								F	REVIS	IONS										
LTR					D	ESCR	IPTIO	N					DATE (YR-MO-DA)				APPROVED			
А	Add	device	e type	02.										98-1	2-10		K. A. Cottongim			ıim
REV	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	
SHEET	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	
REV	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А
SHEET	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
REV STATU	S			RE۱	V		А	А	А	А	А	А	А	А	А	А	А	А	А	А
OF SHEETS				SHE	EET		1	2	3	4	5	6	7	8	9	10	11	12	13	14
PMIC N/A					PARED y Zahn						DE	EFENS		P. O.	CENT BOX , OHIC	3990				
STAN MICRO DRA	CIR	CUI	т		CKED I chael C		;								-					
THIS DRAWIN FOR U	NG IS A SE BY	VAILAI ALL	BLE		ROVED Idall A.		gim			(4)		IRCU BIT) N							LT	
DEPAI AND AGEN DEPARTMEN		OF THE		DRA	WING /)VAL D 3-23	ATE		SIZE		CAG	GE CODE			50	962-	.075	507	
AMSC	N/A			REV	ISION L	EVEL					4	6	726	8		55	·UZ'	373	107	
						/	Ą			SHE	ET	1		OF	53	}				

DSCC FORM 2233 APR 97 <u>DISTRIBUTION STATEMENT A</u>. Approved for public release; distribution is unlimited.

1. SCOPE 1.1 <u>Scope</u>. This drawing documents five product assurance classes, class D (lowest reliability), class E, (exceptions), class G (lowest high reliability), class H (high reliability), and class K, (highest reliability) and a choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of radiation hardness assurance levels are reflected in the PIN. 1.2 PIN. The PIN shall be as shown in the following example: 97507 5962 01 C Case Federal RHA Device Device I ead stock class designator type class outline finish (see 1.2.5) (see 1.2.1) (see 1.2.2) designator (see 1.2.4) designator (see 1.2.3) Drawing number 1.2.1 <u>Radiation hardness assurance (RHA) designator</u>. Device classes H and K RHA marked devices shall meet the MIL-PRF-38534 specified RHA levels and shall be marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device. 1.2.2 <u>Device type(s)</u>. The device type(s) shall identify the circuit function as follows: Circuit function Device type Generic number 01 AD14060LBF/QML-4 Quad digital signal processor, +3.3 V supply, 40 MHz, Twelve, 40 megabyte/s link ports (3 from each processor), Four, 40 megabit/s independent serial ports (1 from each processor) Quad digital signal processor, +3.3 V supply, 37 MHz, 02 AD14060LTF/QML-4 Twelve, 37 megabyte/s link ports (3 from each processor), Four, 37 megabit/s independent serial ports (1 from each processor) 1.2.3 Device class designator. This device class designator shall be a single letter identifying the product assurance level as follows: Device performance documentation Device class D, E, G, H, or K Certification and gualification to MIL-PRF-38534 1.2.4 Case outline(s). The case outline(s) shall be as designated in MIL-STD-1835 and as follows: Outline letter **Descriptive designator Terminals** Package style Х See figure 1 308 Quad ceramic flat pack 1.2.5 Lead finish. The lead finish shall be as specified in MIL-PRF-38534. 1.3 Absolute maximum ratings. 1/ -0.3 V dc to +4.6 V dc Supply voltage (V_{DD}) Input voltage (VIN) -0.5 V dc to V_{DD} + 0.5 V dc Output voltage swing (V_{OUT}) -0.3 V dc to V_{DD} + 0.5 V dc Load capacitance 200 pF +130°C 0.36° C/W Lead temperature soldering (5 seconds) +280°C Storage temperature range -65° C to +150° C 1/ Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability. SIZE **STANDARD** 5962-97507 Α **MICROCIRCUIT DRAWING** DEFENSE SUPPLY CENTER COLUMBUS **REVISION LEVEL** SHEET COLUMBUS, OHIO 43216-5000 Α 2

1.4 Recommended operating conditions.

Supply voltage (V _{DD}):	
Device type 01	+3.15 V dc to +3.6 V dc
Device type 02	+3.13 V dc to +3.47 V dc
Case operating temperature range (T _C):	
Device type 01	-40° C to +100° C
Device type 02	-55°C to +125°C

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbook</u>. The following specification, standards, and handbook form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DoDISS) and supplement thereto, cited in the solitation.

SPECIFICATION

DEPARTMENT OF DEFENSE

MIL-PRF-38534 - Hybrid Microcircuits, General Specification for.

STANDARDS

DEPARTMENT OF DEFENSE

MIL-STD-883 - Test Methods and Procedures for Microelectronics. MIL-STD-973 - Configuration Management. MIL-STD-1835 - Microcircuit Case Outlines.

HANDBOOK

DEPARTMENT OF DEFENSE

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Unless otherwise indicated, copies of the specification, standards, and handbook are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item performance requirements for device classes D, E, G, H, and K shall be in accordance with MIL-PRF-38534. Compliance with MIL-PRF-38534 may include the performance of all tests herein or as designated in the device manufacturer's Quality Management (QM) plan or as designated for the applicable device class. Therefore, the tests and inspections herein may not be performed for the applicable device class (see MIL-PRF-38534). Futhermore, the manufacturers may take exceptions or use alternate methods to the tests and inspections herein and not perform them. However, the performance requirements as defined in MIL-PRF-38534 shall be met for the applicable device class.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38534 and herein.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-97507
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL A	SHEET 3

3.2.1 Case outline(s). The case outline(s) shall be in accordance with 1.2.4 herein and figure 1.

3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 2.

3.2.3 Block diagram(s). The block diagram(s) shall be as specified on figure 3.

3.2.4 <u>Timing waveform(s)</u>. The timing waveform(s) shall be as specified on figure 4.

3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full specified operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I.

3.5 <u>Marking of Device(s)</u>. Marking of device(s) shall be in accordance with MIL-PRF-38534. The device shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's vendor similar PIN may also be marked as listed in QML-38534.

3.6 <u>Data</u>. In addition to the general performance requirements of MIL-PRF-38534, the manufacturer of the device described herein shall maintain the electrical test data (variables format) from the initial quality conformance inspection group A lot sample, for each device type listed herein. Also, the data should include a summary of all parameters manually tested, and for those which, if any, are guaranteed. This data shall be maintained under document revision level control by the manufacturer and be made available to the preparing activity (DSCC-VA) upon request.

3.7 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to supply to this drawing. The certificate of compliance (original copy) submitted to DSCC-VA shall affirm that the manufacturer's product meets the performance requirements of MIL-PRF-38534 and herein.

3.8 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38534 shall be provided with each lot of microcircuits delivered to this drawing.

4. QUALITY ASSURANCE PROVISIONS

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38534 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.

4.2 <u>Screening</u>. Screening shall be in accordance with MIL-PRF-38534. The following additional criteria shall apply:

- a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DSCC-VA or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - (2) T_C as specified in accordance with table I of method 1015 of MIL-STD-883.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-97507
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 4

- b. Interim test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
 - (1) Static supply current (IDDq).

Checks that current draw is not grossly excessive. Current exceeding 1.3 amperes on the module indicates failure. Normal measured current is about 0.5 amperes.

(2) Interconnects.

Checks for electrical continuity through the package leads and wirebonds, along with continuity of internal wiring within the module.

(3) Single processor functional.

A collection of test routines perform a rudimentary check of the basic functionally of each individual processor. The following individual processor units are tested: DAGs 1 and 2, timer, program sequencer, PX register, multiplier, data register file, shifter, ALU, link ports, serial ports, DMA, IOP registers, and memory.

(a) Serial port test.

This routine uses internal loopback to test basic operation of serial port 0 and serial port 1, by transmitting and receiving 16-bit words. In addition, the COMPare operation of the ALU and BitSET operation of the shifter are tested. Serial ports are tested at a clock rate of 10 MHz.

(b) Computation routine.

The routine tests basic operation of the ALU through ADD, SUBTRACT, and COMPare functions. In addition, the multiplier and DAGs are tested usings floating point multiply and load/write functions, while the shifter is tested with a BitSET function. All operations use 32-bit words.

(c) Link routine.

Using 32-bit data and internal memory to memory receive, basic operation of Link buffers 0 - 5 is tested. In addition, the ALU, COMPare, and shifter BitSET functions are tested.

(d) PX routine.

This routine tests basic operation of the PX register and short word addressing. The PX register is loaded with a 48-bit word, then the PX is read into memory. Short word addressing is used to read back, in 16-bit word segments, the 48-bit word from memory. In addition, the ALU, COMPare, and shifter BitSET functions are tested.

(e) Timer routine.

This routine will count down the timer until $t_{COUNT} = 0$, at which time an interrupt will occur, followed by a return to the code. This test will verify operation of the program sequencer, timer, ALU, COMPare function, and shifter BitSET function.

- (4) Multiprocessor functional.
 - (a) Interprocessor links: all tested using 2 times the clock rate (80 MHz for device type 01) and (74 MHz for device type 02).
 - (b) Multiprocessor memory space: each processor accesses and checks memory of the other three processors.
- c. Final electrical test parameters shall be as specified in table II herein.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-97507
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL A	SHEET 5

$\frac{1}{12} \frac{1}{12} \frac$	Test	Symbol	Conditions <u>1</u> /	Group A subgroups	Device types	Limits		Unit
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			unless otherwise specified	cubgroupe	ijpee	Min	Max	-
High level input voltage $3/$ V_{IH2} $V_{DD} = +3.6 V dc$ 1, 2, 3 01 2.2 V Low level input voltage $2/$ $3/$ V_{IL} $V_{DD} = +3.17 V dc$ 1, 2, 3 01 2.2 V Low level input voltage $2/$ $3/$ V_{IL} $V_{DD} = +3.15 V dc$ 1, 2, 3 01 0.8 V High level output voltage $4/$ $V_{DD} = +3.15 V dc$, $5/$ 1, 2, 3 01 2.4 V High level output voltage $4/$ V_{OH} $V_{DD} = +3.15 V dc$, $5/$ 1, 2, 3 01 2.4 V Low level output voltage $4/$ V_{OH} $V_{DD} = +3.15 V dc$, $5/$ 1, 2, 3 01 2.4 V Low level output voltage $4/$ V_{OL} $V_{DD} = +3.15 V dc$, $5/$ 1, 2, 3 01 0.4 V Low level output voltage $4/$ V_{OL} $V_{DD} = +3.15 V dc$, $5/$ 1, 2, 3 01 0.4 V Low level output voltage $4/$ $V_{OL} = 4.0 mA$ $V_{OL} = 4.0 mA$ 02 0.4 V High level input $6/$ $7/$ $8/$ </td <td>High level input voltage 2/</td> <td>VIH1</td> <td>V_{DD} = +3.6 V dc</td> <td>1, 2, 3</td> <td>01</td> <td>2.0</td> <td></td> <td>V</td>	High level input voltage 2/	VIH1	V _{DD} = +3.6 V dc	1, 2, 3	01	2.0		V
$\frac{1}{V_{DD} = +3.47 \text{ V dc}} \qquad $			V _{DD} = +3.47 V dc		02	2.0		
$\frac{1}{12} = \frac{1}{12} $	High level input voltage <u>3</u> /	V _{IH2}	V _{DD} = +3.6 V dc	1, 2, 3	01	2.2		V
voltage IL ID VD			V _{DD} = +3.47 V dc		02	2.2		_
$\frac{1}{1200} = \frac{1}{1000} = \frac{1}{1000} + \frac{1}{10000} + \frac{1}{10000000000000000000000000000000000$		VIL	V _{DD} = +3.15 V dc	1, 2, 3	01		0.8	V
$\frac{I_{OH} = -2.0 \text{ mA}}{I_{OH} = -2.0 \text{ mA}} = \frac{1}{2.0 \text{ mA}} = \frac$	-		V _{DD} = +3.13 V dc		02		0.8	
$\frac{I_{OH} = -2.0 \text{ mA}}{I_{OL} = 4.0 \text{ mA}} = \frac{1}{10 \text{ H}} = -2.0 \text{ mA}} = \frac{1}{10000000000000000000000000000000000$	High level output voltage <u>4</u> /	VOH	V _{DD} = +3.15 V dc, <u>5</u> / I _{OH} = -2.0 mA	1, 2, 3	01	2.4		V
$\frac{I_{OL} = 4.0 \text{ mA}}{I_{OL} = 4.0 \text{ mA}} = \frac{1}{10000000000000000000000000000000000$			V _{DD} = +3.13 V dc I _{OH} = -2.0 mA	_	02	2.4		
IOL = 4.0 mAIOL = 4.0 mAHigh level input <u>6/7/8/</u> IIH $V_{DD} = +3.6 V dc,$ $V_{IN} = V_{DD}MAX$ 1, 2, 30110 μA $V_{DD} = +3.47 V dc$ 0210	Low level output voltage <u>4</u> /	VOL	$V_{DD} = +3.15 \text{ V dc}, \qquad \underline{5}/1_{OL} = 4.0 \text{ mA}$	1, 2, 3	01		0.4	V
current $V_{IN} = V_{DD}MAX$ $U_{DD} = +3.47 \text{ V dc}$ $02 \qquad 10$				_	02		0.4	
$V_{DD} = +3.47 \text{ V dc}$ $V_{IN} = V_{DD} \text{MAX}$ 02 10		Ιн	V_{DD} = +3.6 V dc, V_{IN} = $V_{DD}MAX$	1, 2, 3	01		10	μA
			V_{DD} = +3.47 V dc V _{IN} = V _{DD} MAX	_	02		10	-

