

L99H02

H-bridge gate driver for automotive applications

Datasheet - production data

Features

• AEC-Q100 qualified

- Operating supply voltage 6 V to 28 V
- Central 2-stage charge pump
- 100% duty cycle
- Full R_{DSon} down to 6 V (standard level threshold MOSFETs)
- Charge pump output available for driving an external reverse battery NMOSFET protection
- Charge pump current limited
- PWM operation up to 30 kHz
- SPI interface
- Current sense amplifier / free configurable
- · Zero adjust for end of line trimming
- Power management: programmable free wheeling
- Sensing circuitry of external MOSFETs with embedded thermal sensors

Applications

- Wiper
- Power door
- Seat belt tensioner
- Seat positioning
- Valve tronic
- Park break
- 2H motors

Description

The L99H02 is designed to drive 4 external N-channel MOS transistors in H-bridge configuration for DC-motor driving in automotive applications. A free configurable current sense amplifier is integrated. The integrated standard serial peripheral interface (SPI) controls the device and provides diagnostic information. An interface pin for the thermal sensors of the external MOSFETs is implemented.

Package		Order co	odes
Fachage	Part number (tube)	Part number (tape and reel)	Part number (tray)
PowerSSO-36	L99H02XP	L99H02XPTR	-
LQFP32	-	L99H02QFTR	L99H02QF

Table 1. Device summary

February 2021

DS12547 Rev 6

This is information on a product in full production.

1	Block	diagram and pin description7
	1.1	Pin description
	1.2	Pinout LQFP32
2	Elect	rical specifications
	2.1	Absolute maximum ratings 12
	2.2	ESD protection
	2.3	Thermal data
	2.4	Electrical characteristics
	2.5	SPI - electrical characteristics
3	Devid	e description
	3.1	Dual power supply: V_S and V_CC $_{\rm \sim 25}$
	3.2	Standby mode (EN) 25
	3.3	H-bridge control (DIR, PWM, bit FW) 25
	3.4	Resistive low
	3.5	Diagnostic functions
	3.6	Overvoltage and undervoltage detection
	3.7	Charge pump
	3.8	Temperature warning and thermal shutdown
	3.9	Short-circuit detection / drain source monitoring
	3.10	Programmable cross current protection
	3.11	Current sense amplifier (CSA) 29
	3.12	Thermal sensor interface / H-bridge switch-off input
		3.12.1 EXT_TS-bit = low (active off)
		3.12.2 EXT_TS-bit = high (thermal sensor interface)
	3.13	Watchdog
4	Func	tional description of the SPI 31
	4.1	Signal description
		4.1.1 Serial clock (CLK)
		4.1.2 Serial data input (DI)

L99H02

6	Revis	sion his	tory	. 50
	5.7	LQFP3	2 packing information	. 49
	5.6	PowerS	SO-36 packing information	. 47
	5.5	LQFP3	2 package information	. 46
	5.4	Packag	es thermal data	. 45
	5.3	PowerS	SO-36 package information	. 43
	5.2	Packag	e thermal data	. 42
	5.1	ECOPA	СК	. 42
5	Pack	age and	packing information	. 42
	4.7	Read d	evice information (ROM)	. 40
		4.6.1	Description of the data byte	37
	4.6	Detailed	d byte description of application registers (ApplRegX)	. 37
	4.5	Detailed	d byte description of status register (StatReg0)	. 36
		4.4.1	SPI clock monitor and watchdog	35
	4.4	Global	Status Byte	. 34
		4.3.2	Device (ROM) address map (access with OC0 and OC1 set to '1') .	33
		4.3.1	Control and status (RAM) address map	
	4.3	Device	memory map	
		4.2.2	OpCode definition	
	4.2	4.2.1	Command byte	
	4.2		I data description	
		4.1.3	Chip select not (CSN)	
		4.1.3	Serial data output (DO)	31

List of tables

Table 1.	Device summary	
Table 2.	Pin definitions and functions	. 7
Table 3.	Pin definitions and functions	. 9
Table 4.	Absolute maximum ratings	12
Table 5.	ESD protection	12
Table 6.	Operating junction temperature	13
Table 7.	Temperature warning and thermal shutdown	13
Table 8.	Packages thermal resistance	13
Table 9.	Supply	13
Table 10.	Undervoltage detection	14
Table 11.	Watchdog	14
Table 12.	Inputs: CSN, CLK, PWM, DIR, EN and DI	15
Table 13.	Charge pump output	15
Table 14.	Gate drivers for external PowerMOS	16
Table 15.	Cross current protection time	17
Table 16.	Drain source monitoring	17
Table 17.	Thermal sense interface (4.5 V < V _{CC} < 5.3 V)	
Table 18.	Current sense amplifier.	
Table 19.	DI timing	
Table 20.	DO	
Table 21.	DO timing	
Table 22.	EN, CSN timing.	
Table 23.	Truth table	
Table 24.	DI	
Table 25.	DO	
Table 26.	Command byte	
Table 27.	Operating code definition	
Table 28.	Control and status (RAM) address map	
Table 29.	Device (ROM) address map (access with OC0 and OC1 set to '1')	
Table 30.	Global Status Byte	
Table 31.	Address 0<00(hex)>:StatReg 0 - read clear	
Table 32.	DS_MON - drivers relations	
Table 33.	Address 1 <01(hex)>:ApplReg1-read/write	
Table 34.	Overvoltage threshold of the Vs monitoring	
Table 35.	DIAG monitoring of source voltages	
Table 36.	Address 2 <02(hex)>: ApplReg2 – read/write.	
Table 37.	Cross current protection time (t _{CCP}).	
Table 38.	Multiplexer for current sense amplifier	
Table 39.	Gain of current sense amplifier	
Table 40.	Address 3 <03(hex)>: ApplReg3 – read/write.	
Table 41.	External threshold voltage, factor n	
Table 42.	External threshold voltage, factor m	
Table 43.	Read device information (ROM)	
Table 44.	Address 0 <00(hex)>: ID-header - read only	40
Table 45.	Address 1 <01(hex)>: product ID (LSB) - read only	
Table 46.	Address 2 <02(hex)>: product ID (MSB) - read only	41
Table 40.	Address 3 <03(hex)>: SPI frame ID - read only	
Table 47.	PowerSSO-36 mechanical data	
1 40.		

Table 49.	LQFP32 mechanical data	. 47
Table 50.	Document revision history	. 50

List of figures

Figure 1.	Block diagram	7
Figure 2.	Pinning of device in PowerSSO-36 package	9
Figure 3.	Pinning of device in LQFP-32 package	11
Figure 4.	Output timing diagram (active free wheeling)	20
Figure 5.	Output timing diagram (passive free wheeling)	
Figure 6.	SPI - transfer timing diagram	22
Figure 7.	SPI - input timing	23
Figure 8.	SPI - DO valid data delay time and valid time	23
Figure 9.	SPI - DO enable and disable time	24
Figure 10.	SPI - timing of status bit 0 (fault condition)	24
Figure 11.	Global error flag diagram	
Figure 12.	PowerSSO-36 R _{thi-amb} vs. PCB copper area in open box free air condition	42
Figure 13.	PowerSSO-36 package dimensions	
Figure 14.	LQFP32 R _{thi-amb} vs. PCB copper area in open box free air condition	45
Figure 15.	LQFP32 package dimensions.	46
Figure 16.	PowerSSO-36 tube shipment (no suffix)	47
Figure 17.	PowerSSO-36 tape and reel shipment (suffix "TR")	48
Figure 18.	LQFP32 tape and reel shipment (suffix "TR")	49
Figure 19.	LQFP32 tray shipment (no suffix)	49

1 Block diagram and pin description

Figure 1. Block diagram

1.1 Pin description

	Table 2.	Pin	definitions	and	functions
--	----------	-----	-------------	-----	-----------

Pin	Symbol	Function	
1	GND	Ground. Reference potential, connected to slug.	
2	GNDD	Digital ground. Reference potential.	
3	V _{CCD}	Logic voltage supply 3.3 V/5 V: for this input a ceramic capacitor as close as possible to GND is recommended.	
4	V _{CC}	Analog voltage supply 3.3 V/5 V: for this input a ceramic capacitor as close as possible to GND is recommended.	
5	EN	Enable input. The enable input has a pull-down resistor.	
6	DIR	Direction select input for H-bridge control. This input has a pull-down current.	
7	PWM	PWM input for H-bridge control. This input has a pull-down current.	
8	CSN	Chip select not input: this input is low active and requires CMOS logic levels. The serial data transfer between L99H02 and microcontroller is enabled by pulling the input CSN to low-level. This input has a pull-up current.	

