45 Gbps, XOR / XNOR w/ PROGRAMMABLE OUTPUT VOLTAGE ### Typical Applications The HMC844LC4B is ideal for: - RF ATE Applications - Broadband Test & Measurement - Serial Data Transmission up to 45 Gbps - Digital Logic Systems up to 25 GHz #### **Features** Supports High Data Rates: up to 45 Gbps Differential & Singe-Ended Operation Fast Rise and Fall Times: 11 / 10 ps Low Power Consumption: 510 mW Programmable Differential Output Voltage Swing: 200 - 850 mVp-p Single Supply: -3.3V 24 Lead 4x4 mm SMT Package: 16 mm² #### General Description The HMC844LC4B is an XOR/XNOR function designed to support data transmission rates of up to 45 Gbps, and clock frequencies as high as 25 GHz. The HMC844LC4B may be easily configured to provide either XOR or XNOR logic functions. The HMC844LC4B also features an output level control pin, VAC, which allows for loss compensation or for signal level optimization. All input signals to the HMC844LC4B are terminated with 50 Ohms-to-ground on-chip, and may be either AC or DC coupled. The differential outputs of the HMC844LC4B may be either AC or DC coupled. Outputs can be connected directly to a 50 Ohms-to-ground terminated system, while DC blocking capacitors should be used if the terminating system is 50 Ohms to a non-ground DC voltage. The HMC844LC4B operates from a single -3.3V DC supply, and is available in a ceramic RoHS compliant 4x4 mm SMT package. ### Electrical Specifications, $T_A = +25$ °C, Vee = -3.3V | Parameter | Conditions | Min. | Тур. | Max | Units | |---|---|-------|------|-------|-------| | Power Supply Voltage | ±5 % Tolerance | -3.47 | -3.3 | -3.13 | V | | Power Supply Current | VAC = -0.3V | 140 | 155 | 170 | mA | | Output Amplitude Control Voltage (VAC)[1] | | -1.7 | -0.3 | -0.1 | V | | Maximum Data Rate | | 45 | | | Gbps | | Maximum Clock Rate | | 25 | | | GHz | | Input Amplitude | Single-ended, peak-to-peak | 100 | | 300 | mVp-p | | | Differential, peak-to-peak | 100 | | 1000 | | | Input High Voltage | | -0.5 | | 0.5 | V | | Input Low Voltage | | -1 | | 0 | V | | Output Amplitude | Differential, peak-to-peak
@ 40 Gbps | 200 | | 850 | mVp-p | # 45 Gbps, XOR / XNOR w/ PROGRAMMABLE OUTPUT VOLTAGE ### Electrical Specifications, (continued) | Parameter | Conditions | Min. | Тур. | Max | Units | |-------------------------------|--------------------|------------|------|-----|--------| | Output High Voltage | | VAC = -0.3 | -10 | | mV | | Output Low Voltage | | VAC = -0.3 | -430 | | mV | | Input Return Loss | Frequency < 25 GHz | | 8 | | dB | | Output Return Loss | Frequency < 25 GHz | | 8 | | dB | | Deterministic Jitter, Jd [2] | | | 3 | | ps, pp | | Additive Random Jitter Jr [3] | | | 0.2 | | ps rms | | Rise Time, tr [2] | VAC = -0.3V | | 11 | | ps | | Fall Time, tf [2] | VAC = -0.3V | | 10 | | ps | | Propagation Delay, td | @ 40 Gbps | | 90 | | ps | - [1] VAC = VC2 on evaluation board - [2] A Input: 40 Gbps PRBS 2²³-1 pattern, 200 mVp-p single-ended, B Input: 40 Gbps 10101... pattern, 200 mVp-p single-ended - [3] Random jitter is measured with 40 Gbps 10101... pattern ### DC Current vs. Supply Voltage [1] [2] ### Differential Output Swing vs. Supply Voltage [1] [2] ### DC Current vs. VAC [2] ### Differential Output Swing vs. VAC [2] [1] VAC = -0.3V [2] Input data rate: 40 Gbps PRBS 2^{23} -1 pattern Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D ### 45 Gbps, XOR / XNOR w/ PROGRAMMABLE OUTPUT VOLTAGE ### Rise Time vs. Supply Voltage [1][2][3] ### Fall Time vs. Supply Voltage [1][2][3] #### Rise / Fall Time vs. VAC [1][2][3] ### Peak-to-Peak Jitter vs. Supply Voltage [1][2][3][4] ### Input Return Loss vs. Frequency [1][5] ### Output Return Loss vs. Frequency [1][5] [1] VAC = -0.3V[4] Source jitter was not deembeded [2] Input data rate: 40 Gbps PRBS 2²³-1 pattern [3] Data was taken at single ended output [5] Device measured on evaluation board with single-ended time domain gating. # 45 Gbps, XOR / XNOR w/ PROGRAMMABLE OUTPUT VOLTAGE ### 40 Gbps Differential Output Eye Diagram | Measurements | | | | | |--------------|----------|----------|----------|----------------| | | Current | Min | Max | Total
