

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
- Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

MICROCIRCUIT DATA SHEET

Original Creation Date: 11/14/96 Last Update Date: 06/19/97 Last Major Revision Date: 04/17/97

4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTER

General Description

CN74F194-X REV 1A0

The F194 is a high-speed 4-bit bidirectional universal shift register. As a high-speed, multifunctional, sequential building block, it is useful in a wide variety of applications. It may be used in serial-serial, shift left, shift right, serial-parallel, parallel-serial, and parallel-parallel data register transfers. The F194 is similar in operation to the F195 universal shift register, with added features of shift left without external connections and hold (do nothing) modes of operation.

Industry Part Number

NS Part Numbers

74F194

74F194DC

Prime Die

M194

Processing	Subgrp	Description	Temp	(°C)
	1	Static tests at	+25	
	2	Static tests at	+70	
	3	Static tests at	0	
Quality Conformance Inspection	4	Dynamic tests at	+25	
Zazzzoł comzozmenoc zmolecoczon	5	Dynamic tests at	+70	
	6	Dynamic tests at	0	
	7	Functional tests at	+25	
	8A	Functional tests at	+70	
	8B	Functional tests at	0	
	9	Switching tests at	+25	
	10	Switching tests at	+70	
	11	Switching tests at	0	

Features

- Typical Shift Frequency of 150 MHZ
- Asynchronous Master Reset
- Hold (do Nothing) Mode
- Fully Synchronous Serial or Parallel Data Transfers

(Absolute Maximum Ratings)

(Note 1)

Storage Temperature -65 C to +150 C Ambient Temperature under Bias -55 C to +125 C Junction Temperature under Bias -55 C to +175 C Vcc Pin Potential to Ground Pin -0.5V to +7.0VInput Voltage

(Note 2)

-0.5V to +7.0V

-30 mA to +5.0mA

Input Current (Note 2)

Voltage Applied to Output in HIGH State (with Vcc=0V) -0.5V to Vcc Standard Output -0.5V to +5.5VTRI-STATE Output

Current Applied to Output in LOW State (Max)

twice the rated Iol(mA)

Absolute maximum ratings are values beyond which the device may be damaged or have Note 1: its useful life impaired. Functional operation under these conditions is not

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature Commercial

Commercial

Supply Voltage

0 C to +70 C

+4.5V to +5.5V

Electrical Characteristics

DC PARAMETERS

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: VCC 4.5V to 5.5V, OC to +70C

SYMBOL	PARAMETER	CONDITIONS :		PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS	
VIH	Input HIGH Voltage	Recognized as a HIGH Signal	1	INPUTS	2.0		V	1, 2,	
VIL	Input LOW Voltage	Recognized as a LOW Signal	1	INPUTS		0.8	V	1, 2,	
VCD	Input Clamp Diode Voltage	VCC=4.5V, IIN=-18mA	2, 3	INPUTS		-1.2	V	1, 2,	
VOH	Output HIGH Voltage	VCC=4.5V, IOH=-1.0mA	2, 3	OUTPUTS	2.5		V	1, 2,	
		VCC=4.75V, IOH=-1.0mA	2, 3	OUTPUTS	2.7		V	1, 2,	
VOL	Output LOW Voltage			OUTPUTS		0.5	V	1, 2,	
IIH	Input HIGH Current	VCC=5.5V, VIN=2.7V 2, 3 I		INPUTS		5.0	uA	1, 2,	
IBVI	Input HIGH Current Breakdown Test	VCC=5.5V, VIN=7.0V	2, 3	INPUTS		7.0	uA	1, 2,	
ICEX	Output HIGH Leakage Current	VCC=5.5V, VOUT = VCC	2, 3	OUTPUTS		100	uA	1, 2,	
VID	Input Leakage Test	VCC = 0.0V, IID = 1.9uA, All other pins grounded	2, 3	INPUTS	4.75		V	1, 2,	
IOD	Output Leakage Circuit Current	VCC = 0.0V, VIOD = 150mV, All other pins grounded	2, 3	OUTPUTS		4.75	uA	1, 2,	
IIL	Input LOW Current	VCC=5.5V, VIN=0.5V	2, 3	INPUTS		-0.6	mA	1, 2,	
IOS	Output Short-Circuit Current	VCC=5.5V, VOUT = 0V	2, 3	OUTPUTS	-60	-150	mA	1, 2,	
ICC	Power Supply Current	VCC=5.5V	2, 3	VCC		46	mA	1, 2,	

AC PARAMETERS

(The following conditions apply to all the following parameters, unless otherwise specified.) AC: CL=50pf, RL=500 OHMS, TR=2.5ns, TF=2.5ns SEE AC FIGS. Temp Range: 0C to +70C

fMAX	EMAX Maximum Shift VCC=+5.0V @ +25C, Frequency VCC=4.5V & 5.5V @ 0/+70C		4		105		MHZ	9
	1 2	- '	4		90		MHZ	10, 11
tpLH	DLH Propagation Delay VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C		2, 3	CP to Qn	3.5	7.0	ns	9
			2, 3	CP to Qn	3.5	8.0	ns	10, 11

Electrical Characteristics

AC PARAMETERS (Continued)

(The following conditions apply to all the following parameters, unless otherwise specified.) AC: CL=50pf, RL=500 OHMS, TR=2.5ns, TF=2.5ns SEE AC FIGS. Temp Range: 0C to \pm 70C

SYMBOL	PARAMETER	CONDITIONS		PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
tpHL(1)	Propagation Delay	VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C	2, 3	CP to Qn	3.5	7.0	ns	9
			2, 3	CP to Qn	3.5	8.0	ns	10, 11
tpHL(2)	Propagation Delay	VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C	2, 3	MR to Qn	4.5	12.0	ns	9
			2, 3	MR to Qn	4.5	14.0	ns	10, 11
ts(H)	Setup Time HIGH		4	Pn/DSR or DSL/CP	4.0		ns	9, 10, 11
ts(L)	Setup Time LOW	VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C	4	Pn/DSR or DSL/CP	4.0		ns	9, 10, 11
th(H)	Hold Time HIGH	VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C	4	Pn/DSR or DSL/CP	1.0		ns	9, 10, 11
th(L)	Hold Time LOW	VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C	4	Pn/DSR or DSL/CP	0		ns	9
			4	Pn/DSR or DSL/CP	1.0		ns	10, 11
ts (H)	Setup Time HIGH	VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C	4	Sn to CP	10.0		ns	9
			4	Sn to CP	11.0		ns	10, 11
ts (L)	Setup Time LOW	VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C	4	Sn to CP	8.0		ns	9, 10, 11
th(H/L)	Hold Time HIGH or LOW	VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C	4	Sn to CP	0		ns	9, 10, 11
tw (H)	Pulse Width HIGH	VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C	4	CP	5.0		ns	9
			4	CP	5.5		ns	10, 11
tw (L)	Pulse Width LOW	VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C	4	MR	5.0		ns	9, 10, 11
tREC	Recovery Time	VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C	4	MR to	9.0		ns	9
			4	MR to	11.0		ns	10, 11

Note 1:

Note 2:

Guaranteed by applying specific input condition and testing VOL & VOH.

Screen tested 100% on each device at +75 C temperature only, subgroups A2 & A10.

Sample tested (Method 5005, Table 1) on each MFG. lot at +75C temperature only, Note 3: subgroups A2 & A10.

(Continued)

Note 4: Guaranteed but not tested.

Revision History

Rev	ECN #	Rel Date	Originator	Changes
1A0	M0001308	06/19/97	Donald B. Miller	