Pin	Symbol	Function
9	CLK	Serial clock input: this input controls the internal shift register of the SPI and requires CMOS logic levels. This input has a pull-down current.
10	DI	Serial data in: the input requires CMOS logic levels and receives serial data from the microcontroller. The data is an 8-bit control word and the most significant bit (MSB, bit 7) is transferred first. This input has a pull-down current.
11	DO	Serial data out: the diagnosis data is available via the SPI and this tristate-output. The output remains in tristate, if the chip is not selected by the input CSN (CSN = high).
12, 14, 19, 20, 22	NC	Not connected.
13	CSO	Current sense amplifier output: V _{CC} compatible.
15	CSI1+	Current sense amplifier input: positive input 1, multiplexible.
16	CSI1-	Current sense amplifier input: negative input 1, multiplexible.
17	CSI2+	Current sense amplifier input: positive input 2, multiplexible.
18	CSI2-	Current sense amplifier input: negative input 2, multiplexible.
21	TS/ ACT_OFF	Thermal sensor interface or input to switch all driver in sink condition.
23	GL2	Gate driver for PowerMOS low-side switch in half bridge 2.
24	SL2	Source of low-side switch in half bridge 2.
25	GH2	Gate driver for PowerMOS high-side switch in half bridge 2.
26	SH2	Source/drain of half bridge 2.
27	SL1	Source of low-side switch in half bridge 1.
28	GL1	Gate driver for PowerMOS low-side switch in half bridge 1.
29	SH1	Source/drain of half bridge 1.
30	GH1	Gate driver for PowerMOS high-side switch in half bridge 1.
31	CP	Charge pump output.
32	CP2+	Charge pump pin for capacitor 2, positive side.
33	CP2-	Charge pump pin for capacitor 2, negative side.
34	CP1+	Charge pump pin for capacitor 1, positive side.
35	CP1-	Charge pump pin for capacitor 1, negative side.
36	V _S	Power supply voltage (external reverse protection required). For EMI reason a ceramic capacitor as close as possible to GND is recommended.

Table 2. Pin definitions and functions (continued)

Figure 2. Pinning of device in PowerSSO-36 package

1.2 Pinout LQFP32

Table 3. Pin definitions and functions	Table 3. Pin definitio	ons and functions
--	------------------------	-------------------

Pin	Symbol	Function	
1	CP2-	Charge pump pin for capacitor 2, negative side.	
2	CP1+	Charge pump pin for capacitor 1, positive side.	
3	CP1-	Charge pump pin for capacitor 1, negative side.	
4	V _S	Power supply voltage (external reverse protection required). For EMI reason a ceramic capacitor as close as possible to GND is recommended.	
5	GND	Ground. Reference potential.	
6	GNDD	Digital ground. Reference potential.	
7	V _{CCD}	Logic voltage supply 3.3 V/5 V: for this input a ceramic capacitor as close as possible to GND is recommended.	
8	V _{CC}	Analog voltage supply 3.3 V/5 V: for this input a ceramic capacitor as close as possible to GND is recommended.	
9	EN	Enable input. The enable input has a pull-down resistor.	

Pin	Symbol	Function
10	DIR	Direction select input for H-bridge control. This input has a pull-down current.
11	PWM	PWM input for H-bridge control. This input has a pull-down current.
12	CSN	Chip select not input: this input is low active and requires CMOS logic levels. The serial data transfer between L99H01 and microcontroller is enabled by pulling the input CSN to low-level. This input has a pull-up current.
13	CLK	Serial clock input: this input controls the internal shift register of the SPI and requires CMOS logic levels.This input has a pull-down current.
14	DI	Serial data in: the input requires CMOS logic levels and receives serial data from the microcontroller. The data is an 8-bit control word and the most significant bit (MSB, bit 7) is transferred first. This input has a pull-down current.
15	DO	Serial data out: the diagnosis data is available via the SPI and this tristate-output. The output remains in tristate, if the chip is not selected by the input CSN (CSN = high).
16	CSO	Current sense amplifier output: V _{CC} compatible.
17	CSI1+	Current sense amplifier input: positive input 1, multiplexible.
18	CSI1-	Current sense amplifier input: negative input 1, multiplexible.
19	CSI2+	Current sense amplifier input: positive input 2, multiplexible.
20	CSI2-	Current sense amplifier input: negative input 2, multiplexible.
21	NC	Not connected.
22	TS/ ACT_OFF	Thermal sensor interface or external off for all gate drivers.
23	GL2	Gate driver for PowerMOS low-side switch in halfbridge 2.
24	SL2	Source of low-side switch in halfbridge 2.
25	GH2	Gate driver for PowerMOS high-side switch in halfbridge 2.
26	SH2	Source/drain of halfbridge 2.
27	SL1	Source of low-side switch in halfbridge 1.
28	GL1	Gate driver for PowerMOS low-side switch in halfbridge 1.
29	SH1	Source/drain of halfbridge 1.
30	GH1	Gate driver for PowerMOS high-side switch in halfbridge 1.
31	СР	Charge pump output.
32	CP2+	Charge pump pin for capacitor 2, positive side.

Table 3. Pin definitions and functions (continued)

57

2 Electrical specifications

2.1 Absolute maximum ratings

Stressing the device above the rating listed in *Table 4* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Item	Symbol	Parameter	Value	Unit
4.1.1		Power supply voltage	-0,3 to 35	V
4.1.2	V _S	Single pulse t _{max} < 400 ms	40	V
4.2	V _{CC}	Stabilished supply voltage	-0.3 to 5.5	V
4.3	DI, DO, CLK, CSN, EN, DIR, PWM	Digital input / output voltage	-0.3 to V _{CC} + 0.3	V
4.4	CSO, TS	Analog input / output voltage	-0.3 to V _{CC} + 0.3	V
4.5	CSI1+, CSI1-, CSI2+, CSI2-	HV signal pins	-4 to V _S + 8 V	V
4.6	GL2, GH2, GL1, GH1 (Gxy)	HV signal pins	Sxy - 1 to Sxy + 10; V _{CP} + 0.3	V
4.7	SL2, SH2, SL1, SH1	HV signal pins	-6 to 40	V
4.8	CP2- CP1-	HV signal pins	-0.3 to V _S + 0.3	V
4.9	CP1+	HV signal pins	V _S - 0.3 to V _S + 14	V
4.10	CP2+	HV signal pins	V _S - 0.6 to V _S + 14	V
4.11	СР	Power pin	V _S - 0.3 to V _S + 14	V

2.2 ESD protection

Table 5. ESD protection

ltem	Parameter	Value	Unit
5.1	All pins	± 2 ⁽¹⁾	kV
5.2	V _S versus GND	± 4 ⁽¹⁾	kV

1. - HBM according to MIL 883C, Method 3015.7 or EIA/JESD22-A114-A. - HBM with all unzapped pins grounded.

2.3 Thermal data

Item	Symbol	Parameter	Value	Unit
6.1	Тj	Operating junction temperature	-40 to 150	°C

Table 6. Operating junction temperature

Table 7. Temperature warning and thermal shutdown

Item	Symbol	Parameter		Min.	Тур.	Max.	Unit
7.1	T _{jTW ON}	Temperature warning threshold junction temperature	Тј	135	—	165	°C
7.2	T _{jSD ON}	Thermal shutdown threshold junction temperature	T _j increasing	155	_	185	°C
7.3	T _{jSD OFF}	Thermal shutdown threshold junction temperature	T _j decreasing	150	_	180	°C

Table 8. Packages thermal resistance

ltem	Symbol	Paramotor	Parameter Value Value PowerSSO-36 LQFP32		Unit
nem	Symbol	Falance	PowerSSO-36	LQFP32	Onit
8.1	R _{thj-amb}	Thermal resistance junction- ambient (max.)	58 ⁽¹⁾	80 ⁽¹⁾	°C/W

1. Minimum footprint.

2.4 Electrical characteristics

 V_S = 6 V to 28 V, V_{CC} = 3 V to 5.3 V, T_j = -40°C to 150°C, unless otherwise specified.

The voltages are referred to GND and currents are assumed positive, when the current flows into the pin.