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-97507
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		A	6

	TABLE	I. Electrical performan	ce charac	teristics - C	ontinued.			
Test	Symbol	Conditions unless otherwise sp	<u>1</u> / becified	Group A subgroups	Device s types	Lim	nits Max	Unit
High level input <u>8/9/10</u> / current	I _{IHx4}	V _{DD} = +3.6 V dc, V _{IN} = V _{DD} MAX		1, 2, 3	01		40	μΑ
		V _{DD} = +3.47 V dc V _{IN} = V _{DD} MAX			02		40	
Low level input current 6/	۱ _{IL}	V _{DD} = +3.6 V dc, V _{IN}	1 = 0 V	1, 2, 3	01		10	μΑ
		V _{DD} = +3.47 V dc, V _I	N = 0 V		02		10	_
Low level input current <u>9</u> /	I _{ILx4}	V _{DD} = +3.6 V dc, V _{IN}	i = 0 V	1, 2, 3	01		40	μΑ
		V _{DD} = +3.47 V dc, V _I	N = 0 V		02		40	
Low level input current 7/	I _{ILP}	V _{DD} = +3.6 V dc, V _{IN}	1 = 0 V	1, 2, 3	01		150	μΑ
		V _{DD} = +3.47 V dc, V _I	N = 0 V		02		150	
Low level input <u>8</u> / <u>10</u> / current	I _{ILPx4}	V _{DD} = +3.6 V dc, V _{IN}	1 = 0 V	1, 2, 3	01		600	μA
		V _{DD} = +3.47 V dc, V _I	N = 0 V		02		600	
See footnotes at end of table	е.							
MICROCIR	ANDARD CUIT DRAW		siz A				5962-97507	
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000			RI	EVISION LEY A	VEL	SHEET	7	

	TABLE	I. Electrical performance charac	<u>teristics</u> - Cor	ntinued.			
Test	Symbol	Conditions <u>1</u> /	Group A subgroups	Device types	Lin	nits	Unit
		unless otherwise specified	-		Min	Max	
Three state <u>11/ 12/ 13/ 14/</u> leakage current	IOZH	V_{DD} = +3.6 V dc, V_{IN} = $V_{DD}MAX$	1, 2, 3	01,02		10	μA
Three state <u>15</u> / <u>16</u> / leakage current	I _{OZHx4}	V _{DD} = +3.6 V dc, V _{IN} = V _{DD} MAX	1, 2, 3	01,02		40	μA
Three state leakage <u>11/ 17/</u> _current	I _{OZL}	V _{DD} = +3.6 V dc, V _{IN} = 0 V	1, 2, 3	01,02		10	μA
Three state leakage <u>15</u> / _current	I _{OZLx4}	V _{DD} = +3.6 V dc, V _{IN} = 0 V	1, 2, 3	01,02		40	μΑ
Three state leakage <u>17</u> / current	IOZHP	V _{DD} = +3.6 V dc, V _{IN} = V _{DD} MAX	1, 2, 3	01,02		350	μA
Three state leakage <u>14</u> / _current	IOZLC	V _{DD} = +3.6 V dc, V _{IN} = 0 V	1, 2, 3	01,02		1.5	mA
Three state leakage <u>18</u> / _current	I _{OZLA}	V _{DD} = +3.6 V dc, V _{IN} = 2 V	1, 2, 3	01,02		350	μΑ
Three state leakage <u>13</u> / current	IOZLAR	V _{DD} = +3.6 V dc, V _{IN} = 0 V dc	1, 2, 3	01,02		4.2	mA
Three state leakage <u>12</u> / _current	I _{OZLS}	V _{DD} = +3.6 V dc, V _{IN} = 0 V	1, 2, 3	01,02		150	μΑ
Three state leakage <u>16</u> / _current	I _{OZLSx4}	V _{DD} = +3.6 V dc, V _{IN} = 0 V	1, 2, 3	01,02		600	μΑ
Supply current (internal) <u>19</u> /	IDDIN	t_{CK} = 25 ns, V_{DD} = MAX	1, 2, 3	01,02		2.2	A
See footnotes at end of table.			+		+	<u>.</u>	+

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-97507
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		A	8

	TABLE	I. Electrical performan	ce charact	eristics - C	continued.			
Test	Symbol	Conditions	<u>1</u> /	Group A subgroup		Lir	nits	Unit
		unless otherwise sp	ecified			Min	Max	
Supply current (idle) 20/	IDDIDLE	$V_{DD} = MAX$		1, 2, 3	01		760	mA
					02		780	
Input capacitance	C _{IN}	f = 1 MHz, T _C = +25° V _{IN} = 2.5 V dc	C,		01,02		<u>21</u> /	
Functional tests		See 4.3.1.c		7, 8	01,02			
Clock Input Timing Require	ments							<u> </u>
CLKIN period	^t CK	See figure 4.		9, 10, 11	101	25	100	ns
		-			02	27	100	
CLKIN width low	^t CKL				01,02	9.5		
CLKIN width high	^t CKH	_				5		
CLKIN rise/fall (0.4 V - 2.0 V)	^t CKRF						3	
Reset Timing Requirements	5 1					1	1	<u> </u>
RESET pulse width low 23/	^t WRST	See figure 4. <u>22</u> /		9, 10, 11	1 01,02	^{4t} CK		ns
RESET setup before 24/ CLKIN high	^t SRST	_				14+DT/2	^t CK	
Interrupts Timing Requirem	ents							<u> </u>
IRQ2-0 setup before 25/ CLKIN high	^t SIR	See figure 4. <u>22</u> /		9, 10 ,11	1 01,02	18+3DT/4		ns
IRQ2-0 hold before <u>25</u> / CLKIN high	^t HIR	-					11.5+3DT / 4	
IRQ2-0 width pulse <u>26</u> /	^t IPW					^{2+t} CK		
See footnotes at end of table.								
MICROCIRC			SIZE A				5962-97507	
DEFENSE SUPPLY COLUMBUS, (R	EVISION LE A	EVEL	SHEET 9	
DSCC FORM 2234								

	TABLE	I. Electrical performar	nce chara	acteristics -	Continued.			
Test	Symbol	Conditions		Group A subgroup	Device s types	Lin	nits	Unit
Timer Switching Characteris	stic	unless otherwise sp	ecified			Min	Max	
CLKIN high to TIMEXP	^t DTEX	See figure 4. 22/		9, 10, 11	01,02		16	ns
FLAGS Timing and Switchin	g Require	ments		 				ļ
FLAG2-0 _{IN} setup <u>27</u> / _before CLKIN high	^t SFI	See figure 4. 22/		9, 10, 11	01,02	8+5DT/16		ns
FLAG2-0 _{IN} hold after <u>27</u> / _CLKIN high	^t HFI					0.5-5DT/16		
F <u>LAG2-0_{IN} delay after</u> <u>27</u> / RD/ WR low	^t DWRFI						4.5+7DT/16	
F <u>LAG2-0_{IN} hold after</u> <u>27</u> / RD/ WR deasserted	^t HFIWR					0.5		
FLAG2-0 _{OUT} delay after	^t DFO				01		17	
CLKIN hĩgh					02		17.5	
FLAG2-0 _{OUT} hold after CLKIN high	^t HFO				01,02	4		
CLKIN high to FLAG2-0 _{OUT} _enable	^t DFOE					3		
CLKIN high to FLAG2-0 _{OUT} disable Memory Read - Bus Master	^t DFOD	Switching Requiren	onts				15	
Address delay to <u>29</u> / <u>30</u> / data valid	t _{DAD}	See figure 4. 22/ 28		9, 10, 11	01,02		17.5+DT +W	ns
RD low to data valid <u>29</u> /	^t DRLD						11.5+5DT/8	
Data hold from address <u>31</u> /	^t HDA					1	+W	
Data hold from RD high 31/	^t HDRH					2.5		
ACK delay from <u>30</u> / <u>32</u> / _address	^t DAAK						13.5+7DT/8 +W	
ACK delay from \overline{RD} low $\underline{31}/$	^t DSAK						7.5+DT/2 +W	
See footnotes at end of table.								
STAI MICROCIRC	NDARD UIT DRAW	ING		ize A			5962-9	7507
DEFENSE SUPPLY COLUMBUS, C					REVISION	LEVEL A	SHEET 10)

	TABLE	I. Electrical performance	ce chara	acteristics - C	Continued			
Test	Symbol	Conditions <u>1</u>		Group A subgroups	Device types	Lim	its	Unit
Memory Read - Bus Master	Timing and	unless otherwise spe		Continued		Min	Max	
Address hold after RD high	^t DRHA	See figure 4. <u>22</u> / <u>28</u> /		9, 10, 11	01,02	-0.5 + H		ns
Address to RD low <u>30</u> /	^t DARL					1.5+3DT/8		
RD pulse width	^t RW					12.5+5DT/8 +W		_
R <u>D high</u> to WR, RD, DMAGx low	^t RWR					8+3DT/8 <u>+HI</u>		_
Address setup before <u>30</u> / ADRCLK high Memory Write - Bus Master	^t SADADC Timing and	Switching Requirem	ents			-0.5 + DT/4		
ACK delay from <u>30/32</u> / address selects	^t DAAK	See figure 4. 22/ 28/		9, 10, 11	01,02		13.5+7DT/8 +W	ns
ACK delay from WR <u>32</u> / low	^t DSAK						7.5+DT/2 +W	_
Address, selects to <u>30</u> / WR deasserted	^t DAWH					16.5+15DT/16 +W		_
A <u>ddr</u> ess, selects to <u>30</u> / WR low	^t DAWL					2.5+3DT/8		_
WR pulse width	tww					12+9DT/16 <u>+W</u>		_
Data setup before WR high	^t DDWH					6.5+DT/2 <u>+W</u>		_
Address hold after WR deasserted	^t DWHA					0 + DT/16 <u>+H</u>		_
D <u>ata</u> disabled after <u>33</u> / WR deasserted	^t DATRWH					0.5+DT/16 <u>+H</u>	6.5+DT/16 +H	_
W <u>R high t</u> o WR, RD, DMAGx low	^t WWR					8 + 7DT/16 <u>+H</u>		_
Data disable before WR or RD low See footnotes at end of table.	^t DDWR					4.5+3DT/8 +I		
MICROCIRC	-	-		IZE A			5962-9	7507
DEFENSE SUPPLY COLUMBUS, (R	EVISION	LEVEL A	SHEET 11	

