SCBS178O - AUGUST 1992 - REVISED MARCH 2004 - Compatible With IEEE Std 1194.1-1991 (BTL) - TTL A Port, Backplane Transceiver Logic (BTL) B Port - Open-Collector B-Port Outputs Sink 100 mA - BIAS V_{CC} Minimizes Signal Distortion During Live Insertion or Withdrawal - High-Impedance State During Power Up and Power Down - B-Port Biasing Network Preconditions the Connector and PC Trace to the BTL High-Level Voltage - TTL-Input Structures Incorporate Active Clamping to Aid in Line Termination #### PCA PACKAGE (TOP VIEW) NC - No internal connection Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. SCBS1780 - AUGUST 1992 - REVISED MARCH 2004 ## description/ordering information The SN74FB1650 contains two 9-bit transceivers designed to translate signals between TTL and backplane transceiver-logic (BTL) environments. The device is designed specifically to be compatible with IEEE Std 1194.1-1991. The B port operates at BTL-signal levels. The open-collector B ports are specified to sink 100 mA. Two output enables (OEB and \overline{OEB}) are provided for the \overline{B} outputs. When OEB is low, \overline{OEB} is high, or V_{CC} is less than 2.1 V, the \overline{B} port is turned off. The A port operates at TTL-signal levels. The A outputs reflect the inverse of the data at the \overline{B} port when the A-port output enable (OEA) is high. When OEA is low or when V_{CC} is less than 2.1 V, the A outputs are in the high-impedance state. BIAS V_{CC} establishes a voltage between 1.62 V and 2.1 V on the BTL outputs when V_{CC} is not connected. $\operatorname{BG}\operatorname{V}_{\operatorname{CC}}$ and $\operatorname{BG}\operatorname{GND}$ are the supply inputs for the bias generator. #### **ORDERING INFORMATION** | TA | PACKAGE† | | ORDERABLE
PART NUMBER | TOP-SIDE
MARKING | |-------------|------------|------|--------------------------|---------------------| | 0°C to 70°C | TQFP – PCA | Tube | SN74FB1650PCA | FB1650 | [†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. #### **Function Tables** #### **TRANSCEIVER** | | INPUTS | | | FUNCTION | | | | | |-----|--------|-----|-----|----------------------------------|--|--|--|--| | OEA | OEA | OEB | OEB | FUNCTION | | | | | | Х | Х | Н | L | A data to B bus | | | | | | L | Н | Χ | X | B data to A bus | | | | | | L | Н | Н | L | Ā data to B bus, B data to A bus | | | | | | Х | Χ | L | Х | 5 | | | | | | Χ | Χ | Χ | Н | B-bus isolation | | | | | | Н | Χ | Χ | Х | A bus isolation | | | | | | X | L | X | X | A-bus isolation | | | | | #### STORAGE MODE | INP | UTS | FUNCTION | | | | |-----|------------|-------------|--|--|--| | LE | CLK | FUNCTION | | | | | Н | Х | Transparent | | | | | L | \uparrow | Store data | | | | | L | L | Storage | | | | # functional block diagram To Eight Other Channels # absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage range, V _{CC} , BIAS V _{CC} , BG V _{CC} | –0.5 V to 7 V | |--|----------------------------| | Input voltage range, V _I : Except B port | –1.2 V to 7 V | | B port | –1.2 V to 3.5 V | | Voltage range applied to any \overline{B} output in the disabled or power-off state, V_O | –0.5 V to 3.5 V | | Voltage range applied to any output in the high state, VO | -0.5 V to V_{CC} | | Input clamp current, I _{IK} : Except B port | –40 mA | | B port | –18 mA | | Current applied to any single output in the low state, IO: A port | 48 mA | | B port | 200 mA | | Package thermal impedance, θ _{JA} (see Note 1) | 22°C/W | | Storage temperature range, T _{stg} | –65°C to 150°C | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: The package thermal impedance is calculated in accordance with JESD 51-7. # SN74FB1650 18-BIT TTL/BTL UNIVERSAL STORAGE TRANSCEIVER SCBS178O - AUGUST 1992 - REVISED MARCH 2004 ## recommended operating conditions (see Note 2) | | | | MIN | NOM | MAX | UNIT | | |---|--------------------------------|---------------|------|----------|-----|------|--| | V _{CC} ,