Item	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
9.1	V _S	Operating supply voltage range		6		28	V
9.2	V _{VS_OV1}	Overvoltage disable high threshold 1	SPI: OVT = 1	28	30.5	32	V
9.3	$V_{VS_{OV1H}}$	Overvoltage threshold 1 hysteresis		0.57	0.77	1.07	V
9.4	V _{VS_OV2}	Overvoltage disable high threshold 2	SPI: OVT = 0	18	20	22	V
9.5	V_{VS_OV2H}	Overvoltage threshold 2 hysteresis		0.42	0.62	0.82	V

Table 9. Supply

Item	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
9.6	V _{VS_UV}	Undervoltage disable low threshold		4.7	4.9	5.1	V
9.7	V _{VS_UVH}	Undervoltage threshold hysteresis		0.2	0.3	0.4	V
9.8.1	L		V_{S} = 13 V; V_{CC} = 5 V; Active mode; Outputs floating	4.5	5.5	6.5	mA
9.8.2	IS	I _S V _S DC supply current	V_{S} = 6 V to 28 V; V _{CC} = 5.0 V; Active mode; Outputs floating	2.5		18	mA
9.9	I _{SL}	V _S quiescent supply current	$V_{S} = 13 V; V_{CC} = 0 V;$ Standby mode; $T_{Test} = -40^{\circ}C, 25^{\circ}C;$ Outputs floating			5	μA
9.10	I _{CC}	V _{CC} DC supply current	V _S = 13 V; V _{CC} = 5 V; active mode	1.5	1.8	2.5	mA
9.11	I _{CC}	V _{CC} quiescent supply current	V _{CC} = 5 V; standby mode	30	70	150	μA
9.12	I _{CCd}	V _{CCd} supply current	V_{S} = 13 V; V_{CC} = V_{CCd} = 5 V; active mode	250	500	750	μA

Table 9. Supply (continued)

Table 10. Undervoltage detection

			_				
Item	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
10.1	$V_{\text{POR OFF}}$	Power-on reset threshold	V _{CC} increasing	2.2	2.55	2.8	V
10.2	V _{POR ON}	Power-on reset threshold	V _{CC} decreasing	2.0	2.25	2.6	V
10.3	V _{POR hyst}	Power-on reset hysteresis	V _{POR OFF} - V _{POR ON}	0.2	0.3	0.4	V

Table 11. Watchdog

Item	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
11.1	T _{WDTO}	Watchdog time out	_	50	60	100	ms

Item	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
12.1	V _{in L}	Low-level input voltage		0.3 * V _{CC}	0.4 * V _{CC}		V
12.2	V _{in H}	High-level input voltage			0.6 * V _{CC}	0.7 * V _{CC}	V
12.3	V _{in Hyst}	Input voltage hysteresis		0.1 * V _{CC}			V
12.4	I _{CSN in}	Pull-up current at input CSN	$V_{\rm CSN}$ = $V_{\rm CC}$ - 1.5 V	-50	-25	-10	μA
12.5	I _{CLK in}	Pull-down current at input CLK	V _{CLK} = 1.5 V	10	35	50	μA
12.6	I _{DI in}	Pull-down current at input DI	V _{DI} = 1.5 V	10	35	50	μA
12.7	I _{DIR in}	Pull-down current at input DIR	V _{DIR} = 1.5 V	10	35	50	μA
12.8	I _{PWM in}	Pull-down current at input PWM	V _{PWM} = 1.5 V	10	35	50	μA
12.9	R _{EN in}	Pull-down resistance at input EN	V _{EN} = V _{CC}	100	210	480	kΩ
12.10	C _{in} ⁽¹⁾	Input capacitance at input CSN, CLK, DI, DIR and PWM	0 V < V _{CC} < 5.3 V		10	15	pF

Table 12. Inputs: CSN, CLK, PWM, DIR, EN and DI

1. Value of input capacity is not measured in production test. Parameter guaranteed by design.

Item	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
13.1.1			V _S = 6 V; I _{CP} = 15 mA	V _S + 6	V _S + 7	V _S + 7.5	V
13.1.2	V _{CP}	Charge pump output voltage	V _S = 10 V; I _{CP} = 15 mA	V _S + 11	V _S + 12	V _S + 13.5	V
13.1.3		5	V _S > 12 V; I _{CP} = 15 mA	V _S + 11	V _S + 12	V _S + 13.5	V
13.2	I _{CP}	Charge pump output current	$f_{CP} = f_{SYS_CLK} / 32;$ V _S = 14 V; V _{CP} = V _S + 10 V	26	38	48	mA
13.3	V _{CP_LOW}	Charge pump low threshold voltage		V _S + 4.5	V _S + 5	V _S + 5.5	V
13.4.1	f	Clock frequency	V _{CC} = 5 V	3	4	4.5	MHz
13.4.2	f _{SYS_CLK}	(internal oscillator)	V _{CC} = 3 V	2.4	3.3	3.5	MHz
13.5	T _{CP}	Charge pump low filter time			64		μs

Table 13. Charge pump output

Item	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit				
	I	Driv	vers for external high-side Po	owerMOS	1						
14.1	I _{GHx(on)}	Turn on current (SOURCE stage)	$T_j = 25 \ ^{\circ}C \ ^{(1)}$	0.3	0.5 ⁽²⁾	0.8	А				
14.2.1	Р	On-resistance of	V _{SHx} = 0 V; I _{GHx} = 50 mA; T _j = 25°C	3	4	5	Ω				
14.2.2	R _{GHx}	SINK stage	V _{SHx} = 0 V; I _{GHx} = 50 mA; T _j = 125°C	4.5	5.3	7	Ω				
14.3	V _{GHxH}	Gate on voltage	Outputs floating	V _{SHx} + 8 V	V _{SHx} + 10 V	V _{SHx} + 12 V	V				
14.4	R _{GSHx}	Passive Gate clamp resistance		11	13	15	kΩ				
Drivers for external low-side PowerMOS											
14.5	I _{GLx(on)}	Turn on current (SOURCE stage)	$T_{j} = 25^{\circ}C^{(1)}$	0.3	0.5 ⁽²⁾	0.8	А				
14.6.1	P	On-resistance of	$V_{SLx} = 0 V; I_{GLx} = 50 mA;$ T _j = 25°C	3	4	5	Ω				
14.6.2	R _{GLx}	SINK stage	V _{SLx} = 0 V; I _{GLx} = 50 mA; T _j = 125°C	4.5	5.3	7	Ω				
14.7	V _{GLxH}	Gate on voltage		V _{SLx} + 8 V	V _{SLx} + 10 V	V _{SLx} + 12 V	V				
14.8	R _{GSLx}	Passive gate clamp resistance		11	13	15	kΩ				
			Timing of the drivers								
14.9	t _{GHxHL}	Propagation delay time high to low	V_{S} = 13.5 V; V_{SHx} = 0; R _G = 30 Ω; C _G = 4.7 nF	0.8	1.4	1.9	μs				
14.10	t _{GLxHL}	Propagation delay time low to high	V_{S} = 13.5 V; V_{SLx} = 0; R _G = 30 Ω,; C _G = 4.7 nF	0.6	1.2	1.8	μs				
14.11	t _{GHxr2}	Rise time	V_{S} = 13.5 V; V_{SHx} = 0; R _G = 0 Ω; C _G = 4.7 nF	45		170	ns				
14.12	t _{GHxf2}	Fall time	V_{S} = 13.5 V; V_{SHx} = 0; R _G = 0 Ω; C _G = 4.7 nF	60		210	ns				
14.13	t _{GLxr2}	Rise time	V_{S} = 13.5 V; V_{SLx} = 0; R _G = 0 Ω; C _G = 4.7 nF	45		170	ns				
14.14	t _{GLxf2}	Fall time	V_{S} = 13.5 V; V_{SLx} = 0; R _G = 0 Ω; C _G = 4.7 nF	60		210	ns				

Table 14. Gate drivers for external Po
--

1. Indirect measurement, parameter measured dynamically using 100 nF load capacitor and evaluating the slew rate.

2. Average value.

			-				
Item	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
15.1	t _{CCP0}	Cross current protection time	V_{CC} = 5 V, V_{S} = 13.5 V	—	250 ⁽¹⁾	—	
15.2	t _{CCP1}	Cross current protection time	V_{CC} = 5 V, V_{S} = 13.5 V	250	500	750	
15.3	t _{CCP2}	Cross current protection time	V_{CC} = 5 V, V_{S} = 13.5 V	500	750	1000	
15.4	t _{CCP3}	Cross current protection time	V_{CC} = 5 V, V_{S} = 13.5 V	700	1000	1300	ns
15.5	t _{CCP4}	Cross current protection time	V _{CC} = 5 V, V _S = 13.5 V	950	1250	1570	115
15.6	t _{CCP5}	Cross current protection time	V_{CC} = 5 V, V_{S} = 13.5 V	1160	1500	1880	
15.7	t _{CCP6}	Cross current protection time	V_{CC} = 5 V, V_{S} = 13.5 V	1360	1750	2180	
15.8	t _{CCP7}	Cross current protection time	V_{CC} = 5 V, V_{S} = 13.5 V	1560	2000	2480	

