHANGE FOR MICROPROCESSORS	FREESCALE	htm	11	0	8/06/2003	-
PCN9041	CARRIER TAPE CHANGE FOR MICROPROCESSORS	FREESCALE	htm	26	0	7/24/2003	-
PCN9224	NEW TRAY FOR 25 X 25 FLIPCHIP BGA PACKAGE	FREESCALE	htm	62	0	10/14/2003	-

Product Numbering Scheme

ID	Name	Vendor ID Format Size Rev Date Last Order K = M Modified Availability
PPCCPUPNS	CPU Part Number Scheme for Freescale Semiconductor Processors that Implement the PowerPC Architecture	FREESCALE gif 43 0 10/26/1998 -

Reference Manual

ID	Name	Vendor ID	Format	Size K	Rev #	Date Last Modified	Order Availability
<u>ALTIVECPIM</u>	AltiVec Technology Programming Interface Manual	FREESCALE	pdf	0	0	6/01/1999	` ₩
MPC60XBUSRM	The Bus Interface for 32-Bit Microprocessors that Implement the PowerPC Architecture	FREESCALE	pdf	2527	0.1	1/14/2004	, Ш
<u>MPC7450UM</u>	MPC7450 RISC Microprocessor Family User's Manual	FREESCALE	pdf	10829	3.1	2/23/2004	ب
MPC7450UM_ZIP	MPC7450 Users Manual (Compressed)	FREESCALE	zip	2999	3	2/10/2003	-
MPCFPE32B/AD	Programming Environments Manual for 32-Bit Implementations of the PowerPC Architecture	FREESCALE	pdf	6909	2	12/21/2001	<u>е</u>
MPCFPE32BAD/AD	Errata to MPCFPE32B, Programming Environments Manual for 32-Bit Implementations of the Power PC Architecture, Rev. 2	FREESCALE	pdf	40	0	10/11/2002	-

Reliability and Quality Information

ID	Name		Vendor ID	Format	Size K	Rev #	Date Last Modified	Order Availability
<u>MC7447_7457R</u>		47N/MC7457N Microprocessor Rev 1.2 ication Report	FREESCALE	pdf	182	E	3/30/2004	-
Reports or Pres	entations							
ID	Name		Vendor ID	Format	Size K	Rev #	Date Last Modified	Order Availability
PPCCPUSUMN		e Semiconductor Host and Integrated r Summary	FREESCALE	pdf	6	1	2/10/2003	-
Roadmap								
ID	Name		Vendor ID	Format	Size K	Rev #	Date Last Modified	Order Availability
<u>PPCRMAP</u>	Freescale Roadmaj	e High-Performance PowerPC Processors	s FREESCALE	pdf	27	1	4/26/2004	-
Supporting Info	ormation							
ID	Name		Vendor ID	Format	Size K	Rev #	Date Last Modified	Order Availability
<u>PPCPVR</u>	Freescale Register	e Semiconductor Host Processor Version Settings	FREESCALE	pdf	6	17	4/05/2004	-
White Paper								
ID		Name	Vendor ID	Format	Size K	Rev #	Date Last Modified	Order Availability
<u>ALTIVECTCPI</u>	PWP/D	Enhanced TCP/IP Performance with AltiVec	FREESCALE	pdf	152	1.0	1/21/2003	-
<u>G4WP</u>		G4 Architecture White Paper	FREESCALE	pdf	53	0	1/23/2001	-
MPC603OVER	ALLWP/D	Motorola PowerPC 603 and PowerPC 604 RISC Microprocessor: The C4/Ceramic-Ball-Grid Array Interconnect Technology	FREESCALE	pdf	112	0	5/01/1996	-

MPC603THERMALWP/D		FREESCALE	pdf	86	0	5/01/1996	-
MPC74XXMBUSWP_D	604 RISC Microprocessors Memory Bus Throughput of the MPC74xx	FREESCALE	pdf	103	1.1	11/24/2003	-

A Return to Top

MPC7447 Design Tools

Hardware Tools

Board Testers

ID	Name	Vendor ID	Format	Size K	Rev #	Order Availability
<u>SCANPLUS</u>	ScanPlus	CORELIS	-	-	-	-
	µMaster 4031 Functional Test and Debug Solutions for boards carrying Motorola [™] and IBM® PowerPC [™] processors with COP debug port (740, 750, 750DD2, 750DD3, 755, 603e, 8240, 8250A, 8255A, 8260A, 8264A, 8265A, 8266A, 7400, 7410, etc.)	INTLTEST	-	-	-	-