	TABLE	I. Electrical performan	ice chara	acteristics -	Continued.			
Test	Symbol	Conditions 1	_	Group A subgroups	Device types	Lir	nits	Unit
	Timina and	unless otherwise sp) o m times of		Min	Max	
Memory Write - Bus Master								
WR low to data enabled	^t WDE	See figure 4. <u>22</u> / <u>28</u> /	/	9, 10, 11	01,02	-1.5+DT/16		ns
Address, selects to <u>30</u> / ADRCLK high Synchronous Read/Write - E	^t SADADC Bus Master	Timing and Switchin	a Reaui	rements		-0.5 + DT/4		
Data setup before CLKIN	tSSDATI	See figure 4. 22/ 28/	-	9, 10, 11	01,02	3 + DT/8		ns
	OODATI			-, -,	- ,-			
Data hold after CLKIN	^t HSDATI	_				4 - DT/8		
ACK delay <u>aft</u> er <u>30</u> / <u>32</u> / <u>add</u> re <u>ss, M</u> Sx, SW, BMS	^t DAAK						13.5+7DT/8 +W	
ACK setup before CLKIN <u>32</u> /	^t SACKC					6.5 + DT/4		
ACK hold after CLKIN	^t HACKC					-0.5 - DT/4		
Address, MSx,BMS,SW, <u>30</u> / _delay after CLKIN	^t DADRO						8 - DT/8	
Address, MSx, BMS, SW, <u>30</u> / hold after CLKIN	^t HADRO					-1 - DT/8		
PAGE delay after CLKIN	^t DPGC	_				9 + DT/8	17 + DT/8	
RD high delay after CLKIN	^t DRDO					-2 - DT/8	5 - DT/8	
WR high delay after CLKIN	^t DWRO					-3 - 3DT/16	5 - 3DT/16	
RD / WR low delay after CLKIN	^t DRWL					8 + DT/4	13.5 + DT/4	
Data delay after CLKIN	^t SDDATO				01		20.25 + 5DT /16	
					02		20.5 + 5DT /16	
See footnotes at end of table.	ł	ł				ł	,, 	ł
STAN MICROCIRC	NDARD UIT DRAW	ING		ize A			5962-97	7507
DEFENSE SUPPLY COLUMBUS, C	CENTER C	OLUMBUS		ł	REVISION	LEVEL A	SHEET 12	

Synchronous Read/Write - Bu Data disable after CLKIN <u>33</u> / t	DATTR DADCCK	Conditi unless otherv Timing and St See figure 4.	wise s witch i	-	Group A subgroup	Device s types	Lin	nits	Unit
Data disable after CLKIN <u>33</u> / t	DATTR DADCCK	Timing and S	witchi	-		1			.
Data disable after CLKIN <u>33</u> / t	DATTR DADCCK	-		ing kegu	irements -	Continued.	Min	Max	
ADRCLK delay after CLKIN tr				-	9, 10, 11		0 - DT/8	8 - DT/8	ns
							4 + DT/8	11 + DT/8	
ADRCLK period t	ADRCK						^t CK		
ADRCLK width high	ADRCKH						(t _{CK} /2 - 2)		
ADRCLK width low t	ADRCKL						(t _{CK} /2 - 2)		
Synchronous Read/Write - Bu	us Slave T	iming and Sw	itchin	ng Require	ements			1	+
Address, SW setup before to	SADRI	See figure 4.	<u>22</u> /	<u>28</u> /	9, 10, 11	01,02	15.5 + DT/2		ns
Address, SW hold before t _H CLKIN	HADRI							4.5 + DT/2	
RD / WR low setup <u>34</u> / to before CLKIN	SRWLI						9.5+5DT/16		
RD / WR low hold t _H after CLKIN	HRWLI					01	-3.25 - 5DT / 16	8 + 7DT/16	
						02	-3 - 5DT / 16	8 + 7DT/16	
RD / WR pulse high	RWHPI					01,02	3		
Data setup before WR high	SDATWH						5.5		
Data hold after WR high	HDATWH						1.5		
Data delay after CLKIN	SDDATO					01		20.25 +5DT /16	
						02		20.5+5DT/16	
Data disable after CLKIN <u>33</u> / t _[DATTR					01,02	0 - DT/8	8 - DT/8	
A <u>CK</u> delay after address <u>35</u> / t _[SW	DACKAD							10	
	ACKTR						-1 - DT/8	7 - DT/8	
See footnotes at end of table.									
STAND MICROCIRCUI		ING			ize A			5962-97	7507
DEFENSE SUPPLY C COLUMBUS, OH						REVISION	LEVEL A	SHEET 13	

	TABLE	I. Electrical perform	nance chara	acteristics - (Continued.			
Test	Symbol	Conditions	s <u>1</u> /	Group A subgroups	Device types	Lir	nits	Unit
		unless otherwise	specified			Min	Max	
Multiprocessor Bus Reques	st and Host	Request Timing a	and Switchi	ng Require	ments		1	
HBG low to RD/WR/CS, valid	t _{HBGRCSV}	See figure 4. 22	/ <u>28</u> /	9, 10, 11	01,02		19.5+5DT/4	ns
HBR setup before <u>37</u> / CLKIN	^t SHBRI					20+3DT/4		
HBR hold before <u>37</u> / CLKIN	^t HHBRI						13.5+3DT / 4	
HBG setup before CLKIN	^t SHBGI					13+DT/2		
HBG hold before CLKIN high	^t HHBGI				01		5.5+DT/2	
					02		5.25+DT/2	
BRx, CPA setup before <u>38</u> / CLKIN high	^t SBRI				01,02	13+DT/2		
BRx, CPA hold before CLKIN high	^t HBRI						5.5+DT/2	
RPBA setup before CLKIN	^t SRPBAI					21+3DT/4		
RPBA hold before CLKIN	^t HRPBAI					 	11.5+3DT / 4	
HBG delay after CLKIN	^t DHBGO						8 - DT/8	
HBG hold after CLKIN	^t HHBGO					-2 - DT/8		
BRx delay after CLKIN	^t DBRO						8 - DT/8	
BRx hold after CLKIN	^t HBRO					-2 - DT/8		
CPA low delay after CLKIN	^t DCPAO						9.5 - DT/8	
CPA disable after CLKIN	^t TRCPA					-2 - DT/8	5.5 - DT/8	
See footnotes at end of table								
STA MICROCIRC	NDARD	ING		IZE A			5962-97	7507
DEFENSE SUPPLY COLUMBUS, (CENTER C	OLUMBUS		F	REVISION	LEVEL A	SHEET 14	
				1			1	

	TABLE	I. Electrical per	form	ance chara	acteristics -	Continued.			
Test	Symbol	Conditi unless otherw		<u>1</u> / specified	Group A subgroup		Lin	nits	Unit
Multiprocessor Bus Reques	t and Host	Request Timin	ng ar	nd Switchi	ng Requir	ements - C	Min ontinued.	Max	
REDY (O/ <u>D)</u> or (A/ <u>D) 39</u> / low from CS and HBR low	^t DRDYCS	See figure 4.	<u>22</u> /	<u>28</u> /	9, 10, 1 ⁻	1 01,02	 	12	ns
REDY (O/D) disable or <u>39/</u> REDY (A/D) high from HBG	^t TRDYHG						40+27DT/16		_
REDY (A/D) disable from <u>39</u> / CS or HBR high	^t ARDYTR							11	
Asynchronous Read Cycle 1	Fiming and	Switching Rec	quire	ments (He	ost to Dev	ice type 01)			
Address <u>se</u> tup/CS low <u>40</u> / before RD low	^t SADRDL	See figure 4.	<u>22</u> /	<u>28</u> /	9, 10, 1 [,]	1 01,02	0.5		ns
Address h <u>old</u> /CS hold low after RD	^t HADRDH						0.5		_
RD/WR high width	^t WRWH						6		_
RD high delay after REDY (O/D) disable	t _{DRDHRDY}						0.5		_
RD high delay after REDY (A/D) disable	t _{DRDHRDY}						0.5		_
Data valid before REDY disable from low	t _{SDATRDY}						1.5		
REDY (O/D) <u>or (</u> A/D) low delay after RD low	t _{DRDYRDL}							13.5	_
REDY (O/D) or (A/D) low pulse width for read	t _{RDYPRD}						45 + DT		_
Data disable after \overline{RD} high	^t hdarwh						1.5	9.5	
Asynchronous Write Cycle	Fiming and	Switching Rec	quire	ements (H	ost to Dev	ice type 01))	1	
CS low setup before WR low	t _{SCSWRL}	See figure 4.	<u>22</u> /	<u>28</u> /	9, 10, 1 [,]	1 01,02	0.5		ns
CS low hold after WR high	^t HCSWRH						0.5		
Address setup before WR high	^t SADWRH						5.5		
See footnotes at end of table.				-1	1			1	
MICROCIRC					ize A			5962-9	97507
DEFENSE SUPPLY COLUMBUS, C						REVISION	LEVEL A	SHEET 1	5

	TABLE	I. Electrical perform	nance chara	acteristics -	Continued.			
Test	Symbol	Conditions	_	Group A subgroups	Device types	Lir	nits	Unit
Asynchronous Write Cycle	Timing and	unless otherwise Switching Requir		ost to Devi	ce type 01)	Min - Continued	Max	
Address hold after WR high	^t HADWRH	See figure 4. <u>22</u> /	<u>28</u> /	9, 10, 11	01,02	2.5		ns
WR low width	^t WWRL					7		
RD/WR high width	^t WRWH					6		
WR high delay after REDY (O/D) or (A/D) disable	t _{DWRHRDY}					0.5		
Data setup before WR high	^t SDATWH					5.5		
Data hold after WR high	^t HDATWH					1.5		
REDY (O/D <u>) or (A/D</u>) low delay after WR/CS low	t _{DRDYWRL}						13.5	
REDY (O/D) or (A/D) low pulse width for write	t _{RDYPWR}					15		
REDY (O/D) or (A/D) disable to CLKIN	^t SRDYCK					0+7DT/16	8+7DT/16	
Three State Timing - (Bus M SBTS setup before CLKIN	tster, Bus	Slave, HBR, SBTS See figure 4. 22/		nd Switchin 9, 10, 11		12 + DT/2		ns
SBTS hold before CLKIN	^t HTSCK						5.5 + DT/2	
Address/select enable after CLKIN	^t MIENA					-1.25 - DT / 8		
Strobes enable after <u>41</u> / CLKIN	^t MIENS					-1.5 - DT/8		
HBG enable after CLKIN	^t MIENHG					-1.5 - DT/8		
Address select/disable after CLKIN	^t MITRA						1.25 - DT/4	
See footnotes at end of table.								
STAI MICROCIRC		ING		IZE A			5962-97	7507
DEFENSE SUPPLY COLUMBUS, (CENTER C	OLUMBUS		1	REVISION	LEVEL A	SHEET 16	