BG V _{CC} ,
BIAS V _{CC} | Supply voltage | _ | | 5 | 5.5 | V | | | | I Pale Javes Percent well-see | B port | 1.62 | | 2.3 | ., | | | V _{IH} F | High-level input voltage | Except B port | 2 | | | V | | | ., | Lave lave Parastructura | B port | 0.75 | .75 1.47 | | | | | V _{IL} | Low-level input voltage | Except B port | | | 8.0 | ٧ | | | lıK | Input clamp current | _ | | | -18 | mA | | | loн | High-level output current | A port | | | -3 | mA | | | | Law law law and a summer | A port | | | 24 | ^ | | | lOL | Low-level output current | B port | | | 100 | mA | | | TA | Operating free-air temperature | | 0 | | 70 | °C | | NOTE 2: To ensure proper device operation, all unused inputs must be terminated as follows: A and control inputs to V_{CC}(5 V) or GND, and B inputs to GND only. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. ## electrical characteristics over recommended operating free-air temperature range | | PARAMETER | TEST CONDITIONS | | MIN | TYP† | MAX | UNIT | | |-------------------|---------------------------------|---|---|------|------|------|------|--| | Maria | B port | $V_{CC} = 4.5 \text{ V},$ | I _I = -18 mA | | | -1.2 | V | | | VIK | Except B port | $V_{CC} = 4.5 \text{ V},$ | $I_I = -40 \text{ mA}$ | | | -0.5 | ٧ | | | Vон | AO port | V _{CC} = 4.5 V, | IOH = -3 mA | 2.5 | 3.3 | | V | | | | AO port | $V_{CC} = 4.5 \text{ V},$ | $I_{OL} = 24 \text{ mA}$ | | 0.35 | 0.5 | | | | VOL | B port | V 45V | I _{OL} = 80 mA | 0.75 | | 1.1 | V | | | | B port | V _{CC} = 4.5 V | I _{OL} = 100 mA | | | 1.15 | | | | Ц | Except B port | $V_{CC} = 5.5 \text{ V},$ | V _I = 5.5 V | | | 50 | μΑ | | | I _{IH} ‡ | Except B port | V _C C = 5.5 V, | V _I = 2.7 V | | | 50 | μΑ | | | . + | Except B port | V _C C = 5.5 V, | V _I = 0.5 V | | | -50 | | | | 111_‡ | B port | $V_{CC} = 5.5 \text{ V},$ | V _I = 0.75 V | | | -100 | μΑ | | | lozh | AO port | V _{CC} = 5.5 V, | V _O = 2.7 V | | | 50 | μΑ | | | lozL | AO port | V _C C = 5.5 V, | V _O = 0.5 V | | | -50 | μΑ | | | lozpu | AO port | $V_{CC} = 0 \text{ to } 2.1 \text{ V},$ | $V_0 = 0.5 \text{ V to } 2.7 \text{ V}$ | | | 50 | μΑ | | | lozpd | AO port | $V_{CC} = 2.1 \text{ V to 0},$ | $V_0 = 0.5 \text{ V to } 2.7 \text{ V}$ | | | -50 | μΑ | | | ЮН | B port | $V_{CC} = 0 \text{ to } 5.5 \text{ V},$ | V _O = 2.1 V | | | 100 | μΑ | | | los§ | A port | $V_{CC} = 5.5 \text{ V},$ | V _O = 0 | -30 | | -150 | mA | | | | A port to B port | V 55V | | | | 100 | | | | ICC | B port to A port | $V_{CC} = 5.5 \text{ V},$ | IO = 0 | | | 120 | mA | | | | Al port | V V an CND | | | 5.5 | | | | | Ci | Control inputs | $V_I = V_{CC}$ or GND | | | 5.5 | | pF | | | Co | AO ports | $V_O = V_{CC}$ or GND | | | 5.5 | | pF | | | C _{io} | B port per IEEE Std 1194.1-1991 | V _{CC} = 0 to 5.5 V | | | | 5.5 | pF | | [†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. [‡] For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current. [§] Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second. # SN74FB1650 18-BIT TTL/BTL UNIVERSAL STORAGE TRANSCEIVER SCBS178O - AUGUST 1992 - REVISED MARCH 2004 # live-insertion specifications over recommended operating free-air temperature range | PAR | AMETER | TEST CONDITIONS | | | MIN | MAX | UNIT | |-----------|----------------------|---|------------------------------------|---|------|-----|------| | , (DI | AC \/ \ | V _{CC} = 0 to 4.5 V | V 0400V V (BIACV) A5V4055V | | | 450 | A | | ICC (BI) | AS V _{CC}) | V _{CC} = 4.5 V to 5.5 V | $V_B = 0 \text{ to } 2 \text{ V},$ | V_I (BIAS V_{CC}) = 4.5 V to 5.5 V | | 10 | μΑ | | VO | B port | $V_{CC} = 0$, | V_{I} (BIAS V_{CC}) = 5 V | | 1.62 | 2.1 | V | | | | $V_{CC} = 0$, | V _B = 1 V, | V_{I} (BIAS V_{CC}) = 4.5 V to 5.5 V | -1 | | A | | IO B port | | $V_{CC} = 0 \text{ to } 2.2 \text{ V},$ | OEB = 0 to 5 V | | | 100 | μΑ | | | | $V_{CC} = 0 \text{ to } 5.5 \text{ V},$ | OEB = 0 to 0.8 V | | | 1 | mA | # timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1) | | | | V _{CC} = 5 V,