Table 15. Cross current protection time

1. Not tested.

Table 16. Drain source monitoring

Item	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
16.1	V _{SCd1}	Drain - source threshold voltage	—	0.15	0.5	0.7	V
16.2	V _{SCd2}	Drain - source threshold voltage	—	0.45	1	1.25	V
16.3	V _{SCd3}	Drain - source threshold voltage	—	0.9	1.5	1.8	V
16.4	V _{SCd4}	Drain - source threshold voltage	—	1.4	2	2.35	V
16.5	t _{SCd}	Drain - source filter-time	—		6		μs

Table 17. Thermal sense interface (4.5 V < V_{CC} < 5.3 V)

ltem	Symbol	Parameter		Min.	Тур.	Max.	Unit
17.1	I _{TS_bias}	Output bias current		200	250	300	μA
17.2	V _{th_TS}	TS threshold voltage	V _{TS} < V _{CC} - 1 V n = number of diodes m = programmed level (0 to 7)		n * (0.31 + m * 0.03)		V

Table 18. Current sense amplifier

Item	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit	
	DC parameters							
18.1	V _{ICM}	Input voltage range – common mode	V _{CC} = 5 V, V _S = 13 V	-4		V _{CP} - 8 V	V	
18.2	V _{IOFF50}	Input offset voltage	V _{CC} = 5 V, V _S = 13 V Gain = 50	-11	-4	3	mV	
18.3	V _{IOFF20}	Input offset voltage	V _{CC} = 5 V, V _S = 13 V Gain = 20	-23	-8	7	mV	
18.4	V _{IOFF10}	Input offset voltage	V _{CC} = 5 V, V _S = 13 V Gain = 10	-30	-10	10	mV	

Itom	Symbol	Table 18. Current sen		,	Turn	Моч	l Init
Item	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
18.5	$V_{IOFF-T50}/\Delta T$	Input offset voltage drift vs. temperature	V _{CC} = 5 V, V _S = 13 V Gain = 50		10 ⁽¹⁾		μV/°K
18.6	V _{IOFF-T20} /ΔT	Input offset voltage drift vs. temperature	V _{CC} = 5 V, V _S = 13 V Gain = 20		18 ⁽¹⁾		μV/°K
18.7	V _{IOFF-T10} /∆T	Input offset voltage drift vs. temperature	V _{CC} = 5 V, V _S = 13 V Gain = 10		27 ⁽¹⁾		μV/°K
18.8	V _{IOFF-O_50}	Input offset voltage with offset compensation	V _{CC} = 5 V, V _S = 13 V Gain = 50	-3.5	-1	1.5	mV
18.9	V _{IOFF-O_20}	Input offset voltage with offset compensation	V _{CC} = 5 V, V _S = 13 V Gain = 20	-6	-2	4	mV
18.10	V _{IOFF-O_10}	Input offset voltage with offset compensation	V _{CC} = 5 V, V _S = 13 V Gain = 10	-10	-3	6	mV
18.11	P _{SRR_50}	Power supply rejection ratio	V _{CC} = 5 V, V _S = 13 V Gain = 50	39			dB
18.12	P _{SRR_20}	Power supply rejection ratio	V _{CC} = 5 V, V _S = 13 V Gain = 20	31			dB
18.13	P _{SRR_10}	Power supply rejection ratio	V _{CC} = 5 V, V _S = 13 V Gain = 10	25			dB
18.14	CMRR	Input common mode rejection	V _{CC} = 5 V, V _S = 13 V T _j = 25°C, DC	60			dB
18.15	Gain ₅₀	Gain	V _{CC} = 5 V, V _S = 13 V	46.75	50	53.25	
18.16	Gain ₂₀	Gain	V _{CC} = 5 V, V _S = 13 V	19	20	21	
18.17	Gain ₁₀	Gain	V _{CC} = 5 V, V _S = 13 V	9.5	10	10.5	
18.18.1	V	High-level output voltage	V _{CC} = 5 V, V _S = 13 V I _{OUT} = 2 mA	V _{CC} - 250 mV			V
18.18.2	V _{CSOh}	Thigh-level output voltage	V _{CC} = 5 V, V _S = 13 V I _{OUT} = 200 μA	V _{CC} - 50 mV	V _{CC} - 20 mV		V
18.19.1	V	Low-level output voltage	V _{CC} = 5 V, V _S = 13 V I _{OUT} = -2 mA		100	250	mV
18.19.2	V _{CSOI}		V _{CC} = 5 V, V _S = 13 V I _{OUT} = -200 μA		15	50	mV
		Dynamic	parameters				
18.20	SRcso_10	CSO slew rate	$V_{CC} = 5 V, V_S = 13 V$ Gain = 10; RL = 1 k Ω ,; CL = 22 pF		2.8	4	V/µs
18.21	SRcso_20	CSO slew rate	$V_{CC} = 5 V, V_S = 13 V$ Gain = 20; RL = 1 k Ω ,; CL = 22 pF		3	4.5	V/µs

Table 18. Current sense amplifier (continued)

Item	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
18.22	SRcso_50	CSO slew rate	$V_{CC} = 5 V, V_S = 13 V$ Gain = 50; RL = 1 k Ω ,; CL = 22 pF		4.4	6	V/µs
18.23	I _{CSI_10}	CSI input current	V _{CC} = 5 V, V _S = 13 V Gain = 10	-114	-102	-90	μA
18.24	I _{CSI_20}	CSI input current	V _{CC} = 5 V, V _S = 13 V Gain = 20	-80	-72	-64	μA
18.25	I _{CSI_50}	CSI input current	V _{CC} = 5 V, V _S = 13 V Gain = 50	-39	-33	-27	μA

Table 18. Current sense amplifier (continued)

1. Not tested, guaranteed by design.

Figure 4. Output timing diagram (active free wheeling)

2.5 SPI - electrical characteristics

 $V_S = 6 V$ to 28 V, $V_{CC} = 3 V$ to 5.3 V, $T_j = -40^{\circ}C$ to 150°C, unless otherwise specified. The voltages are referred to GND and currents are assumed positive, when the current flows into the pin.

DI timing parameters tested in production by a passed/failed test:

- Tj = -40° C / $+25^{\circ}$ C: SPI communication @ 2 MHz.
- Tj = +125°C: SPI communication @ 1.25 MHz.

			Di uming				
Item	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
19.1	t _{CLK}	Clock period	—	1000	—		ns
19.2	t _{CLKH}	Clock high time	_	400	_		ns
19.3	t _{CLKL}	Clock low time	_	400	_		ns
19.4	t _{set CSN}	CSN setup time, CSN low before rising edge of CLK	_	400			ns
19.5	t _{set CLK}	CLK setup time, CLK high before rising edge of CSN	_	400	_		ns
19.6	t _{set DI}	DI setup time	_	200	_		ns
19.7	t _{hold DI}	DI hold time	_	200	_		ns
19.8	t _{r in}	Rise time of input signal DI, CLK, CSN	_		_	100	ns
19.9	t _{f in}	Fall time of input signal DI, CLK, CSN	_			100	ns

T	abl	e 1	9.	DI	tim	ing
•	uNI	•••	ν.			mg.

ltem	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
20.1	V _{DOL}	Low-level output voltage	I _D = -4 mA		0.2	0.4	V
20.2	V _{DOH}	High-level output voltage	I _D = 4 mA	V _{CC} - 0.4	V _{CC} - 0.2		V
20.3	I _{DOLK}	Tristate leakage current	$V_{CSN} = V_{CC};$ 0 V < V _{DO} < V _{CC}	-10		10	μA
20.4	C _{DO} ⁽¹⁾	Tristate input capacitance	V _{CSN} = V _{CC} ; 0 V < V _{CC} < 5.3 V		10	15	pF

Table 20. DO

1. Value of input capacity is not measured in production test. Parameter guaranteed by design.

ltem	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
21.1	t _{r DO}	DO rise time	C _L = 100 pF; I _{load} = -1 mA	_	80	140	ns
21.2	t _{f DO}	DO fall time	C _L = 100 pF; I _{load} = 1 mA		50	100	ns
21.3	t _{en DO tri L}	DO enable time from tristate to low-level	C _L = 100 pF; I _{load} = 1 mA; pull-up load to V _{CC}		100	250	ns
21.4	t _{dis DO L tri}	DO disable time from low-level to tristate	C _L = 100 pF; I _{load} = 4 mA; pull-up load to V _{CC}		380	450	ns
21.5	t _{en DO tri H}	DO enable time from tristate to high-level	C _L = 100 pF; I _{load} = -1 mA; pull-down load to GND		100	250	ns
21.6	t _{dis DO H tri}	DO disable time from high-level to tristate	C _L = 100 pF; I _{load} = -4 mA; pull-down load to GND		380	450	ns
21.7	t _{d DO}	DO delay time	V _{DO} < 0.3 V _{CC} ; V _{DO} > 0.7 V _{CC} ; C _L = 100 pF		50	250	ns

Table	21.	DO	timing
-------	-----	----	--------

Table 22. EN, CSN timing

Item	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
22.3	^t CSN_HI,min	CSN HI time, active mode: the min high time between two independent SPI commands.	Transfer of SPI- command to input register	2			μs

Figure 6. SPI - transfer timing diagram

Figure 7. SPI - input timing

Figure 9. SPI - DO enable and disable time

3 Device description

3.1 Dual power supply: V_S and V_{CC}

The power supply Vs supplies the charge pump and the gate drivers. An internal chargepump is used to drive the high-side switches and the low-side switches. The supply voltage V_{CC} (3.3 V / 5 V) is used for the logic part, the SPI of the device and for the output stage of the current sense amplifier. Due to the independent logic supply voltage the control and the status information is not lost, even if the supply voltage V_S is switched-off. In case of poweron (V_{CC} increases from undervoltage to V_{POR OFF} = 2.5 V, typical) the circuit is initialized by an internally generated power-on reset (POR). If the voltage V_{CC} decreases under the minimum threshold (V_{POR ON} = 2.2 V, typical), the outputs are switched-off and the status and the control registers are reset to default values.