	TABLE	I. Electrical per	rform	ance chara	acteristics	- Continued			
Test	Symbol	Conditio		_	Group A subgroup		Li	mits	Unit
		unless other	wise	specified			Min	Max	
Three State Timing - (Bus M	aster, Bus	Slave, HBR, S	BTS) Timing a	nd Switch	ing Require	ements - Cor	ntinued.	
Strobes disable after <u>41</u> / <u>CLKIN</u>	^t MITRS	See figure 4.	<u>22</u> /	<u>28</u> /	9, 10, 1	1 01,02	 	2.5 - DT/4	ns
HBG disable after CLKIN	^t MITRHG							3.0 - DT/4	_
Data enable after CLKIN <u>42</u> /	^t DATEN						9 + 5DT/16		_
Data disable after CLKIN <u>42</u> /	^t DATTR						0 - DT/8	8 - DT/8	
ACK enable after CLKIN <u>42</u> /	^t ACKEN						7.5 + DT/4		_
ACK disable after CLKIN <u>42</u> /	^t ACKTR						-1 - DT/8	7 - DT/8	_
ADRCLK enable after <u>42</u> / _CLKIN	^t ADCEN						-2 - DT/8		_
ADRCLK disable after <u>42</u> / CLKIN	^t ADCTR					01		9 - DT/4	_
						02		9.25 - DT/4	-
Memory interfac <u>e 43</u> / _disable before HBG low	^t MTRHBG					01,02	-1 + DT/8		_
Memory interf <u>ace 43</u> / enable after HBG low	^t MENHBG						18.5 + DT		
DMA Handshake Timing and	d Switching	g Requirement	S						<u> </u>
DMARx low setup <u>44</u> / before CLKIN	^t SDRLC	See figure 4.	<u>22</u> /	<u>28</u> /	9, 10, 1	1 01,02	5		ns
DMARx high setup <u>44</u> / before CLKIN	^t SDRHC						5		_
DMARx width low _(nonsynchronous)	^t WDR						6		-
D <u>ata setu</u> p after <u>45</u> / _DMAGx low	t _{SDATDGL}							9.5 + 5DT/8	_
Data hold after DMAGx high	t _{HDATIDG}						2.5		
See footnotes at end of table.									
STAI MICROCIRC	NDARD UIT DRAW	ING			ize A			5962-9	7507
DEFENSE SUPPLY COLUMBUS, (CENTER C	OLUMBUS				REVISION	LEVEL A	SHEET 17	
DSCC FORM 2234				•				•	

	TABLE I	. Electrical performation	ance chara	acteristics -	Continued.			
Test	Symbol	Conditions unless otherwise s	<u>1</u> /	Group A subgroups	Device types	Lir	nits	Unit
DMA Handshake Timing and	d Switching		-			Min	Max	
D <u>ata valid</u> after <u>45</u> / DMAGx high	t _{DATDRH}	See figure 4. 22/		9, 10, 11	01,02		15.5+7DT/8	ns
DMAGx low edge to low edge	^t DMARLL					23 + 7DT/8		_
DMAGx width high	^t DMARH					6		
DMAGx low delay after CLKIN	^t DDGL					9 + DT/4	16 + DT/4	_
DMAGx high width	^t WDGH					6 + 3DT/8		
DMAGx low width	^t WDGL					12 + 5DT/8		_
DMAGx high delay after CLKIN	^t HDGC					-2 - DT/8	7 - DT/8	_
D <u>ata valid</u> before <u>46</u> / DMAGx high	t _{VDATDGH}					7.5+9DT/16		_
D <u>ata disa</u> ble after <u>33</u> / 	t _{DATRDGH}					-0.5	7.5	_
WR low before DMAGx low	^t DGWRF					-0.5	2.5	_
DMAGx low before WR high	^t DGWRH					9.5+5DT/8 <u>+</u> W		_
WR high before DMAGx high	^t DGWRR					0.5 + DT/16	3.5 + DT/16	_
RD low before DMAGx low	^t DGRDL				01	-0.5	2.5	-
RD low before DMAGx high	^t DRDGH				02 01,02	-1 10.5+9DT /16+W	2.5	_
RD high before DMAGx high	^t DGRDR					-0.5	3.5	-
DMAGx high to WR, RD, DMAG low	^t DGWR					4.5+3DT/8 +HI		-
See footnotes at end of table.								
MICROCIRC				IZE A			5962-9	7507
DEFENSE SUPPLY COLUMBUS, (F	REVISION	LEVEL A	SHEET 18	

	TABLE	I. Electrical pe	rforma	ance chara	acteristics	- Continued.			
Test	Symbol	Conditi		_	Group A subgroup		Li	mits	Unit
		unless other					Min	Max	
DMA Handshake Timing and	a Switching	Requirement	ts - Co	ontinued.					
A <u>ddress/</u> select valid to DMAGx high	^t DADGH	See figure 4.	<u>22</u> /	<u>28</u> /	9, 10, 1 ⁻	1 01,02	16 + DT		ns
A <u>ddress/</u> select hold after DMAGx high	^t DDGHA						-1		
Link Ports: 1 times Clock S	peed Opera	tion, Receive	Timin	ng and Sw	vitching R	equirement	S		
Data setup before LCLK low	^t SLDCL	See figure 4.	<u>22/</u>	<u>28</u> /	9, 10, 1 ⁻	1 01,02	3		ns
Data hold after LCLK low	^t HLDCL						3		_
LCLK period (1 x operation)	^t LCLKIW						^t CK		
LCLK width low	t _{lCLKRWL}						6		
LCLK width high	t _{lclkrwh}						5		
LACK high delay after CLKIN high	^t DLAHC					01	18 + DT/2	30+DT/2	-
						02	18 + DT/2	30.5+DT/2	-
LACK low delay after <u>47</u> / CLKIN high	^t DLALC					01,02	-3	13.5	_
LACK enable from CLKIN	^t ENDLK						5 + DT/2		_
LACK disable from CLKIN	^t TDLK							21 + DT/2	
Link Ports: 1 times Clock S	peed Opera	ation, Transmi	<u>t Timi</u>	ng and S	witching F	Requiremen	ts		1
LACK setup before LCLK	^t SLACH	See figure 4.	<u>22</u> /	<u>28</u> /	9, 10, 1 ⁻	1	20		ns
high						02	20.5		-
LACK hold after LCLK high	^t HLACH					01,02	-7		_
LCLK delay after CLKIN (1 x operation)	^t DLCLK					01		17.75	_
· · ·						02		18	-
Data delay after LCLK high	^t DLDCH					01,02		3	
See footnotes at end of table.									
STAI MICROCIRC	NDARD UIT DRAW	ING			ize A			5962-97	7507
DEFENSE SUPPLY COLUMBUS, (REVISION	LEVEL A	SHEET 19	

	TABLE	I. Electrical perform	mance char	acteristics ·	- Continued.			
Test	Symbol	Conditions	_	subgroups		Lir	nits	Unit
		unless otherwise				Min	Max	
Link Ports: 1 times Clock Sp	beed Opera		-			ts - Continue	ed.	
Data hold after LCLK high	^t HLDCH	See figure 4. 22	/ <u>28</u> /	9, 10, 1	1 01,02	-3		ns
LCLK width low	^t LCLKTWL					(t _{Ck} /2) - 1	$(t_{Ck}/2) + 2.25$	_
LCLK width high	t _{LCLKTWH}					(t _{Ck} /2) -2.25	(t _{Ck} /2) + 1	_
LCLK low delay after LACK high	t _{DLACLK}				01	(t _{Ck} /2) + 8	(3*t _{Ck} /2) +19	_
					02	(t _{Ck} /2) + 8	(3*t _{Ck} /2) +19.5	_
LDAT, LCLK enable after CLKIN	^t ENDLK				01,02	5 + DT/2		_
LDAT, LCLK disable after CLKIN	^t TDLK						21 + DT/2	
Link Port Service Request In	nterrupts: 1	times and 2 time	es Speed O	peration T	iming Requ	irements		
LACK/LCLK setup <u>48</u> / before CLKIN low	^t SLCK	See figure 4. 22	/ <u>28</u> /	9, 10, 1 ⁻		10		ns
LACK/LCLK hold after 48/	^t HLCK				02	10.25 2.5		-
CLKIN low Link Ports: 2 times Speed O		Receive Timing an	d Switchin	a Require	monts			
Data setup before LCLK low	^t SLDCL	See figure 4. 22		9, 10, 1 ⁻		2.25		ns
Data hold after LCLK low	^t HLDCL					2.25		-
LCLK period (2 x operation)	^t LCLKIW					tCK/2		_
See footnotes at end of table.								
STAI MICROCIRC	NDARD UIT DRAW	ING		IZE A			5962-9	7507
DEFENSE SUPPLY COLUMBUS, (CENTER C	OLUMBUS			REVISION	LEVEL A	SHEET 20	

	TABLE	I. Electrical performan	ice chara	acteristics -	Continued.			
Test	Symbol	Conditions <u>1</u>	subgrou		Device types	Li	mits	Unit
		unless otherwise sp				Min	Max	
Link Ports: 2 times Speed (Operation, F	<u>Receive Timing and S</u>	witchin	g Requirem	<u>ients - Coi</u>	ntinued.		
LCLK width low	t _{LCLKRWL}				01	5.25		ns
LCLK width high	t _{LCLKRWH}				02 01,02	5.5 4.5		_
LACK high delay after CLKIN high	^t DLAHC				01	18 + DT/2	30.5+DT/2	_
					02	18 + DT/2	31+DT/2	
LACK low delay after <u>47</u> / CLKIN high	^t DLALC				01	6	19	-
Link Ports: 2 times Speed (Operation, T	ransmit Timing and	Switchi	ng Require	02 ments	6	19.5	
LACK setup before LCLK high	^t SLACH	See figure 4. <u>22</u> / <u>2</u> /	<u>8</u> /	9, 10, 11	01	19		ns
LACK hold after LCLK high	^t HLACH				02 01,02	21.5 -6.5		_
LCLK delay after CLKIN (2 x operation)	^t DLCLK						9	_
Data delay after LCLK high	^t DLDCH				01		2.75 3	
Data hold after LCLK high	^t HLDCH				01,02	-2		_
LCLK width low	^t LCLKTWL					(t _{Ck} /4) - 0.75	(t _{Ck} /4) + 1.5	_
LCLK width high	t _{LCLKTWH}					(t _{Ck} /4) - 1.5	(t _{Ck} /4) + 1	_
LCLK low delay after LACK high	t _{DLACLK}					(t _{Ck} /4) + 9	(3* t _{Ck} /4) +17	
See footnotes at end of table								
STA MICROCIRO	NDARD CUIT DRAW	ING		IZE A			5962-9	7507
DEFENSE SUPPLY COLUMBUS,	CENTER C	OLUMBUS		F	REVISION	LEVEL A	SHEET 21	