T _A = 25°C | | MIN | MAX | UNIT | |--------------------|-----------------|------------------|---|-----|-----|-----|------| | | | | MIN | MAX | | | | | f _{clock} | Clock frequency | | | 150 | | 150 | MHz | | t _W | Pulse duration | CLK or LE | 3.3 | | 3.3 | | ns | | | Catura tima | Data before LE | 4.8 | | 4.8 | | | | t _{su} | Setup time | Data before CLK↑ | 4.9 | | 4.9 | | ns | | | Hold time | Data after LE | 1.8 | | 1.8 | | 20 | | th | noia time | Data after CLK↑ | 1.1 | | 1.1 | | ns | SCBS178O - AUGUST 1992 - REVISED MARCH 2004 # switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | | V _{CC} = 5 V,
T _A = 25°C | | | MAX | UNIT | |----------------------|--|----------------|-----|---|-----|-----|-----|------| | | (INPUT) | (001201) | MIN | TYP | MAX | | | | | f _{max} | | | 150 | | | 150 | | MHz | | ^t PLH | | B | 1.8 | 3.7 | 5.3 | 1.8 | 6.2 | | | ^t PHL | Al | Б | 2.9 | 4.4 | 6 | 2.9 | 7.2 | ns | | t _{PLH} | LEAB | B | 2.7 | 4.2 | 5.8 | 2.7 | 6.4 | 20 | | ^t PHL | LEAB | R | 3.5 | 5 | 6.5 | 3.5 | 7.3 | ns | | ^t PLH | CLKAB | B | 2.3 | 3.9 | 5.5 | 2.3 | 6 | 20 | | t _{PHL} | CLKAB | В | 2.9 | 4.5 | 6.1 | 2.9 | 6.7 | ns | | ^t PLH | B | 40 | 3.5 | 5.9 | 7.9 | 3.5 | 8.6 | | | ^t PHL | В | AO | 2.2 | 3.7 | 5.3 | 2.2 | 5.7 | ns | | ^t PLH | LEBA | 10 | 1.8 | 3.2 | 4.6 | 1.8 | 5.1 | | | ^t PHL | LEDA | AO | 1.7 | 3 | 4.4 | 1.7 | 4.7 | ns | | ^t PLH | CLKBA | AO | 1.8 | 3.1 | 4.6 | 1.8 | 5.1 | | | ^t PHL | CLNBA | AU | 1.7 | 3.1 | 4.6 | 1.7 | 4.9 | ns | | ^t PLH | OEB | B | 2.7 | 4.6 | 6.4 | 2.7 | 6.7 | ns | | ^t PHL | | | 2.9 | 4.1 | 5.9 | 2.9 | 6.6 | | | t _{PLH} | OEB | B | 2.6 | 4.3 | 6.2 | 2.6 | 6.6 | | | ^t PHL | OEB | | 3.4 | 4.6 | 6.4 | 3.4 | 7 | ns | | ^t PZH | OEA | AO | 1.4 | 2.9 | 4.4 | 1.4 | 4.9 | ns | | ^t PZL | OEA | | 1.4 | 2.6 | 4 | 1.4 | 4.6 | | | ^t PHZ | OEA | 40 | 1.7 | 3.4 | 5.1 | 1.7 | 5.8 | 20 | | t _{PLZ} | OEA | AO | 2.2 | 3.6 | 5 | 2.2 | 5.5 | ns | | ^t PZH | OEA | 40 | 1.7 | 3.3 | 4.7 | 1.7 | 5.5 | | | ^t PZL | OEA | AO | 1.7 | 3.1 | 4.4 | 1.7 | 5.1 | ns | | ^t PHZ | OEA | AO | 1.5 | 2.9 | 4.5 | 1.5 | 5.1 | 20 | | t _{PLZ} | OEA | AO | 2 | 3.1 | 4.6 | 2 | 4.8 | ns | | t _{sk(p)} † | Pulse skew, AI to \overline{B} or \overline{B} to AO | | | 1 | | | | ns | | t _{sk(o)} † | Output skew, AI to B or B to | AO | | 0.5 | | | | ns | | t _t | B outputs (1.3 V to 1.8 V) | | 0.9 | 1.7 | 3.1 | 0.5 | 4.6 | | | Transition time | AO outputs (10% to 90%) | | 0.5 | 2 | 3.6 | 0.4 | 4.2 | ns | | t(pr) | B-port input pulse rejection | | 1 | | | 1 | | ns | [†] Skew values are applicable for through mode only. #### PARAMETER MEASUREMENT INFORMATION NOTES: A. C_I includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: TTL inputs: PRR \leq 10 MHz, Z_O = 50 Ω , $t_\Gamma \leq$ 2.5 ns, $t_f \leq$ 2.5 ns; BTL inputs: PRR \leq 10 MHz, Z_O = 50 Ω , $t_\Gamma \leq$ 2.5 ns, $t_f \leq$ 2.5 ns. - D. The outputs are measured one at a time, with one transition per measurement. Figure 1. Load Circuits and Voltage Waveforms # PCA (S-PQFP-G100) ## PLASTIC QUAD FLATPACK (DIE DOWN) NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Thermally enhanced molded plastic package with a heat slug (HSL) - D. Falls within JEDEC MS-026 #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | e | |-----------------| | d | | trol | | | | work | | | | | | | | | | d
trol
wo | Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2004, Texas Instruments Incorporated