Emulators/Probes/Wigglers

ID	Name	Vendor ID	Format	Size K	Rev #	Order Availability
BDI1000/BDI2000	BDI1000/BDI2000 Abatron develops and produces high-quality, high-speed BDM and JTAG Debug Tools (BDI Family) for software development environments from leading vendors.	<u>ABATRON</u>	-	-	-	-
<u>10200A</u>	NetICE-R option 2/2M	CORELIS	-	-	-	-
<u>4000-994020001</u>	µMaster 4031 Functional Test and Debug Solutions for boards carrying Motorola TM and IBM® PowerPC TM processors with COP debug port (740, 750, 750DD2, 750DD3, 755, 603e, 8240, 8250A, 8255A, 8260A, 8264A, 8265A, 8266A, 7400, 7410, etc.)	<u>INTLTEST</u>	-	-	-	-
<u>WPICE</u>	WIND®POWER ICE	WINDRIV	-	-	-	-

Evaluation/Development Boards and Systems

ID	Name	Vendor ID	Format	Size K	Rev #	Order Availability
PPCEVAL-SP3-7447	Sandpoint X3 Motherboard with Gyrus X3 MPC7447 PMC Module	FREESCALE	-	-	-	-
SANDPOINTX3	Sandpoint X3 Evaluation System - Motherboard	FREESCALE	-	-	-	-
OPEN DESKTOP WORKSTATION	Open Desktop Workstation The open desktop workstation is based on the Genesi PegasosPPC. The workstation is offered fully configured with a number of operating system options.	<u>GENESI</u>	-	-	-	-
PEGASOSPPC	PegasosPPC The Pegasos is an an open hardware platform based on the CHRP motherboard standard for the PowerPC and selected Open Firmware so that many operating systems can work easily on the platform.	<u>GENESI</u>	-	-	-	-

Models

BSDL

ID	Name	Vendor ID	Format	Size K Rev #		Order Availability	
MPC7447BSDL	MPC7447 BSDL Model (03/13/2003)	FREESCALE	txt	49	1B	-	
Bus Functional Models							

ID	Name	Vendor ID	Format	Size K	Rev #	Order Availability
MPC7450BFM	MPC7450 Bus Functional Model (01/05/2004)		gz	1122		-

Full Functional Models

ID	Name	Vendor ID	Format	Size K	Rev #	Order Availability
<u>EP100</u>	PowerPC Bus Slave	EUREKA	-	-	-	-
<u>EP201</u>	PowerPC Bus Master	EUREKA	-	-	-	-
<u>EP300</u>	PowerPC Bus Arbiter	EUREKA	-	-	-	-
<u>EP433</u>	PowerPC-PCI Bridge	EUREKA	-	-	-	-
<u>ES100</u>	PowerPC System Controller	EUREKA	-	-	-	-

IBIS

ID	Name	Vendor ID	Format	Size I K	Rev #	Order Availability
MPC7447AIBIS	MPC7447 Rev 0.2, 360BGA, 2.5v I/O, 2.5v L3 IBIS Model (02/10/2003)	FREESCALE	ibs	166	0	-
MPC7447BIBIS	MPC7447 Rev 0.2, 360BGA, 2.5v I/O, 1.8v L3 IBIS Model (02/10/2003)	FREESCALE	ibs	155	0	-
MPC7447CIBIS	MPC7447 Rev 0.2, 360BGA, 2.5v I/O, 1.5v L3 IBIS Model (02/10/2003)	FREESCALE	ibs	154	0	-