TestSymbolConditions 1/ unless otherwise specifiedGroup A subgroupsSerial Ports: External Clock Timing RequirementsTFS/RFS setup before 49/ TCLK/RCLKtSFSESee figure 4. 22/ 28/9, 10, 11TFS/RFS hold after 49/ 50/ TCLK/RCLKtHFSESee figure 4. 22/ 28/9, 10, 11Receive data setup 49/ before RCLKtSDREReceive data hold 49/ after RCLKtHDRETCLK/RCLK widthtSCLKW	Device types 01,02 01 02 01,02 01 02 01,02 01 02 01,02 01 01 02 01,02	Lir Min 4 4.5 5.25 2 4.5 5 9.5 ^t CK	mits Max	
Serial Ports: External Clock Timing Requirements TFS/RFS setup before <u>49/</u> tSFSE See figure 4. <u>22/</u> <u>28/</u> 9, 10, 11 TFS/RFS hold after <u>49/</u> <u>50/</u> tHFSE FRE Receive data setup <u>49/</u> tSDRE Portex before RCLK tHDRE TCLK/RCLK width tSCLKW	01 02 01,02 01 01 02	4 4.5 5.25 2 4.5 5 9.5	Max	ns
TFS/RFS setup before <u>49/</u> tSFSE See figure 4. <u>22/</u> <u>28/</u> 9, 10, 11 TFS/RFS hold after <u>49/</u> <u>50/</u> tHFSE Receive data setup <u>49/</u> tSDRE Receive data setup <u>49/</u> tSDRE Receive data hold <u>49/</u> tHDRE TCLK/RCLK tHDRE TCLK/RCLK TCLK/RCLK	01 02 01,02 01 01 02	4.5 5.25 2 4.5 5 9.5		ns
TCLK/RCLK Image: Section of the sect	01 02 01,02 01 01 02	4.5 5.25 2 4.5 5 9.5		ns
TCLK/RCLK Imol Receive data setup 49/ before RCLK Receive data hold 49/ tHDRE TCLK/RCLK width tSCLKW	02 01,02 01 02	5.25 2 4.5 5 9.5		
before RCLK CDRE Receive data hold 49/ after RCLK tHDRE TCLK/RCLK width tSCLKW	01,02 01 02	2 <u>4.5</u> 5 9.5		
before RCLK CDRE Receive data hold 49/ after RCLK tHDRE TCLK/RCLK width tSCLKW	01 02	4.5 5 9.5		
after RCLK TOTAL TCLK/RCLK width tSCLKW	02	5 9.5		
		9.5		
	01,02			
		^t CK		<u> </u>
TCLK/RCLK period ^t SCLK				
Serial Ports: Internal Clock Timing Requirements			-	<u> </u>
TFS setup before TCLK; <u>49/</u> tSee figure 4. <u>22/</u> 9, 10, 11RFS setup before RCLK9	01,02	9		ns
TFS/RFS hold after <u>49/50/</u> tHFSI TCLK/RCLK	-	1		
Receive data setup <u>49</u> / ^t SDRI before RCLK		4		
Receive data hold <u>49</u> / ^t HDRI after RCLK		3		
Serial Ports: External or Internal Clock Switching Requirements			·	
RFS delay after RCLK51/tDFSESee figure 4.22/28/9, 10, 11(internally generated RFS)	01,02		14	ns
RFS hold after RCLK 51/ tHOFSE (internally generated RFS) see footnotes at end of table.		3		
STANDARD SIZE A			5962-	97507
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000	REVISION L A		SHEET	2

	TABLE	I. Electrical performar	nce chara	acteristics -	Continued.			
Test	Symbol	Conditions <u>1</u>	-	Group A subgroups	Device types	Liı	mits	Unit
Serial Ports: External Cl	ook Switching	unless otherwise sp	ecified			Min	Max	
TFS delay after TCLK 5 (internally generated TFS		See figure 4. <u>22/</u> 2	<u>8</u> /	9, 10, 11	01,02		14	ns
TFS hold after TCLK 51, (internally generated TFS	(S) ^t HOFSE	_				3		
Transmit data delay 51 after TCLK	/ ^t DDTE				01		17 17.25	
Transmit data hold <u>51</u> after TCLK	TIDIE	-			01,02	5		
Serial Ports: Internal Clo	-		- /				_	
TFS delay after TCLK <u>5</u> (internally generated TFS	5)	See figure 4. <u>22/</u> 2	<u>8</u> /	9, 10, 11	01,02		5	ns
TFS hold after TCLK <u>51</u> (internally generated TFS						-1.5		
Transmit data delay 51					01		8	
after TCLK		_			02		8.25	
Transmit data hold <u>51</u> , _after TCLK	[′] ^t HDTI				01,02	0		
TCLK/RCLK width	^t SCLKIW					(SCLK/2)-2.5	(SCLK/2)+2.5	
Serial Ports: Enable and	Three State S	witching Requiremen	nts	<u> </u>				<u> </u>
Data enable from <u>51</u> / _external_TCLK	^t DDTEN	See figure 4. <u>22</u> / <u>2</u>	<u>8</u> /	9, 10, 11	01,02	4.0		ns
Data disable from <u>51</u> / 	^t DDTTE						11.5	
Data enable from <u>51</u> / _internal_TCLK	^t DDTIN					0		
Data disable from <u>51</u> / internal TCLK	^t DDTTI						3	
TCLK/RCLK delay from CLKIN	^t DCLK				01		23 + 3DT/8	
		_			02		23.25+3DT/8	
SPORT disable after CLK	IN ^t DPTR				01,02		18	
See footnotes at end of ta	ble.							
STANDARD MICROCIRCUIT DRAWING			IZE A			5962-97	7507	
	DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000			ł	REVISION	LEVEL A	SHEET 23	

	TABLE	I. Electrical performan	ce chara	<u>cteristics</u> - C	Continued.			
Test	Symbol	Conditions <u>1</u> ,	/	Group A subgroups	Device types	Lin	Limits	
		unless otherwise spo			71.00	Min	Max	
Serial Ports: Gated SCLK w	ith Externa	ITES (Mesh Multipro	cessing)				
TFS setup before <u>52</u> / _CLKIN	^t STFSCK	See figure 4. 22/		9, 10, 11	01,02	5		ns
TFS hold afterCLKIN 52/	^t HTFSCK					tCK/2		
Serial Ports: External Late F	rame Sync	Switching Requirem	nents					
Data delay from late <u>53</u> / external TFS or RFS with	^t DDTLFSE	See figure 4. <u>22</u> / <u>28</u>	<u>8</u> /	9, 10, 11	01		13.8	_ ns
<u>MCE = 1, MFD = 0</u>		-			02		17.5	-
Data enable from late $53/$ <u>FS or MCE = 1, MFD = 0</u> JTAG Test Access Port Emi	t _{DDTENFS}	ning and Switching R	equirem	ents	01,02	3.5		
			equirein					
TCK period	^t TCK	See figure 4. <u>22</u> /		9, 10, 11	01,02	^t CK		ns
TDI, TMS, setup before TCK high	^t STAP	_				5		_
TDI, TMS, hold after TCK high	^t HTAP					6		_
Systems inputs setup <u>54</u> / _before TCK low	tSSYS					8		_
Systems inputs hold <u>54</u> / _after TCK low	^t HSYS					19		
JTAG Test Access Port Em	ulatiom Tin	ning and Switching R	equirem	ents - Cont	inued.			
TRST pulse width	^t TRSTW	See figure 4. <u>22</u> /		9, 10, 11	01,02	^{4t} CK		ns
TD0 delay from TCK low _before TCK low	^t DTDO						13	_
Systems outputs delay <u>55</u> / _after TCK low	^t DSYS						20	
 1/ Device type 01, -40° C ≤ T_C ≤ +100° C and +3.15 V dc ≤ V_{DD} ≤ +3.6 V dc, unless otherwise specified. Device type 02, -55° C ≤ T_C ≤ +125° C and +3.13 V dc < V_{DD} ≤ +3.47 V dc, unless <u>otherwise</u> specified. 2/ Applies to <u>input and bidirectional pins</u>: DATA47-0, ADDR31-0, RD, WR, SW, ACK, SBTS, IRQy2-0, FLAGy0, FLAG1, FLAGy2, HBG, CSy, DMAR1, DMAR2, BR6-1, R<u>PBA</u>, CPAy, TFS0, TFS91, RFS0, <u>RFS</u>91, LyxDAT3-0, LyxCLK, LyxACK, EBOOTA, LBOOTA, EBOOTBCD, LBOOTBCD, BMSA, BMSBCD, TMS, TDI, TCK, HBR, DR0, DR91, TCLK0, TCLK91, RCLK0, RCLK91. For the group of signals LyxDAT3-0, LyxCLK, and LyxACK, only Link Port 4 signals (Ly4DT3-0, Ly4CLK, and Ly4ACK) from each of the processors are tested at the module level. Link Ports 1, 2, and 3 are not DC tested at the module level, but are tested at the die level prior to assembly. 3/ Applies to input pins: CLKIN, RESET, TRST. 								
STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		ING		ZE A			5962-9	7507
				R		LEVEL A	SHEET 24	

TABLE I. Electrical performance characteristics - Continued.

- Applies to output and bidirectional pins: DATA47-0, ADDR31-0, MS3-0, RD, WR, PAGE, ADRCLK, SW, ACK, FLAGy0, <u>4</u>/ FLAG1, FLAGy2, TIMEXPy, HBG, REDY, DMAG1, DMAG2, BR6-1, CPAy, DTO, DTy1, TCLK0, TCLK9, RCLK0, RCLKy1, TFS0, TFSy1, RFS0, RFSy1, LyxDAT3-0, LyxCLK, LyxACK, BMSA, BMSBCD, TDO, EMU. For the group of signals LyxDAT3-0, LyxCLK, and LyxACK, only Link Port 4 signals (Ly4DAT3-0, Ly4CLK, and Ly4ACK) from each of the processors are tested at the module level. Link Ports 1, 2, and 3 are not DC tested at the module level, but are tested at the die level prior to assembly.
- See "output drive currents" for typical drive current capabilities. <u>5</u>/
- <u>6</u>/ Applies to input pins: IRQy2-0, CSy, EBOOTA, LBOOTA.
- Applies to input pins with internal pull-ups: DRy1, TDI. 7/
- 8/ Individual signals tested to limits of $I_{IH} = 10 \ \mu A$ and $I_{ILP} = 150 \ \mu A$ at die level prior to assembly. At the module level, all eight DR0 and DRy1 inputs connected together are tested to limits of $I_{IH} = 80 \,\mu A$ and $I_{II} P = 1200 \,\mu A$.
- Applies to bussed input pins: ACK, SBTS, HBR, DMAR1, DMAR2, RPBA, EBOOTBCD, LBOOTBCD, CLKIN, RESET, 9/ TCK.
- 10/ Applies to bussed input pins with internal pull-ups: DR0, TRST, TMS.
- 11/ Applies to three statable pins and bidirectional pins; FLAGy0, FLAGy2, BMSA, TD0, TFSy1, RFSy1. TFSy1 and RFSy1 are tested individually to the limits of IOZH = 10 µA and IOZL = 10 µA at die level. At the module level, eight pins connected together are tested to limits of $I_{OZH} = 80 \ \mu A$ and $I_{OZL} = 80 \ \mu A$.
- 12/ Applies to three statable pins with internal pull-ups: DTy1, TCLKy1, RCLKy1. Individual signals tested to limit of IOZH = 10 µA and IOZLS = 150 µA at die level. At the module level, eight serial port pins connected together are tested to limits of $I_{OZH} = 80 \ \mu A$ and $I_{OZLS} = 1200 \ \mu A$.
- 13/ Applies to ACK pin when pulled up. (Note that ACK is pulled up internally with a 2 kΩ resistor during reset in a multiprocessor system, when ID2-0 = 001 and another single processor is not requesting bus mastership.) 14/ Applies to CPAy pin.
- 15/ Applies to bussed three statable pins and bidirectional pins: DATA47-0, ADDR31-0, MS3-0, RD, WR, PAGE, ADRCLK, SW, ACK, FLAG1, HBG, REDY, DMAG1, DMAG2, BMSBCD, TFS0, RFS0, BR5, BR6, EMU. (Note that ACK is pulled up internally with a 2 k Ω resistor during reset in a multiprocessor system, when ID2-0 = 001 and another single processor is not requesting bus mastership.) HBG and EMU are not tested for leakage current. At the die level, component pins that make up TFS0 and RFS0 are tested to limits of $I_{OZH} = 10 \,\mu$ A and $I_{OZI} = 10 \,\mu$ A. At the module level, eight pins connected together are tested to limits of $I_{OZH} = 80 \ \mu\text{A}$ and $I_{OZL} = 80 \ \mu\text{A}$.
- 16/ Applies to bussed three statable pins with internal pull-ups: DT0, TCLK0, RCLK0. At the module level, all eight DR0 and DRy1 inputs connected together are tested to limits of IOZH = 80 μ A and IOZLS = 1200 μ A.
- 17/ Applies to three statable pins with internal pull-downs: LyxDAT3-0, LyxCLK, LyxACK. Only Link Port 4 signals (Ly4DAT3-0, Ly4CLK, and Ly4ACK) from each of the processors are tested at the module level. Link Ports 1, 2, and 3 are not DC tested at the module level, but are tested at the die level prior to assembly.
- 18/ Applies to ACK pin when keeper latch enabled.
- 19/ Applies to VDD pins. Conditions of operation: each processor executing radix-2 FFT butterfly with instruction in cache, one data operand fetched from cache each internal memory block, and one DMA transfer occurring from/to internal memory at t $_{CK}$ = 25 ns for device type 01 and at t $_{CK}$ = 27 ns for device type 02.
- 20/ Applies to VDD pins. Idle denotes like device type state during execution of IDLE instruction.
- 21/ Nominal value of 15 pF derived through RC measurement.
- 22/ Timing test limits are target limits for the module, based on calculated predictions only. The module is 100% production tested, and the test limits are guaranteed by design/analysis, and characterization testing (at TA = 25° C) of the individual discrete mircocontrollers. (Device type 01: the limits shown are based on a CLKIN frequency of 40 MHz. DT is the difference between the actual CLKIN period and a CLKIN period of 25 ns: $DT = t_{CK} - 25$ ns.) (Device type 02: the limits shown are based on a CLKIN frequency of 37 MHz. DT is the difference between the actual CLKIN period and a CLKIN period of 27 ns: DT = t_{CK} - 27 ns.) Link and serial ports: all are 100% tested at die level, serial ports are 100% AC tested at module level, only Link Port 4 from each processor is AC tested at module level, then link and serial ports are DC tested at module level.
- 23/ Applies after the power-up sequence is complete. At power-up, the processor's internal phase-locked loop requires no more than 2000 CLKIN cycles while RESET is low, assuming stable V_{DD} and CLKIN (not including start-up time of external oscillator).
- <u>24</u>/ Only required if multiple microcontrollers must come out of reset synchronous to CLKIN with program counters (PC) equal (i. e. for a SIMD system). Not required for multiple microcontrollers communicating over the shared bus (through the external port), because the bus arbitration logic synchronizes it self automatically after reset.
- Only required for IRQx recognition in the following cycle. 25/
- <u>26</u>/ Applies only if tSIR and tHIR requirements are not met.
- 27/ Flag inputs meeting these setup and hold times will affect conditional instructions in the following instruction cycle.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-97507
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		A	25