Meas. | | Eye Amp | 811 mV | 811 mV | 813 mV | 39 | | Rise Time | 12.89 ps | 12.67 ps | 12.89 ps | 39 | | Fall Time | 13.78 ps | 13.56 ps | 13.78 ps | 39 | | p-p Jitter | 3.111 ps | 3.111 ps | 3.111 ps | 39 | Time Scale: 10 ps/div Amplitude Scale: 200 mV/div **Test Conditions:** Vee = -3.3V, VAC = -0.3V A Input: 40 Gbps PRBS 2²³-1 pattern, 150 mVp-p single-ended B Input: 40 Gbps 10101... pattern, 150 mVp-p single-ended ### **Timing Diagram** ### Truth Table | Input | | Outputs | |---|---------------------------------|---------| | A | В | D | | L | L | L | | L | Н | Н | | Н | L | Н | | Н | Н | L | | Notes:
A = AP - AN
B = BP - BN
D = OUTP - OUTN | H - Logic High
L - Logic Low | | ### 45 Gbps, XOR / XNOR w/ PROGRAMMABLE OUTPUT VOLTAGE ### **Absolute Maximum Ratings** | Power Supply Voltage (Vee) | -3.7V to +0.5V | |--|-----------------| | Input Voltage | -1.3V to +0.5V | | Output Amplitude
Control Voltage (VAC) | -2.3V to +0.5V | | Channel Temperature | 125°C | | Continuous Pdiss (T = 85°C)
(derate 24.42 mW/°C above 85°C) | 0.98 W | | Thermal Resistance (channel to ground paddle) | 40.95 °C/W | | Storage Temperature | -65°C to +125°C | | Operating Temperature | -40°C to +70°C | | ESD Level (HBM) | Class 1A | ### **Outline Drawing** #### BOTTOM VIEW - 50 MICROINCHES MINIMUM NICKEL - 3. DIMENSIONS ARE IN INCHES [MILLIMETERS]. - 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE. - 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM -C- - 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND. ### Package Information | Part Number | Package Body Material | Lead Finish | MSL Rating | Package Marking [2] | |-------------|-----------------------|------------------|------------|---------------------| | HMC844LC4B | Alumina, White | Gold over Nickel | MSL3 [1] | H844
XXXX | ^[1] Max peak reflow temperature of 260 °C ^{[2] 4-}Digit lot number XXXX # 45 Gbps, XOR / XNOR w/ PROGRAMMABLE OUTPUT VOLTAGE ### **Pin Descriptions** | Pin Number | Function | Description | Interface Schematic | |--|------------|--|---------------------| | 1 | VAC | Output amplitude control voltage
Note: VAC = VC2 on evaluation board | VAC O Vee | | 2, 5, 8, 11,
14, 17, 21
Package Base | GND | Signal and supply grounds | GND | | 3, 4 | BN, BP | Differential (BP-BN) or single-ended (BP) data inputs | GND 500} BN, BP Vee | | 6, 7, 12, 13,
18, 19, 24 | N/C | The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally. | | | 9, 10 | OUTP, OUTN | XOR / XNOR outputs | GND O OUTP OUTN | | 15, 16 | AP, AN | Differential (AP-AN) or single-ended (AP) data inputs | GND 500} AN, AP | | 20, 22, 23 | Vee | Power Supply (-3.3V) | | ### 45 Gbps, XOR / XNOR w/ PROGRAMMABLE OUTPUT VOLTAGE #### **Evaluation PCB** | Item | Description | |------|-------------| | J1 | BN | | J2 | BP | | J3 | AN | | J4 | AP | | J5 | OUTP | | J6 | OUTN | | J9 | VAC | | J11 | GND | | J12 | Vee | Note: VC2 on evaluation board is VAC. ### List of Materials for Evaluation PCB 128921 [1] | Item | Description | |--------------|------------------------------| | J1 - J6 | K Connector | | J9, J11, J12 | DC Pin | | C1, C3 - C5 | 1000 pF Capacitor, 0402 Pkg. | | C2 | 0.1 μF Capacitor, 0402 Pkg. | | C7, C8 | 4.7 μF Capacitor, Tantalum | | U1 | HMC844LC4B XOR / XNOR | | PCB [2] | 129821 Evaluation Board | ^[1] Reference this number when ordering complete evaluation PCB [2] Circuit Board Material: Arlon 25FR or Rogers 4350 The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. The exposed metal package base must be connected to Vee. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request. # 45 Gbps, XOR / XNOR w/ PROGRAMMABLE OUTPUT VOLTAGE ### **Application Circuit** Note: VAC (J9) = VC2 on evaluation board.