MPC7447DIBIS	MPC7447 Rev 0.2, 360BGA, 1.8v I/O, 2.5v L3 IBIS Model (02/10/2003)	FREESCALE	ibs	161	0	-
MPC7447EIBIS	MPC7447 Rev 0.2, 360BGA, 1.8v I/O, 1.8v L3 IBIS Model (02/10/2003)	FREESCALE	ibs	151	0	-
MPC7447FIBIS	MPC7447 Rev 0.2, 360BGA, 1.8v I/O, 1.5v L3 IBIS Model (02/10/2003)	FREESCALE	ibs	149	0	-
MPC7447GIBIS	MPC7447 Rev 0.2, 360BGA, 1.5v I/O, 2.5v L3 IBIS Model (02/10/2003)	FREESCALE	ibs	159	0	-
MPC7447HIBIS	MPC7447 Rev 0.2, 360BGA, 1.5v I/O, 1.8v L3 IBIS Model (02/10/2003)	FREESCALE	ibs	148	0	-
MPC7447IIBIS	MPC7447 Rev 0.2, 360BGA, 1.5v I/O, 1.5v L3 IBIS Model (02/10/2003)	FREESCALE	ibs	147	0	-

Timing Models

ID	Name	Vendor ID	Format	Size Rev Order K # Availability
MPC7447ALINTIME	SimG4+ Timing Model (for Linux PPC) (06/25/2004)	FREESCALE	gz	6052 0.8.1
MPC7447ALINX86TIME	SimG4+ Timing Model (for Linux x86) (06/25/2004)	FREESCALE	gz	5514 0.8.1

Software

Application Software

Application Development Framework

	ID	Name		Vendor ID Format Size Rev Order K # Availability	V
	<u>NPMGMT</u>	NP Management Application	on Framework	<u>KENATI</u>	9
	Calculators				
	ID	Name		Vendor ID Format Size Rev Order K # Availabili	ty
	L3SPCALC	L3 Sample Point Calculator Spreadsheet to assist in calcul Use with AN2182. (05/01/200		ints. FREESCALE xls 30 0 -	
	DINK32				
	ID	Name		Vendor ID Format Size Rev Order K # Availability	v
	DINK32	ROM-Based Debug Monito	or, R13.1.1	FREESCALE	5
Board	l Support Packag	es			
ID		Name	Vendor ID	Format Size K Rev # Order Availability	7
<u>NPLI</u>	<u>NUX</u>	NP Linux	<u>KENATI</u>		
Devic	e Drivers				
Devic ID	e Drivers	Name	Vendor ID	Format Size K Rev # Order Availability	7

Libraries

ID	Name	Vendor ID	Format	Size K	Rev #	Order Availability			
<u>PN311-1</u>	KwikPeg GUI KADAK's KwikPeg Graphical User Interface (GUI) is deri from PEG, a professional, high-quality graphic system crea by Swell Software, Inc. to enable you, the embedded system developer, to easily add graphics to your products.	nted <u>KADAK</u>	-	-	-	-			
Operating Systems									
ID	Name	Vendor ID	Format	Size K	Rev #	Order Availability			
DPP.7XXX.KRN	OSE Real-Time Operating System	ENEA	-	-	-	-			
THREADX	ThreadX RTOS. Royalty-free real-time operating system (RTOS) for embedded applications. ThreadX is small, fast, and royalty-free making it ideal for high-volume electronic products.	EXPRESSLOG	-	-	-	-			
MORPHOS	MorphOS MorphOS is designed around the concept of shared resources and the ability to build up applications using shared system components. MorphOS is not unix based.	<u>GENESI</u>	-	-	-	-			
<u>PX382-1</u>	AMX PPC32 AMX is a full featured RTOS for the PowerPC family. AMX has been tested on the EST SBC8260, Embedded Planet RPX Lite MPC823 and Motorola Ultra 603, MBX860, MPC860 ADS and MPC860 FADS.	<u>KADAK</u>	-	-	-	-			
<u>NPLINUX</u>	NP Linux	<u>KENATI</u>	-	-	-	-			

Protocol Stacks

ID	Name	Vendor ID	Format	Size K	Rev #	Order Availability
<u>MSTP</u>	AnviMSTP Avnisoft's AvniMSTP is a completely portable ANSI C compliant implementation of the IEEE 802.1s MSTP. It is implemented on top of, and includes the AvniPORT platform abstraction layer to simplify integration with target platforms.	<u>AVNISOFT</u>	-	-	-	-
CMX TCP/IP	CMX TCP/IP	<u>CMX</u>	-	-	-	-
<u>PN713-1</u>	KwikNet The KwikNet TCP/IP Stack enables you to add networking features to your products with a minimum of time and expense. KwikNet is a compact, high performance stack built with KADAK's characteristic simplicity, flexibility and reliability.	<u>KADAK</u>	-	-	-	-
NPSTACK	NP Network Stack	<u>KENATI</u>	-	-	-	-