TABLE 1. Electrical performance characteristics - Continued.

- <u>28</u>/ W = (number of wait states specified in WAIT register) times t_{CK} . HI = t_{CK} (if an address hold cycle or bus idle cycle occurs, as specified in WAIT register; otherwise HI = 0). H = t_{CK} (if an address hold cycle occurs as specified in WAIT register; otherwise H = 0). I = t_{CK} (if bus idle cycle occurs, as specified in WAIT register; otherwise I = 0).
- 29/ Data delay/setup: User must meet tDAD or tDRLD or synchronous specification tSSDATI.
- <u>30</u>/ For MSx, SW, and BMS, the falling edge is referenced.
- <u>31</u>/ Data hold: User must meet t_{HDA} or t_{HDRH} or synchronous specification t_{HDATI}. To determine system hold time, the data output hold time in a particular system, first calculate t_{DECAY} = C_L $\Delta V / I_L$. Choose ΔV to be the difference between the microcontroller's output voltage and the input threshold for the device requiring the hold. Typical ΔV is 0.4 volt. CL is the total bus capacitance (per data line), and IL is the total leakage or three state current (per data line). The hold time will be tDECAY plus the minimum disable time (i. e. tHDWD for the write cycle).
- 32/ ACK delay/setup: User must meet tDSAK or tDAAK or synchronous specification tSACKC.
- 33/ To determine system hold time, the data output hold time in a particular system, first calculate t_{DECAY} = C_L $\Delta V / I_L$. Choose ΔV to be the difference between the microcontroller's output voltage and the input threshold for the device requiring the hold. Typical ΔV is 0.4 volt. C₁ is the total bus capacitance (per data line), and I₁ is the total leakage or three state current (per data line). The hold time will be t_{DECAY} plus the minimum disable time (i. e. t_{HDWD} for the write cycle).
- <u>34</u>/ t_{SRWLI}(min) = 9.5 + 5DT/16, when multiprocessor memory space wait state (MMSWS bit in WAIT register) is disabled; when MMSWS is enabled, $t_{SRWLI}(min) = 4 + DT/8$.
- 35/ tDACKAD is true only if the address and SW inputs have setup times (before CLKIN) greater than 10.5 + DT/8 and less than 18.5 + 3DT/4. If the address and SW inputs have setup times greater than 19 + 3DT/4, then ACK is valid 15 + DT/4 (max) after CLKIN. A slave that sees an address with a M field match will respond with ACK reguardless of the state of MMSWS or strobes. A slave will three state ACK every cycle with tACKTR.
- 36/ For first asynchronous access after HBR and CS asserted, ADDR 31-0 must be a non-MMS value 1/2tCK before RD or WR goes low or by tHBGRCSV after HBG goes low. This is easily accomplished by driving an upper address signal high when HBG is asserted.
- 37/ Only required for recognition in the current cycle.
- 38/ CPA assertion must meet the setup to CLKIN; deassertion does not need to meet the setup to CLKIN.
- 39/(O/D) = open drain, (A/D) = active drain.
- 40/ Not required if RD and address are valid tHBGRCSV after HBG goes low. For first access after HBR asserted, ADDR 31-0 must be a non-MMS value 1/2t_{CK} before RD or WR goes low or by t_{HBGRCSV} after HBG goes low. This is easily accomplished by driving an upper address signal high when HBG is asserted. For address bits to be driven during asynchronous host accesses, see QML manufacturer.
- 41/ Strobes = RD, WR, SW, PAGE, and DMAG.
- 42/ In addition to bus master transition cycles, these specifications also apply to bus master and bus slave synchronous read/write.
- 43/ Memory interface = Address, RD, WR, MSx, SW, HBG, PAGE, DMAGx, and BMS (in EPROM boot mode).
- 44/ Only required for recognition in the current cycle.
- 45/ tSDATDGL is the data setup requirement if DMARx is not being used to hold off completion of a write. Otherwise, if DMARX low holds off completion of the write , the data can be driven tDATDRH after DMARx is brought high.
- 46/ tVDATDGH is valid if DMARx is not being used to hold off completion of a read. If DMARx is used to prolong the read, then tVDATDGH = $7.5 + 9DT/16 + (n * t_{CK})$ where "n" equals the number of extra cycles that the access is prolonged.
- 47/ LACK will go low with tDLALC relative to rising edge of LCLK after first nibble is received. LACK will not go low if the receivers link buffer is not about to fill.
- 48/ Only required for interrupt recognition in the current cycle.
- 49/ Reference to sample edge.
- 50/ RFS hold after RCK when MCE = 1, MFD = 0 is 0.5 ns minimum from drive edge. TFS hold after TCK for late external TFS is 0.5 ns minimum from drive edge.
- 51/ Reference to drive edge.
- 52/ Applies only to gated serial clock mode used for serial port system I/O in mesh multiprocessing systems.
- 53/ MCE = 1, TFS enable and TFS valid follow t_{DDTLFSE} and t_{DDTENFS}. 54/ System inputs = DATA47-0, ADDR31-0, RD, WR, ACK, SBTS, SW, HBR, HBG, CS, DMAR1, DMAR2, BR6-1, RPBA, IRQ2-0, FLAG2-0, DR0, DR1, TCLK0, TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, LxDAT3-0, LxCLK, LxACK, EBOOT, LBOOT, BMS, CLKIN, RESET.
- 55/ System outputs = DATA47-0, ADDR31-0, MS3-0, RD, WR, ACK, PAGE, ADRCLK, SW, HBG, REDY, DMAG1, DMAG2, BR6-1, CPA, FLAG2-0, TIMEXP, DT0, DT1, TCLK0, TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, LxDAT3-0, LxCLK, LxACK, BMS.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-97507
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		A	26

Case outline X. - D/E -D1/E1-D2/E2 · D6/E6 D4/E4 ₽ Ð .015 × 45° 3 PLS A2 30° 23 REF 232 154 D3/E3 D5/E5 b 308 78 77 .040 × 45°— INDEX CORNER Φ O- A1 FIGURE 1. Case outline(s). SIZE STANDARD 5962-97507 Α **MICROCIRCUIT DRAWING** DEFENSE SUPPLY CENTER COLUMBUS **REVISION LEVEL** SHEET COLUMBUS, OHIO 43216-5000 Α 27 DSCC FORM 2234

APR 97

Symbol	Millim	eters	Inc	hes
	Min	Max	Min	Max
А		4.06		0.160
A1	2.11	2.57	0.083	0.101
A2	0.08	0.33	0.003	0.013
b	0.15	0.25	0.006	0.010
с	0.10	0.17	0.004	0.0065
D/E		77.47		3.050
D1/E1	75.95	76.45	2.990	3.010
D2/E2	68.96	69.72	2.715	2.745
D3/E3	57.66	59.18	2.270	2.330
D4/E4	51.77	52.37	2.038	2.062
D5/E5	47.88	48.13	1.885	1.895
D6/E6	8.38	8.89	0.330	0.350
е	0.64 BSC		0.02	5 BSC
J		0.89		0.035

Case outline X - Continued.

NOTES:

- 1. The U.S. preferred system of measurement is the metric SI. This item was designed using inch-pound units of measurement. In case of problems involving conflicts between the metric and inch-pound units, the inch-pound units shall rule.
- 2. Pin numbers are for reference only.