3.2 Standby mode (EN)

The L99H02 is activated with enable input high. For enable input floating (not connected) or $V_{EN} = 0$ V the device is in standby mode. In standby mode all latched data are cleared and inputs and outputs are switched-off. In standby mode the current at V_S is less than 5 μ A (1 μ A) for CSN = high (DO in tristate). If $V_{CC} > V_{POR \ OFF}$ and EN = high the device enters the active mode.

In active mode the diagnostic functions are active. In fact gate drivers and charge pump status will depend on the fault flags. For example if the device enters in active mode with VS>VSOV the charge pump will be disabled.

3.3 H-bridge control (DIR, PWM, bit FW)

The DIR and PWM inputs control the drivers of the external H-bridge transistors. The motor direction can be chosen with the DIR input, the duty cycle and frequency with the PWM input. With the SPI bits FW and FW-PAS 4 different free wheeling modes (2 active and 2 passive) can be selected by using the high-side transistors or the low-side transistors. Unconnected inputs are defined by internal pull-down current.

I	\mathbb{N}
	6
	S
	-

2

	Table 23. Truth table																	
N°		Со	ntrol p	oins	Contro	ol bits	Fai			lure bits				Outpu	ut pins		SPI DO	Comment
N	EN	DIR	PW M	TS/ACT_ OFF	FW	FW_ PAS	CP_ LOW	ov	UV	DS_ MON	TSD	WDTO	GH1	GL1	GH2	GL2	GL_E R	Comment
1	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	RL	RL	RL	RL	Т	Standby mode
2	1	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	RL	RL	RL	RL	1	Power-on reset
3	1	Х	х	0	x	х	0	0	0	0	0	0	L	L	L	L	0	EXT_TS = 1 (external thermal shutdown)
4	1	Х	Х	0	Х	Х	0	0	0	0	0	0	L	L	L	L	0	EXT_TS = 0 (active Off)
5	1	Х	Х	1	Х	Х	1	0	0	0	0	0	RL	RL	RL	RL	0	Charge pump voltage too low
6	1	Х	Х	1	Х	Х	0	0	0	0	1	0	RL	RL	RL	RL	1	Internal thermal shutdown
7	1	Х	Х	1	Х	Х	0	1	0	0	0	0	L	L	L	L	1	V _S overvoltage
8	1	Х	Х	1	Х	Х	0	0	1	0	0	0	L	L	L	L	1	V _S undervoltage
9	1	Х	Х	1	Х	Х	0	0	0	1	0	0	L ⁽¹⁾	L ⁽¹⁾	L ⁽¹⁾	L ⁽¹⁾	0	Short-circuit ⁽¹⁾
10	1	Х	Х	1	Х	Х	0	0	0	0	0	1	L	L	L	L	1	Watchdog time out
11	1	0	1	1	Х	Х	0	0	0	0	0	0	L	Н	Н	L	0	-
12	1	Х	0	1	0	0	0	0	0	0	0	0	L	Н	L	Н	0	Act. free wheeling mode LS
13	1	0	0	1	0	1	0	0	0	0	0	0	L	Н	L	L	0	Pass. free wheeling mode LS
14	1	1	0	1	0	1	0	0	0	0	0	0	L	L	L	Н	0	Pass. free wheeling mode LS
15	1	1	1	1	Х	Х	0	0	0	0	0	0	Н	L	L	н	0	-
16	1	Х	0	1	1	0	0	0	0	0	0	0	Н	L	Н	L	0	Act. free wheeling mode HS
17	1	0	0	1	1	1	0	0	0	0	0	0	L	L	Н	L	0	Pass. free wheeling mode HS
18	1	1	0	1	1	1	0	0	0	0	0	0	Н	L	L	L	0	Pass. free wheeling mode HS

1. Only the half bridge (low-side and high-side) where one MOSFET is in short-circuit condition is switched-off. Both MOSFETs of the other half bridge remain active and driven by DIR and PWM.

Device description

Symbols:

- x: Don't care
- 1: Logic high or active
- 0: Logic low or not active
- **H**: Output in source condition
- L: Output in sink condition
- RL: Resistive low (see Section 3.4: Resistive low)
- T: Tristate
- FW: Free wheeling
- **FW_PAS**: Free wheeling passive
- **CP_LOW**: Charge pump low
- **OV**: Overvoltage
- UV: Undervoltage
- **DS_MON**: Short-circuit
- TSD: Thermal shutdown
- GL_ER: Global error flag

3.4 Resistive low

The resistive low output mode protects the L99H02 and the H-bridge in standby mode and in some failure modes (internal thermal shutdown (TSD), charge pump low (CP_LOW), stucked reset (STK_RESET_Q) and power-on reset (POR). When a gate driver changes into the resistive low output mode due to a failure a sequence is started. In this sequence the concerning driver is switched in sink condition for 32 μ s to 64 μ s to ensure a fast switch-off of the H-bridge transistor. Afterwards the driver is switched in the resistive output mode (resistive path to source).

3.5 Diagnostic functions

The diagnostic functions (over load, power supply over- and undervoltage, charge pump low, watchdog, temperature warning and internal/external thermal shutdown) are internally filtered and the condition has to be valid for at least 64 μ s (6 μ s for a short-circuit) before the corresponding status bit in the status registers is set. The filters are used to improve the noise immunity of the device. The internal temperature warning function is intended for information purpose and does not change the state of the output drivers. On the contrary, the over load condition switches the corresponding half bridge in sink condition. The internal thermal shutdown condition and charge pump low disable all drivers (resistive low). The external thermal shutdown, watchdog, over- and undervoltage condition switch all drivers in sink condition. The microcontroller needs to clear the status bits to reactivate the drivers.

3.6 Overvoltage and undervoltage detection

If the power supply voltage V_S rises above the overvoltage threshold V_{VS_OV} (typical 20 V / 30 V), all gate driver stages are switched in sink condition to protect the H-bridge and the load, setting the OV flag. Two values for the overvoltage threshold can be selected with the SPI. When the voltage V_S drops below the undervoltage threshold

DS12547 Rev 6

 V_{VS_UV} , all gate driver stages are switched in the sink condition to avoid driving the power devices without sufficient gate driving voltage (increased power dissipation), setting the UV bit. In both cases, overvoltage and undervoltage detection, the charge pump is disabled. If the supply voltage V_S recovers from UV/OV to normal operating voltage range and if the OV_UV_RD is set to 0, then the charge pump is automatically enabled. In any case, regardless of the OV_UV_RD bit value, the microcontroller needs to clear the status register to reactivate the gate drivers.

Note: In particular when the OV_UV_RD control bit is set to one, two status register clear operations are needed to reactivate the gate drivers, one to clear the OV/UV flag and turn on the charge pump and one to clear the CP_LOW flag.

3.7 Charge pump

The charge pump uses 2 external capacitors. The output of the charge pump has a current limitation. In standby mode and after overvoltage, undervoltage or a thermal shutdown has been triggered the charge pump is disabled. If the charge pump output voltage drops below the charge pump low voltage threshold for longer than T_{CP} , the CP_LOW flag is set and all gate drivers are switched-off (resistive output, see *Section 3.4: Resistive low*). The CP_LOW flag has to be cleared through a software reset to reactivate the gate drivers.