Software Tools

Code Translation

ID	Name	Vendor ID	Format	Size K	Rev #	Order Availability
PA68K-PPC	PortAsm/68K for PowerPC	MICROAPL	-	-	-	-
<u>PA86-PPC</u>	PortAsm/86 for PowerPC	MICROAPL	-	-	-	-

Compilers

ID	Name	Vendor ID	Format	Size K	Rev #	Order Availability
<u>CWEPPC</u>	CodeWarrior Development Studio for PowerPC" Processors	METROWERKS	-	-	-	1
<u>CWLINPPC</u>	CodeWarrior Development Studio. Linux Application Edition for PowerPC	METROWERKS	-	-	-	1
DIAB	Diab C/C++ Compiler	WINDRIV	-	-	-	-

Debuggers

ID	Name	Vendor ID	Format	Size K	Rev #	Order Availability
POWERPC DEBUGGER	MULTI Debugger	<u>GREENHILLS</u>	-	-	-	-

IDE (Integrated Development Environment)

ID	Name	Vendor ID	Format	Size K	Rev #	Order Availability
IC-SW-OPR	winIDEA	<u>ISYS</u>	-	-	-	-
<u>WPIDE</u>	WIND®POWER IDE	<u>WINDRIV</u>	-	-	-	-

A Return to Top

Orderable Parts Information

Part Number	Package Description	Tape and Reel	<u>Pb-Free</u> <u>Terminations</u>	Application/ Qualification <u>Tier</u>	Status	Budgetary Price QTY <u>1000+</u> (\$US)	Info	Order
KMC7447RX1000NB	FCCBGA 360 25SQ*3.2P1.27	No	No	-	Available	-	more	BUY FROM DISTRIBUTOR
KMC7447RX1267LB	FCCBGA 360 25SQ*3.2P1.27	No	No	COMMERCIAL	Available	-	more	BUY FROM DISTRIBUTOR
MC7447RX1000LB	FCCBGA 360 25SQ*3.2P1.27	No	No	-	Available	-	more	BUY FROM DISTRIBUTOR
MC7447RX1000NB	FCCBGA 360 25SQ*3.2P1.27	No	No	COMMERCIAL	Available	-	more	BUY FROM DISTRIBUTOR

MC7447RX1000NBR	2 <u>FCCBGA 360</u> 25SQ*3.2P1.27	Yes	No	COMMERCIAL, INDUSTRIAL	Available	-	more -
MC7447RX1200LB	FCCBGA 360 25SQ*3.2P1.27	No	No	COMMERCIAL, INDUSTRIAL	Available	-	MOTE BUY FROM DISTRIBUTOR
MC7447RX1267LB	FCCBGA 360 25SQ*3.2P1.27	No	No	COMMERCIAL, INDUSTRIAL	Available	-	MOTE BUY FROM DISTRIBUTOR
MC7447RX600NB	FCCBGA 360 25SQ*3.2P1.27	No	No	-	Available	-	MOTE BUY FROM DISTRIBUTOR
MC7447RX733NB	FCCBGA 360 25SQ*3.2P1.27	No	No	-	Available	-	MOTE BUY FROM DISTRIBUTOR
MC7447RX867LB	FCCBGA 360 25SQ*3.2P1.27	No	No	-	No Longer Manufactured	-	MOTE BUY FROM DISTRIBUTOR
MC7447RX867NB	FCCBGA 360 25SQ*3.2P1.27	No	No	-	Available	-	more BUY FROM DISTRIBUTOR

NOTE: Are you looking for an obsolete orderable part? Click **HERE** to check our distributors' inventory.

▲ <u>Return to Top</u>

Related Products

MPC7457 : Host Processor

Building on Freescale Semiconductor's (formerly Motorola, Inc., Semiconductor Products Sector) continued innovation and performance leadership in the high-performance host processor market, ...

▲ <u>Return to Top</u>

Related Links

- ▶ Industrial Control
- **Freescale Delivers Gigahertz-Class Performance for Power-Sensitive Embedded Applications**
- <u>AltiVec Technology</u>

A Return to Top

www.freescale.com | <u>Site Map</u> | <u>Terms of Use</u> | <u>Privacy Practices</u> | © Freescale Semiconductor, Inc. 2004. All Rights Reserved