FIGURE 1. Case outline(s) - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-97507
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 28

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-97507
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		A	29

Device types	01and 02					
Case outline			Х			
Terminal number	Terminal symbol	Terminal number	Terminal symbol	Terminal number	Terminal symbol	
$\begin{array}{c} 177\\ 178\\ 179\\ 180\\ 181\\ 182\\ 183\\ 184\\ 185\\ 186\\ 187\\ 188\\ 189\\ 190\\ 191\\ 192\\ 193\\ 194\\ 195\\ 196\\ 197\\ 198\\ 199\\ 200\\ 201\\ 202\\ 203\\ 204\\ 205\\ 206\\ 207\\ 208\\ 209\\ 210\\ 211\\ 212\\ 213\\ 214\\ 215\\ 216\\ 217\\ 218\\ 219\\ 220\\ \end{array}$	LC4DAT2 LC4DAT3 GND LC3ACK LC3CLK LC3DAT0 LC3DAT1 LC3DAT2 LC3DAT3 VDD LC1ACK LC1CLK LC1DAT0 LC1DAT1 LC1DAT2 LC1DAT3 GND LB4ACK LB4DAT0 LB4DAT1 LB4DAT2 LB4DAT3 VDD LB3ACK LB3CLK LB3DAT3 GND LB3ACK LB3DAT1 LB3DAT2 LB3DAT3 GND LB1ACK LB1CLK LB1DAT0 LB1DAT3 VDD LB1ACK LB1CLK LB1DAT3 VDD LA4ACK LA4DAT1 LA4DAT2 LA4DAT3	$\begin{array}{c} 221\\ 222\\ 223\\ 224\\ 225\\ 226\\ 227\\ 228\\ 229\\ 230\\ 231\\ 232\\ 233\\ 234\\ 235\\ 236\\ 237\\ 238\\ 239\\ 240\\ 241\\ 242\\ 243\\ 244\\ 245\\ 244\\ 245\\ 244\\ 245\\ 246\\ 247\\ 248\\ 249\\ 250\\ 251\\ 252\\ 253\\ 254\\ 255\\ 256\\ 257\\ 258\\ 259\\ 260\\ 261\\ 262\\ 263\\ 264\\ \end{array}$	GND LA3ACK LA3DAT0 LA3DAT1 LA3DAT2 LA3DAT3 VDD LA1ACK LA1DAT3 UDD LA1ACK LA1DAT0 LA1DAT1 LA1DAT2 LA1DAT0 LA1DAT1 LA1DAT2 LA1DAT3 GND DATA0 DATA0 DATA1 DATA2 DATA3 VDD DATA4 DATA5 DATA6 DATA3 VDD DATA4 DATA5 DATA6 DATA7 GND DATA4 DATA5 DATA6 DATA10 DATA10 DATA11 VDD DATA12 DATA10 DATA12 DATA13 DATA110 DATA12 DATA13 DATA14 DATA15 GND DATA16 DATA17 DATA18 DATA16 DATA17 DATA18 DATA10 DATA20 DATA21 DATA22 DATA22 DATA23	265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308	GND DATA24 DATA25 DATA26 DATA27 VDD DATA28 DATA29 DATA30 DATA30 DATA31 GND DATA32 DATA33 DATA34 DATA35 VDD DATA36 DATA36 DATA37 DATA38 DATA39 GND DATA40 DATA40 DATA40 DATA41 CLKIN GND DATA44 DATA43 VDD DATA44 DATA45 DATA43 VDD DATA44 DATA45 DATA46 DATA45 DATA46 DATA47 GND BR1 BR2 BR3 BR4 BR5 BR6 PAGE VDD DMAG1 DMAG2 ACK	

FIGURE 2. <u>Terminal connections</u> - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-97507
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL A	SHEET 30

APR 97

APR 97

TABLE II. Electrical test requirements.

MIL-PRF-38534 test requirements	Subgroups (in accordance with MIL-PRF-38534, group A test table)
Interim electrical parameters	Paragraph 4.2.b
Final electrical parameters	Paragraph 4.2.b*, 1, 2, 3, 7, 8, 9, 10, 11
Group A test requirements	1, 2, 3, 7, 8, 9, 10, 11
Group C end-point electrical parameters	1, 7, 9
MIL-STD-883, group E end-point electrical parameters for RHA devices	Subgroups** (in accordance with method 5005, group A test table)

* PDA applies to paragraph 4.2.b, functional testing.

** When applicable to this standard microcircuit drawing, the subgroups shall be defined.

4.3 <u>Conformance and periodic inspections</u>. Conformance inspection (CI) and periodic inspection (PI) shall be in accordance with MIL-PRF-38534 and as specified herein.

4.3.1 <u>Group A inspection (CI)</u>. Group A inspection shall be in accordance with MIL-PRF-38534 and as follows:

- a. Tests shall be as specified in table II herein.
- b. Subgroups 4, 5, and 6 shall be omitted.
- c. Subgroups 7 and 8 shall include verification of the functionality of the device.
- 4.3.2 <u>Group B inspection (PI)</u>. Group B inspection shall be in accordance with MIL-PRF-38534.
- 4.3.3 Group C inspection (PI). Group C inspection shall be in accordance with MIL-PRF-38534 and as follows:
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test, method 1005 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DSCC-VA or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
 - (2) T_C as specified in accordance with table I of method 1005 of MIL-STD-883.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-97507
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL A	SHEET 46

4.3.4 Group D inspection (PI). Group D inspection shall be in accordance with MIL-PRF-38534.

4.3.5 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein). RHA levels shall be M, D, R, and H. RHA quality conformance inspection sample tests shall be performed at the RHA level specified in the acquisition document.

- a. RHA tests for levels M, D, R, and H shall be performed through each level to determine at what levels the devices meet the RHA requirements. These RHA tests shall be performed for initial qualification and after design or process changes which may affect the RHA performance of the device.
- b. End-point electrical parameters shall be as specified in table II herein.
- c. Prior to total dose irradiation, each selected sample shall be assembled in its qualified package. It shall pass the specified group A electrical parameters in table I for subgroups specified in table II herein.
- d. The devices shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38534 for RHA level being tested, and meet the postirradiation end-point electrical parameter limits as defined in table I at T_A = +25° C ±5 percent, after exposure.
- e. Prior to and during total dose irradiation testing, the devices shall be biased to establish a worst case condition as specified in the radiation exposure circuit.
- f. For device classes H and K, subgroups 1 and 2 in table V, method 5005 of MIL-STD-883 shall be tested as appropriate for device construction.
- g. When specified in the purchase order or contract, a copy of the RHA delta limits shall be supplied.

5. PACKAGING

5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38534.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.

6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 1692, Engineering Change Proposal.

6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Supply Center Columbus when a system application requires configuration control and the applicable SMD. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-7603.

6.5 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, P. O. Box 3990, Columbus, Ohio 43216-5000, or telephone (614) 692-0512.

6.6 <u>Sources of supply</u>. Sources of supply are listed in QML-38534. The vendors listed in QML-38534 have submitted a certificate of compliance (see 3.7 herein) to DSCC-VA and have agreed to this drawing.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-97507
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		A	47

		TABLE III.	Pin functions.				
Terminal symbol	Туре <u>1</u> /	Function					
ADDR31-0	I/O/T	external memory and periphe outputs addresses for read/w processors. The module input	External Bus Address. (Common to all processors). The module outputs addresses for external memory and peripherals on these pins. In a multiprocessor system, the bus master outputs addresses for read/writes on the internal memory or IOP registers of slave processors. The module inputs addresses when a host processor or multiprocessing bus master is reading or writing the internal memory or IOP registers of internal processors.				
DATA47-0	I/O/T	External Bus DATA. (Commo instructions on these pins. 32 data is transferred over bits 4 is transferred over bits 47 - 8 16 of the bus. In PROM boot resistors on unused DATA pin	2-bit single-precis 7 - 16 of the bus. of the bus. 16-bit mode, 8-bit data	ion floating-point data and 40-bit extended-precisior t short word data is transfe is transferred over bis 23	32-bit fixed-point floating-point data erred over bits 31 -		
MS3-0	0/Т	selects for the corresponding in the individual processors s decoded memory address lin When no external memory ad however, when a <u>con</u> ditional condition is true. MS0 can be	Memory Select Lines. (Common to all processors). These lines are asserted (low) as chip selects for the corresponding banks of external memory. Memory bank size must be defined in the individual processors system control registers (SYSCON). The MS3-0 lines are decoded memory address lines that change at the same time as the other address lines. When no external memory access is occurring the MS3-0 lines are inactive; they are active, however, when a conditional memory access instruction is excuted, whether or not the condition is true. MS0 can be used with the PAGE signal to implement a bank of DRAM memory (Bank 0). In multiprocessing system, the MS3-0 lines are output by the bus master.				
RD	I/O/T	Memory Read Strobe. (Common to all processors). This pin is asserted (low) when the processor reads from external devices or when the internal memory of internal processors is being accessed. External devices (including other processors) must assert RD to read from the processors internal memory. In a multiprocessing system, RD is output by the bus master and is input by all other processors.					
WR	I/O/T	Memory Write Strobe. (Common to all processors). This pin is asserted (low) when the processor writes from external devices or when the internal memory of internal processors is being accessed. External devices (including other processors) <u>must</u> assert WR to write from the processors internal memory. In a multiprocessing system, WR is output by the bus master and is input by all other processors.					
PAGE	O/T	DRAM Page Boundary. (Common to all processors). The module asserts this pin to signal that an external DRAM page boundary has been crossed. DRAM page size must be defined in the individual processor's memory control register (WAIT). DRAM can only be implemented in external memory Bank 0; the PAGE signal can only be activated for Bank 0 accesses. In a multiprocessing system, PAGE is output by the bus master.					
ADRCLK	0/Т	Clock Output Reference. (Co ADRCLK is output by the bus		essors). In a multiprocess	sing system,		
ŚŴ	I/O/T Synchronous Write Select. (Common to all processors). This signal is used to interface the						
					1		
	STANI MICROCIRCU	IT DRAWING	SIZE A		5962-97507		
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000				SHEET 48			

		TABLE III. <u>Pin fu</u>	nctions - Continu	ed.			
Terminal symbol	Type <u>1</u> /	Function					
ACK	I/O/S	Memory Acknowledge. (Common to all processors). External devices can deassert ACK (low) to add wait states to an external memory access. ACK is used by I/O devices, memory controllers, or other peripherals to hold off completion of an external memory access. The module deasserts ACK, as an output, to add wait states to a synchronous access of its internal memory. In a multiprocessing system, a slave processor deasserts the bus master's ACK input to add wait state(s) to an access of its internal memory. The bus master has a keeper latch on its ACK pin that maintains the input at the level it was last driven to.					
SBTS	I/S	Suspend Bus Three State. (SBTS (low) to place the extent impedence state for the follow while <u>SBT</u> S is asserted, the p until SBTS is deasserted. SE module deadlock, or used with	nal bus address, wing cycle. If the <u>pro</u> cessor will halt BTS should only b	data, selects, and strobes module attempts to acces and the memory access be used to recover from the	s in a high ss external memory will not be completed		
HBR	I/A	request control of the module system, the processor that is relinquish the bus, <u>the</u> proces	Host Bus Request. (Common to all processors). Must <u>b</u> e asserted by a host processor to request control of the module's external bus. When HBR is asserted in a <u>multiprocessor</u> system, the processor that is bus master will relinquish the bus and assert HBG. To relinquish the bus, <u>the</u> processor places the address, data, select, and strobe lines in a high impedance state. HBR has priority over all processor bus requests (BR 6-1) in a multiprocessing system.				
HBG	I/O	Host Bus Grant. (Common to all processors). Acknowledges an HBR bus request, indicating that the host processor may take control of the external bus. HBG is asserted (held low) by the module until HBR is released. In a multiprocessing system, HBG is output by the processor bus master and is monitored by all others.					
CSA	I/A	Chip Select. Asserted by host processor to select processor-A.					
CSB	I/A	Chip Select. Asserted by host processor to select processor-B.					
CSC	I/A	Chip Select. Asserted by hos	st processor to se	elect processor-C.			
CSD	I/A	Chip Select. Asserted by hos	st processor to se	elect processor-D.			
REDY (O/D)	0	Host Bus Acknowledge. (Co add wait states to an asynchi Open drain output (O/D) by d of indiviual processors to be inputs are asserted.	onous access of efault; can be pro	its internal memory or IOF ogrammed in ADREDY bit	P registers by a host. of SYS <u>O</u> N regi <u>ster</u>		
BR6-1	I/O/S	I/O/S Multiprocessing Bus Requests. (Common to all processor). Used by multiprocessing processors to arbitrate for bus mastership. A processor only drives its own BRx line (corresponding to the value of its ID2-0 inputs) and monitors all others. In a multiprocessing system with less than six processors the unused BRx pins should be pulled high; BR4-1 must not be pulled high or low because they are outputs.					
			SIZE				
	STANE MICROCIRCU	IT DRAWING	A		5962-97507		
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000				REVISION LEVEL	SHEET 49		