3.8 Temperature warning and thermal shutdown

If junction temperature rises above T_{jTWON} the temperature warning flag TW is set and detectabled via the SPI. If junction temperature rises above the second threshold T_{jSDON} , the thermal shutdown flag (TSD) is set and the gate drivers and the charge pump are switched-off to protect the device. The gates of the H-bridge are discharged by the resistive low mode (see *Section 3.4: Resistive low*). In order to reactivate the output stages the junction temperature must decrease below T_{jSDOFF} and the thermal shutdown flag has to be cleared by the microcontroller.

3.9 Short-circuit detection / drain source monitoring

The drain - source voltage of each activated external MOSFET of the H-bridge is monitored by comparators to detect shorts to ground or battery. If the voltage drop over the external MOSFET exceeds the threshold voltage V_{SCd} for longer than the short current detection time t_{SCd} the corresponding gate driver switches the external MOSFET off and the corresponding drain source monitoring flag (DS_MON_[3:0]) is set. Until this failure flag is reset the corresponding half bridge is in sink condition. The DS_MON flags have to be cleared through a software reset to reactivate the gate drivers. The drain source monitoring has a nominal filter time of 6 μ s. This monitoring is only active when the corresponding gate driver is in source condition. The threshold voltage V_{SCd} can be programmed in 4 steps between 0.5 V and 2 V with the SPI.

3.10 Programmable cross current protection

The external Power MOSFET's transistors in H-bridge (two half bridges) configuration are switched-on with an additional delay time t_{CCP} to prevent cross current in the half bridge. The cross current protection time t_{CCP} can be programmed with the SPI.

3.11 Current sense amplifier (CSA)

The current sense amplifier (CSA) is specially designed for current sensing in automotive applications. It is a bidirectional, single-supply amplifier for amplifying small differential voltages in a wide common mode voltage range (-4 V to (V_{CP} - 8) V). It supports the current measurement at two shunts. The result of the respective shunt can be multiplexed to the microcontroller compatible output voltage by a SPI command.

A gain of 50, 20 or 10 is SPI programmable. The inputs (CSI1+ / CSI1- and CSI2+ / CSI2-) are built as a transconductance stage. Therefore a series resistor (for filtering etc.) should not exceed 50 Ω to keep the additional gain error below 1%.

The output works at half scale: $V_{CSO0} = (0.5 * V_{CC}) V$ for $V_{IDIFF} = 0 V$. An internal offset measurement is in normal mode available with the "OFF_CAL" SPI-bit. If this bit is set to logic "1" the input pins are disconnected from the amplifier and a virtual zero input differential voltage is selected.

3.12 Thermal sensor interface / H-bridge switch-off input

The TS/ACT_OFF input pin is configurable by SPI with the EXT_TS bit. This pin could be used as temperature sensor interface for the power stage temperature sensors or as external switch off input for the power stage (all the external MOSFETs). The output bias current for the power stage temperature sensors ITS_bias is on for EN = high.

3.12.1 EXT_TS-bit = low (active off)

The TS/ACT_OFF input is used as a logic driver control input, without filter delay and without latching the information.

Pulling the TS/ACT_OFF pin below the programmed threshold shuts off all the MOSFETs and sets the OT_EXT bit.

Increasing the voltage at TS/ACT_OFF pin above the programmed threshold brings back the MOSFETs to the status set by DIR and PWM-pins and resets the OT_EXT bit.

The threshold is programmable by SPI with the bits EXTTH_5:0.

3.12.2 EXT_TS-bit = high (thermal sensor interface)

The thermal sensor interface together with the thermal sensor diodes, can be used to control the temperature of the external H-bridge. When the drop over the diodes chain decreases below the reference voltage for longer than the internal filter time (64 μ s) the OT_EXT bit is set and the drivers switch in sink condition.

In this mode the OT_EXT-status-bit has to be cleared through a software reset to reactivate the gate drivers.

The threshold is programmable by SPI with the bits EXTTH_5:0.

3.13 Watchdog

The task of the watchdog is to monitor the microcontroller during normal operation within a nominal trigger cycle of 60 ms. The microcontroller has to restart the watchdog timer by setting the watchdog restart bit via SPI repeatedly within the watchdog time T_{WDTO} . If no

correct watchdog trigger is sent from the microcontroller, all gate drivers switch in sink condition and the watchdog time out flag (WDTO) is set. Once a watchdog time out is detected, the gate drivers can only be reactivated by sending a software reset.

4 Functional description of the SPI

4.1 Signal description

4.1.1 Serial clock (CLK)

This input signal provides the timing of the serial interface. Data present at serial data input (DI) is latched on the rising edge of serial clock (CLK). Data on Serial Data Out (DO) is shifted out at the falling edge of serial clock (CLK).

The serial clock CLK must be active only during a frame (CSN low phase). Any other switching of CLK close to any CSN edge could generate setup/hold violations in the SPI logic of the device.

4.1.2 Serial data input (DI)

This input is used to transfer data serially into the device. Values are latched on the rising edge of serial clock (CLK).

4.1.3 Serial data output (DO)

This output is used to transfer data serially out of the device. Data is shifted out on the falling edge of serial clock (CLK).

DO also reflects the status of the *<Global Error Flag>* (*<Global Status Byte>[7]*) while CSN is low and no clock signal is present.

4.1.4 Chip select not (CSN)

When this input signal is high, the communication interface of the device is deselected and serial data output (DO) is high impedance. Driving this input low enables the communication. The communication must start and stop on a low-level of serial clock (CLK).

The SPI can be driven by a microcontroller with its SPI peripheral running in the following mode: CPOL = 0 and CPHA = 0.

For timing details and figures refer to Section 2.5: SPI - electrical characteristics

4.2 General data description

The SPI communication is based on a SPI interface structure using CSN (chip select not), DI (serial data in), DO (serial data out/error) and CLK (serial clock) signal lines.

Each DI communication frame consists of a *<Command Byte>* which is followed by 1 *<Data Byte>*.

The data returned on DO within the same frame always starts with the *<Global Status Byte>*, which provides general status information about the device. This byte is followed by 1 *<Data Byte>* (*'In-frame-response'*).

						Т	able 2	24. DI							
		Co	mmar	nd byte	e					[DI - da	ta byt	e		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OC1	OC0	A5	A4	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0

Table 25. DO

	Global Status byte 14 13 12 11 10 9									DC) - da	ita b	yte		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
GL_ER	FE	STK_RESET_Q	TSD	ΤW	UV	OV	WDTO	D7	D6	D5	D4	D3	D2	D1	D0

4.2.1 Command byte

Each communication frame starts with a command byte. It consists of an operating code which specifies the type of operation (*<Read>, <Write>, <Clear status>, <Read Device Information>*) and a 6-bit address.

Table 26. Command byte

			Comman	d byte			
MSB							LSB
Оро	code			Add	ress		
OC1	OC0	A5	A4	A3	A2	A1	A0

Comments:

- **OCx**: Operating code
- Ax: Address

4.2.2 OpCode definition

Table 27. Operating code definition

OC1	OC0	Meaning
0	0	<write mode=""></write>
0	1	<read mode=""></read>
1	0	<clear status=""></clear>
1	1	<read device="" information=""></read>

The <Write Mode> and <Read Mode> operations allow access to the RAM of the device. The <*Clear Status*> operation is used to read a status register and subsequently clear its content. <*Read Device Information*> allows access to the ROM area which contains device related information such as <ID-Header>, <Product Code>, <Silicon Version and Category> and <*SPI-frame-ID*>.

More detailed descriptions of the *device information* are available in Section 4.7.

Device memory map

4.3.1 Control and status (RAM) address map

Name	Access			Add	ress						Content	t			
Name	Access	A5	A4	A3	A2	A 1	A0	D7	D6	D5	D4	D3	D2	D1	D0
Start Reg0	Read/ Clear	0	0	0	0	0	0	DS_MON_3	DS_MON_2	DS_MON_1	DS_MON_0	0	0	OT_EXT	CP_LOW
Start Reg1	Read/ Write	0	0	0	0	0	1	RWD	FW_PAS	OFF_CAL	CLK_SPCTR	OVT	OV_UV_R D	DIAG_1	DIAG_0
Start Reg2	Read/ Write	0	0	0	0	1	0	RWD	COPT_2	COPT_1	COPT_0	FW	MCSA	GCSA_1	GCSA_0
Start Reg3	Read/ Write	0	0	0	0	1	1	RWD	EXT_TS	EXTTH_5	EXTTH_4	EXTTH_3	EXTTH_2	EXTTH_1	EXTTH_0

Table 28. Control and status (RAM) address map

4.3.2 Device (ROM) address map (access with OC0 and OC1 set to '1')

Table 29. Device (ROM) address map (access with OC0 and OC1 set to '1')

Nama	•			Add	ress				Content									
Name	Access	A5	A4	A3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0			
ID-Header	Read device	0	0	0	0	0	0	FAM_1	FAM_0	NR_PI_5	NR_PI_4	NR_PI_3	NR_PI_2	NR_PI_1	NR_PI_0			
Product code 1	Read device	0	0	0	0	0	1	PR_ID_7	PR_ID_6	PR_ID_5	PR_ID_4	PR_ID_3	PR_ID_2	PR_ID_1	PR_ID_0			
Product code 2	Read device	0	0	0	0	1	0	PR_ID_15	PR_ID_14	PR_ID_13	PR_ID_12	PR_ID_11	PR_ID_10	PR_ID_9	PR_ID_8			
SPI-frame-ID	Read device	0	0	0	0	1	1	BR	AR5	AR4	AR3	32 bits	24 bits	16 bits	8 bits			
Reserved	Read device	1	1	1	1	1	1	Reserved, a (see <i>Table</i> 3	accessing this 30).	s address is r	ecognized as	s a failure, the	e device ente	ers a fail-saf	e state			

4.3

5

4.4 Global Status Byte

The Global Status Byte is the first byte shifted out at every SPI access.