TABLE III. Pin functions - Continued.							
Terminal symbol	Type <u>1</u> /	Function					
RРВА	I/S	rotating priority fot multiproces priority is selected. This signal same value on every processo	Rotating Priority Bus Arbitration Select. (Common to all processors). When RPBA is high, rotating priority fot multiprocessor bus arbitration is selected. When RPBA is low, fixed priority is selected. This signal is a system configuration selection that must be set to the same value on every processor. If the value of RPBA is changed during system operation, it must be changed in the same CLKIN cycle on every processor.				
CPAy (O/D)	I/O	Core Priority Access (y=proce processor of a <u>bus</u> slave to int external bus. CPA is an open if this function is required. The individually. The CPA pin has not required in a system, the C	terrupt backgroun d <u>rain</u> output that e CPA pin of each an internal 5 koh	d DMA transfers and gain a is connected to all process internal processor is brou m pull-up resistor. If core a	access to the ors in the system, ght out		
DT0	O/T	Data Transmit (Common seria kohm internal pull-up resistors		cessors, TDM). DT pin ha	s four parallel 50		
DR0	I	Data Receive (Common seria kohm internal pull-up resistors		cessors, TDM). DR pin has	s four parallel 50		
TCLK0	I/O	Transmit Clock (Common seri 50 kohm internal pull-up resis		ocessors, TDM). TCLK pir	has four parallel		
RCLK0	I/O	Receiver Clock (Common seri 50 kohm internal pull-up resis	Receiver Clock (Common serial ports 0 to all processors, TDM). RCLK pin has four parallel 50 kohm internal pull-up resistors.				
TFS0	I/O	Transmit Frame Sync (Comm	on serial ports 0 to	o all processors, TDM).			
RFS0	I/O	Receiver Frame Sync (Comm	on serial ports 0 to	o all processors, TDM).			
DTy1	O/T	Data Transmit (Serial port 1 individual from processor-A, -B, -C, -D). Each DT pin has a 50 kohm internal pull-up resistor.					
DRy1	I	Data Receive (Serial port 1 individual from processor-A, -B, -C, -D). Each DR pin has a 50 kohm internal pull-up resistor.					
TCLKy1	I/O	Transmit Clock (Serial port 1 i 50 kohm internal pull-up resis		ocessor-A, -B, -C, -D). Eac	h TCLK pin has a		
RCLKy1	I/O	Receive Clock (Serial port 1 ir 50 kohm internal pull-up resist		cessor-A, -B, -C, -D). Eacł	n RCLK pin has a		
TFSy1	I/O	Transmit Frame Sync (Serial	port 1 individual fr	om processor-A, -B, -C, -D).		
RFSy1	I/O	Receive Frame Sync (Serial	port 1 individual fr	om processor-A, -B, -C, -D).		
FLAGy0	I/O/A	Flag Pins, <u>2</u> /. (FLAG0 individe control bits as either an input output, it can be used to signa	or output. As an i	nput, it can be tested as a	onfigured via condition. As an		
	STANI MICROCIRCU	IT DRAWING	SIZE A		5962-97507		
		ENTER COLUMBUS HO 43216-5000		REVISION LEVEL	SHEET 50		

		TABLE III. <u>Pin fur</u>	nctions - Continue	ed.		
Terminal symbol	Type <u>1</u> /	Function				
FLAG1	I/O/A	Flag Pins, <u>2</u> /. (FLAG1 commindividual processors as eith condition. As an output, it ca	er an input or out	put. As an input it can be t		
FLAGy2	I/O/A	FLAG Pins, <u>2</u> /. (FLAG2 indiv control bits as either an input output, it can be used to sign	t or output. As ar	input, it can be tested as		
IRQy2-0	I/A	Interrupt Request Lines. (Inc edge-triggered or level-sensi		om y = processor-A, -B, -C	C, -D). May be either	
DMAR1	I/A	DMA Request 1 (DMA Chan	nel 7). Common	to processor-A, -B, -C, -D.		
DMAR2	I/A	DMA Request 1 (DMA Chan	nel 8). Common	to processor-A, -B, -C, -D.		
DMAG1	O/T	DMA Grant 1 (DMA Channel	7). Common to p	processor-A, -B, -C, -D.		
DMAG2	O/T	DMA Grant 2 (DMA Channel	8). Common to p	processor-A, -B, -C, -D.		
LyxCLK	I/O	Link Port Clock (y = processor-A, -B, -C, -D; x = Link Ports 1, 3, 4), $\underline{3}$ /. Each LyxCLK pin has a 50 kohm internal pull-up resistor which is enabled or disabled by the LPDRD bit of the LCOM register, of the processor.				
LyxDAT3-0	I/O	Link Port Data (y = processor-A, -B, -C, -D; x = Link Ports 1, 3, 4), $\underline{3}$ /. Each LyxDAT pin has a 50 kohm internal pull-up resistor which is enabled or disabled by the LPDRD bit of the LCOM register, of the processor.				
LyxACK	I/O	Link Port Acknowledge (y = processor-A, -B, -C, -D; x = Link Ports 1, 3, 4), $\underline{3}$ /. Each LyxACK pin has a 50 kohm internal pull-up resistor which is enabled or disabled by the LPDRD bit of the LCOM register, of the processor.				
BMSA	I/O/T <u>4</u> /	Boot Memory Select. Output: Used as chip select for boot <u>EP</u> ROM devices (when EBOOTA = 1, LBOOTA = 0). In a multiprocessor system, BMS is output by the bus master. Input: When low, indicates that no booting will occur and that processor-A will begin executing instructions from external memory. See table in note 4. This input is a system configuration selection which should be hardwired.				
EBOOTA	I	EPROM Boot Select. (proce booting from an 8-bit EPROM determine booting mode for configuration selection which	 When EBOOT processor-A. See 	A is low, the LBOOTA and table in note 4. This sign	BMSA inputs	
LBOOTA	I	Link Boot. When LBOOTA is LBOOTA is low, processor-A table in note 4. This signal is	is configured for	host processor booting or	no booting. See	
	STAND MICROCIRCUI		SIZE A		5962-97507	
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000			REVISION LEVEL	SHEET 51		

r			<u>nctions</u> - Continue	su.			
Terminal symbol	Type <u>1</u> /		Function				
EBOOTBCD	Ι	processor-B, -C, -D are conf low, the LBOOTBCD and BM	EPROM Boot Select. (Common to processor-B, -C, -D). When EBOOTBCD is high, processor-B, -C, -D are configured for booting from an 8-bit EPROM. When EBOOTBCD is low, the LBOOTBCD and BMSBCD inputs determine booting mode for processor-B, -C, and -D. See table in note 4. This signal is a system configuration selection which should be hardwired.				
LBOOTBCD	Ι	LINK Boot. (Common to pro -D are configured for link poil are configured for host proce a system configuration select	t booting. When essor booting or n	LBOOTBCD is low, multip o booting. See table in no	rocessor-B, -C, -D		
BMSBCD	I/O/T <u>4</u> /	Boot Memory Select. Output EBOOTBCD = 1, LBOOTBC master. Input: When low, in will begin executing instruction system configuration selection	D = 0). In a multi dicates that no be ons from external	processor system, BMS is poting will occur and that p memory. See table in not	output by the bus rocessor-B, -C, -E		
TIMEXPy	0	Timer Expired. (Individual T cycles when the timer is ena	IMEXP from y = p bled and t _{count} d	rocessor-A, -B, -C, -D). A ecrements to zero.	sserted for four		
CLKIN	Ι	Clock In. (Common to all pro cycle rate is equal to CLKIN. minimum specified frequenc	CLKIN may not				
RESET	I/A	Module Reset. (Common to input must be asserted (low)		Resets the module to a kn	own state. This		
ТСК	Ι	Test Clock (JTAG). (Commo JTAG boundary scan.	Test Clock (JTAG). (Common to all processors). Provides an asynchronous clock for JTAG boundary scan.				
TMS	I/S	Test Mode Select (JTAG). (Common to all processors). Used to control the test state machine. TMS has four parallel 20 kohm internal pull-up resistors.					
TDI	I/S	Test Data Input (JTAG). Provides serial data for the boundary scan logic chain starting at processor-A. TDI has a 20 kohm pull-up resistor.					
TDO	0	Test Data Output (JTAG). Serial scan output of the boundary scan chain path, from processor-D.					
TRST	I/A	Test Reset (JTAG). Commo must be a <u>ssert</u> ed (pulsed lov module. TRST has four para	w) after power-up	or held low for proper ope			
EMU(O/D)	0	Emulation Status. (Common target board test connector of). Pin 118 must be connec	cted to the module		
VDD	Р	Power Supply. Nominally +3	.3 V dc (26 pins).				
GND	G	Power supply returns. The lie	d to the module is	electrically connected to	GND.		
	GTAND	400	SIZE				
	STAND MICROCIRCUI SE SUPPLY CI		A		5962-9750		
-		IO 43216-5000		REVISION LEVEL	SHEET 52		

TABLE III. Pin functions - Continued.

NOTES:	
--------	--

<u>1</u>/ Type: A = asynchronous, A/D = active drive, G = ground, I = input, O = output, O/D = open drain, P = power supply, S = synchronous, T = three state (when SBTS is asserted, or when the module is a bus slave).

Inputs identified as synchronous (S) must meet timing requirements with respect to CLKIN (or with respect to TCK for TMS, TDI). Inputs identified as asynchronous (A) can be asserted asynchronously to CLKIN(or to TCK for TRST).

Unused inputs should be tied or pulled to VDD or <u>GND</u>, except for ADDR31-0, DATA47-0, FLAG2-0, <u>SW</u>, and inputs that have internal pull-up or pull-down resistors (<u>CPA</u>, ACK, Dtx, Drx, TCLKx, RCLKx, LxDAT3-0, LxCLK, LxACK, TMS, and TDI) - these pins can be left floating. These pins have a logic-level hold circuit that prevents the input from floating internally.

ID pins are hardwired internally.

- 2/ FLAG3 is connected internally, common to processor-A, -B, -C, and -D.
- <u>3</u>/ LINK PORTS 0, 2, and 5 are connected internally between processors -A, -B, -C, and -D.
- $\underline{4}$ Three statable only in EPROM boot mode (when \overline{BMS} is an output).

EBOOT	LBOOT	BMS	Booting Mode
1	0	output	EPROM (connect BMS to EPROM chip select)
0	0	1 (input)	Host processor
0	1	1 (input)	Link port
0	0	0 (input)	No booting. Processor executes from external memory.
0	1	0 (input)	Reserved
1	1	x (input)	Reserved

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000	SIZE A		5962-97507
		REVISION LEVEL A	SHEET 53

STANDARD MICROCIRCUIT DRAWING SOURCE APPROVAL BULLETIN

DATE: 98-12-10

Approved sources of supply for SMD 5962-97507 are listed below for immediate acquisition only and shall be added to QML-38534 during the next revision. QML-38534 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This bulletin is superseded by the next dated revision of QML-38534.

Standard microcircuit drawing PIN <u>1</u> /	Vendor CAGE number	Vendor similar PIN <u>2</u> /
5962-9750701HXC	34031	AD14060LBF/QML-4
5962-9750702HXC	34031	AD14060LTF/QML-4

- 1/ The lead finish shown for each PIN, representing a hermetic package, is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the Vendor to determine its availability.
- <u>2</u>/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE <u>number</u>

34031

Vendor name and address

Analog Devices Incorporated 7910 Triad Center Drive Greenboro, NC 27409-9605

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in this information bulletin.