The GL_ER bit is present at DO with the falling edge of CSN.

This byte can be reset with the command <clear status>.

The <clear status> command represents a software reset.

Table	30.	Global	Status	Byte
-------	-----	--------	--------	------

Bit	15	14	13	12	11	10	9	8
Name	GL_ER	FE	STK_RESET_Q	TSD	ΤW	UV	OV	WDTO
<default></default>	0	0	1	0	0	0	0	0

Comments:

- **GL_ER**: Global Error Flag. This signal is a logical OR among all the errors of the Global Status Byte (<Global Status Register>[8:14]).
- **FE**: Frame Error. If the number of clock pulses within the previous frame is not 16 the frame is ignored and this bit is set.
- STK_RESET_Q: if a stuck at '1' on SPI_DI during any SPI frame occurs, or if a power-on reset occurs, the STK_RESET_Q is set '0'. STK_RESET_Q is reset ('1') with any SPI command. When STK_RESET_Q is active ('0'), the gate drivers are switched-off (see Section 3.4: Resistive low). After a startup of the circuit the STK_RESET_Q is active because of the POR pulse and the gate drivers are switched-off. The Gate drivers can only be activated after the STK_RESET_Q has been reset with a SPI command.
- **TSD**: Thermal Shutdown due to internal sensor. All the gate drivers and the charge pump are switched-off (see *Section 3.4: Resistive low*). The gate drivers can only be activated after the TSD has been reset with a SPI command.
- **TW**: Thermal Warning
- UV: V_S Undervoltage
- **OV**: V_S Overvoltage
- WDTO: Watchdog time out.

Failures of < Global Status Byte>[8:14] are always linked to the <Global Error Flag>.

The Global Error Flag is reflected via the DO pin while CSN is held low and no clock signal is available. The flag remains as long as CSN is low. This operation does not cause the <communication error> bit (FE) in the <Global Status Byte> to be set.

4.4.1 SPI clock monitor and watchdog

Figure 11. Global error flag diagram

Note: Writing a "1" to RWD - bit in ApplRegx restarts the internal watchdog counter.

The clock monitor counts the number of clock pulses during a communication frame (while CSN is low). If the number of SCK pulses does not correspond with the frame width indicated in the <SPI-frame-ID> (ROM address 03hex) the frame is ignored and the bit <*frame error>* in the <*Global Status Byte>* is set.

Note: Due to this safety functionality, daisy chaining the SPI is not possible. Instead, a parallel operation of the SPI bus by controlling the CSN signal of the connected ICs is recommended.

4.5 Detailed byte description of status register (StatReg0)

The read operation starts always with the command byte followed by 1 data byte. The content of the send data byte has to be '0'. The content of the addressed register is shifted out at DO within the same frame ('in-frame response').

The device uses 1 status register to monitor the status of the device. *Table 31* shows the address and the content of the register.

Note: The errors of the status register are not linked to the <Global Error Flag>.

Bit	7	6	5	4	3	2	1	0	
Name	DS_MON_3	DS_MON_2	DS_MON_1	DS_MON_0	Х	Х	OT_EXT	CP_LOW	
<default></default>	0	0	0	0	0	0	0	0	

Table 31. Address 0<00(hex)>:StatReg 0 - read clear

Comments:

• **DS_MON[3:0]**: if max drain source voltage exceeds the defined thresholds, the DS_MON are set and the corresponding drivers go to sink mode. In particular both gate drivers of the faulty leg will be in sink mode until the DS_MON flag of one of its switch is reset. The DS_MON bits have to be cleared through a software reset to reactivate the drivers.

Table 32. DS_MON - drivers relations						
Register	Deactivated driver					
DS_MON_3	High-side 2					
DS_MON_2	High-side 1					
DS_MON_1	Low-side 2					
DS_MON_0	Low-side 1					

Table 32. DS_MON - drivers relations

- **OT_EXT**: Depending on EXT_TS bit, the following two meanings exist:
 - EXT_TS = low (active off): TS/ACT_OFF pin is used as input to switch the H-bridge in tristate and back. Details are described in Section 3.12.1.
 - EXT_TS = high (thermal sensor interface): TS/ACT_OFF pin is used as thermal sensor interface for external temperature diodes. Details are described in *Section 3.12.1*.
- **CP_LOW**: if a charge pump output low voltage event occurs, all gate drivers are switched-off (resistive low). The CP_LOW bit has to be cleared through a software reset to reactivate the gate driver.
4.6 Detailed byte description of application registers (ApplRegX)

The write/read operation starts always with a command byte followed by 1 data byte.

4.6.1 Description of the data byte

The device uses 3 application registers to configure the device. The default values represent the bits values after a POR event.

Bit	7	6	5	4	3	2	1	0
Name	RWD	FW_PAS	OFF_CAL	CLK_SPCTR	OVT	OV_UV_RD	DIAG1	DIAG0
<default></default>	0	0	0	0	0	0	0	0

Table 33. Address 1 <01(hex)>:ApplReg1-read/write

Comments:

- **RWD**: restarts the watchdog counter by setting the bit to one
- FW_PAS: enables passive free wheeling according to Table 23
- OFF_CAL: offset calibration mode for CSA
- **OVT:** overvoltage threshold selection
- **CLK_SPCTR**: switch the clock to the charge pump
 - 0: 125 Khz (50% duty cycle)
 - **1**: pulses train (max = 8 μ s, min = 2 μ s) to optimize power spectrum

Table 34. Overvoltage threshold of the Vs monitoring

Οντ	Threshold
0	20 V
1	29 V

- **OV_UV_RD**: over/undervoltage recovery disabled.
 - 0: if V_S recovers from OV/UV condition to normal operating voltage range, the charge pump is automatically enabled;
 - 1: if V_S recovers from OV/UV condition to normal operating voltage range, the charge pump remains disabled;

In both cases the microcontroller has to clear the status register to enable the gate drivers

• **DIAG[1:0]**: drain source monitoring threshold voltage selection

DIAG[1]	DIAG[0]	Monitoring threshold voltage
0	0	V _{SCd1} = 0.5 V
0	1	V _{SCd2} = 1 V
1	0	V _{SCd3} = 1.5 V
1	1	V _{SCd4} = 2 V

					p			
Bit	7	6	5	4	3	2	1	0
Name	RWD	COPT_2	COPT_1	COPT_0	FW	MCSA	GCSA_1	GCSA_0
<default></default>	0	0	0	0	0	0	0	0

Table 36. Address 2 <02(hex)>: ApplReg2 - read/write

Comments:

- **RWD**: restarts the watchdog counter by setting the bit to one
- **COPT[2:0]**: filter time to protect the two external half bridges against cross current

COPT_2	COPT_1	COPT_0	Protection time
0	0	0	250 ns
0	0	1	500 ns
0	1	0	750 ns
0	1	1	1000 ns
1	0	0	1250 ns
1	0	1	1500 ns
1	1	0	1750 ns
1	1	1	2000 ns

Table 37. Cross current protection time (t_{CCP})

- **FW**: selects high-side or low-side free wheeling
- MCSA: multiplexer for current sense amplifier.

Table 38. Multiplexer for current sense amplifier

MCSA	Selected amplifier
0	CSA2 (CSI2+ / CSI2-)
1	CSA1 (CSI1+ / CSI1-)

• **GCSA[1:0]**: gain of the current sense amplifier.

Table 39	. Gain o	f current	sense	amplifier
----------	----------	-----------	-------	-----------

GCSA_1	GCSA_0	Gain
0	0	10
0	1	20
1	0	50
1	1	Not applicable

	Table 40. Address 3 <03(nex)>: Appikeg3 – read/write								
Bit	7	6	5	4	3	2	1	0	
Name	RWD	EXT_TS	EXTTH_5	EXTTH_4	EXTTH_3	EXTTH_2	EXTTH_1	EXTTH_0	
<default></default>	0	0	0	0	0	0	0	0	

Table 40. Address 3 <03(hex)>: ApplReg3 - read/write

Comments:

- **RWD**: restarts the watchdog counter by setting the bit to one
- **EXT_TS**: the bit selects the mode of the input pin TS/ACT_OFF:
 - EXT_TS = low (active off): TS/ACT_OFF pin is used as input to switch the H-bridge in tristate and back. Details are described in *Section 3.12.1*.
 - EXT_TS = high (thermal sensor interface): TS/ACT_OFF pin is used as thermal sensor interface for external temperature diodes. Details are described in <u>Section 3.12.2</u>.
- **EXTTH[5:0]**: determines the threshold of the external thermal shutdown

EXTTH_5 EXTTH 4 EXTTH_3 n

Table 41. External threshold voltage, factor n

Table 42. External threshold voltage, factor m

		• •	
EXTTH_2	EXTTH_1	EXTTH_0	m
0	0	0	7
0	0	1	6
0	1	0	5
0	1	1	4
1	0	0	3
1	0	1	2
1	1	0	1
1	1	1	0

Equation 1

V_{th} = n * (0.31 + m * 0.03) V

The purpose of factor n is to determine the number of external temperature sense diodes (in series). With factor m the level of the threshold voltage can be fine tuned.

4.7 Read device information (ROM)

The device information is stored at the ROM addresses defined below and it is read using the corresponding operating code.

Ор	p code Address		Op code Address		Device information
OC1	OC0	Ах	Device information		
1	1	00H	<id-header></id-header>		
1	1	01H	<product 1="" code=""></product>		
1	1	02H	<product 2="" code=""></product>		
1	1	03H	<spi-frame-id></spi-frame-id>		
1	1	3FH	Reserved, accessing this address is recognized as a failure, the device enters a fail-safe state (see <i>Table 30: Global Status Byte</i>).		

Table 43. Read device information (ROM)

The <ID-Header> indicates the product family and specifies how many bytes of device information are available.

In *Table 44* the register is addressable only through a read device information command.

Bit	7	6	5	4	3	2	1	0
Name	FAM_1	FAM_0	NR_PI_5	NR_PI_4	NR_PI_3	NR_PI_2	NR_PI_1	NR_PI_0
<default></default>	0	1	0	0	0	0	1	0

Table 44. Address 0 <00(hex)>: ID-header - read only

• **FAM[1:0]**: family identifier, FAM[1:0] = [0:1] stands for ASSPs.

• **NR_PI[5:0]**: number of product information bytes.

The *<Product Code 1 and 2>* represents a unique identifier of the device and version.

In Table 45 the register is addressable only through a read device information command.

Table 45. Address 1 <01(hex)>: product ID (LSB) - read only

Bit	7	6	5	4	3	2	1	0
Name	PR_ID_7	PR_ID_6	PR_ID_5	PR_ID_4	PR_ID_3	PR_ID_2	PR_ID_1	PR_ID_0
<default></default>	0	0	0	0	0	0	0	1

In *Table 46* the register is addressable only through a read device information command.

DS12547 Rev 6

	Table 40. Address 2 <02(Tex)>. product to (MSD) - read only							
Bit	7	6	5	4	3	2	1	0
Name	PR_ID_15	PR_ID_14	PR_ID_13	PR_ID_12	PR_ID_11	PR_ID_10	PR_ID_9	PR_ID_8
<default></default>	0	0	1	0	1	Х	Х	Х

Table 46. Address 2 <02(hex)>: product ID (MSB) - read only

The $\langle SPI$ -frame-ID> (ROM address 03H) provides information about the register width (1, 2, 3 bytes) and the availability of 'burst mode read' option.

In *Table 47* the register is addressable only through a read device information command.

	Table	+/. Auu	1033.0 4				only	
Bit	7	6	5	4	3	2	1	0
Name	BR	AR5	AR4	AR3	32 bits	24 bits	16 bits	8 bits
<default></default>	0	0	0	0	0	0	1	0

Table 47. Address 3 <03(hex)>: SPI frame ID - read only

Comments:

- **BR**: Burst mode read. Not supported
- **AR5**: Address width reduction. Not supported
- **AR4**: Address width reduction. Not supported
- **AR3**: Address width reduction. Not supported
- **32 bits**: 32 bits frame width. Not supported
- **24 bits**: 24 bits frame width. Not supported
- 16 bits: 16 bits frame width, 8 bits command and 8 bits data
- 8 bits: 8 bits frame width. Not supported

5 Package and packing information

5.1 ECOPACK

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK is an ST trademark.

5.2 Package thermal data

Figure 12. PowerSSO-36 $R_{thj\text{-}amb}$ vs. PCB copper area in open box free air condition

Note:

In Figure 12 the Layout condition of Rth and Zth measurements (PCB: double layer, thermal vias FR4 area = 129 mm x 60 mm, PCB thickness =1.6 mm, Cu thickness =70 μ m (front and back side). Copper areas: from minimum pad layout to 8 cm2).

5.3 PowerSSO-36 package information

DS12547 Rev 6

Curren e l	Millimeters					
Symbol	Min.	Тур.	Max.			
А	2.15	-	2.45			
A2	2.15	-	2.35			
a1	0	-	0.1			
b	0.18	-	0.36			
С	0.23	-	0.32			
D ⁽¹⁾	10.10	-	10.50			
E ⁽¹⁾	7.4	-	7.6			
е	-	0.5	-			
e3	-	8.5	-			
F	-	2.3	-			
G	-	-	0.1			
Н	10.1	-	10.5			
h	-	-	0.4			
k	0°	-	8°			
L	0.55	-	0.85			
М	-	4.3	-			
N	-	-	10°			
0	-	1.2	-			
Q	-	0.8	-			
S	-	2.9	-			
Т	-	3.65	-			
U	-	1	-			
Х	4.1	-	4.7			
Y	6.5	-	7.1			

 "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side (0.006").

L99H02

5.4 Packages thermal data

Figure 14. LQFP32 R_{thi-amb} vs. PCB copper area in open box free air condition

 Layout condition of Rth and Zth measurements (PCB: double layer, thermal vias, FR4 area = 78 mm x 86 mm, PCB thickness =1.6 mm, Cu thickness =70 μm (front and back side), copper areas: from minimum pad layout to 8 cm²).

5.5 LQFP32 package information

Figure 15. LQFP32 package dimensions

Table 49. LQFP32 mechanical data							
Dim.	Millimeter						
Dim.	Min.	Тур.	Max.				
А			1.60				
A1	0.05		0.15				
A2 ⁽¹⁾	1.35	1.40	1.45				
b	0.30	0.37	0.45				
С	0.09		0.20				
D	8.80	9.00	9.20				
D1	6.80	7.00	7.20				
D3		5.60					
E	8.80	9.00	9.20				
E1	6.80	7.00	7.20				
E3		5.60					
e		0.80					
L	0.45	0.60	0.75				
L1		1.00					
K	0°	3.5°	7°				
ccc			0.10				

Table 49. LQFP32 mechanical data

1. LQFP stands for low profile quad flat pachage. Low profile: Body thickness (A2 = 1.40 mm)

5.6 PowerSSO-36 packing information

Figure 16. PowerSSO-36 tube shipment (no suffix)

Figure 17. PowerSSO-36 tape and reel shipment (suffix "TR")

L99H02

5.7 LQFP32 packing information

Figure 19. LQFP32 tray shipment (no suffix)

6 Revision history

Date	Revision	Changes
15-Nov-2018	1	Initial release.
11-Mar-2019	2	Removed watermarks "Restricted". Updated Table 8.
08-Apr-2019	3	Updated Table 2: Pin definitions and functions.
05-Nov-2020	4	Added package LQFP32. Updated Table 1: Device summary. Updated Figure 1: Block diagram, Update Table 2: Pin definitions and functions, Table 4: Absolute maximum ratings, Table 14: Gate drivers for external PowerMOS, Table 22: EN, CSN timing, Figure 6: SPI - transfer timing diagram, Section 3: Device description, Section 4: Functional description of the SPI.
26-Nov-2020	5	Updated Table 2: Pin definitions and functions.Table 2: Pin definitions and functionsTable 8: Packages thermal resistance Added Section 1.2: Pinout LQFP32, Section 5.2: Package thermal data, Section 5.5: LQFP32 package information, Section 5.7: LQFP32 packing information.
24-Feb-2021	6	Updated Table 18: Current sense amplifier.

Table 50. Document revision history

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to *www.st.com/trademarks*. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics – All rights reserved

DS12547 Rev 6