

HA-5330/883

Very High Speed Precision Monolithic Sample and Hold Amplifier

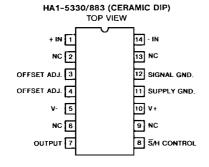
January 1989

Features

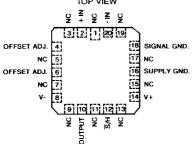
- This Circuit is Processed in Accordance to Mil-Std-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1
- Maximum Acquisition (10V Step to 0.1%) 500ns (10V Step to 0.01%) 900ns
- TTL Compatible Control Input
- Power Supply Rejection≥86dB
- Low Droop Rate (Max at +125°C) 100 μV/μs
- Wide Supply Range±11V to ±18V
- Internal Hold Capacitor
- Low Output Resistance

Applications

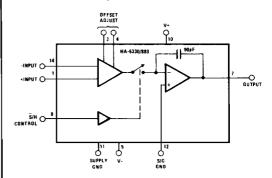
- Precision Data Acquisition Systems
- D/A Converter Deglitching
- Auto-Zero Circuits
- Peak Detectors


Description

The HA-5330/883 is a very fast sample and hold amplifier designed primarily for use with high speed A/D converters. It utilizes the Harris Dielectric Isolation process to achieve a 900ns acquisition time to 12-bit accuracy and a droop rate of $100\mu V/\mu s$ at $+125^{\circ}C$. The circuit consists of an input transconductance amplifier capable of producing large amounts of charging current, a low leakage analog switch, and an integrating output stage which includes a 90pF hold capacitor.


The analog switch operates into a virtual ground, so charge injection on the hold capacitor is constant and independent of $V_{\rm IN}$. Charge injection is held to a low value by compensation circuits and, if necessary, the resulting 0.5mV (TYP) hold step error can be adjusted to zero via the Offset Adjust terminals. Compensation is also used to minimize leakage currents which cause voltage droop in the Hold mode.

The HA-5330/883 will operate at reduced supply voltages (to \pm 11V) with a reduced signal range. This monolithic device is available in a Ceramic 14-pin DIP, and a 20 pad Ceramic LCC package.


Pinouts

HA4-5330/883 (CERAMIC LCC) TOP VIEW

Functional Diagram

NOTE: Pin Numbers Correspond to DIP Package Only.

Specifications HA-5330/883

Absolute Maximum Ratings	Thermal Information
Voltage Between V+ and Supply/Signal GND +20V	Thermal Resistance, Junction-to-Ambient (θ _{ic})
Voltage Between V- and Supply/Signal GND20V	Ceramic DIP Package
Voltage Between Supply GND and Signal GND	Ceramic LCC Package
Differential Input Voltage	Thermal Resistance, Junction~to-Ambient (θia)
Digital Input Voltage (S/H Pin)+8V, -6V	Ceramic DIP Package
Output Current (Note 1)	Ceramic LCC Package
Storage Temperature Range65°C < T _A < +150°C	Power Dissipation (at +75°C)
Lead Temperature (Soldering 10 Seconds)+275°C	Ceramic DIP Package
Junction Temperature+175°C	Ceramic LCC Package
ESD Classification	Power Dissipation Derating Factor (Above +75°C)
<u></u>	Ceramic DIP Package
NOTE: 1. Internal power dissipation may limit output current below ±17mA.	Ceramic LCC Package
Recommended Operating Conditions	_
Operating Temperature Range55°C < T _A < +125°C	Logic Level Low (V _{IL})
Operating Supply Voltage (VSUPPLY) ±15V Analog Input Voltage (Vs) ±10V	Logic Level High (V _{IH})

TABLE 1. D.C. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at V+ = +15V; V- = -15V; V_{IL} = 0.8V (Sample); V_{IH} = 2.0V (Hold); C_{H} = Internal = 90pF, -Input Tied to Output, SIG. GND = SUPPLY GND; Unless Otherwise Specified.

	1	l	GROUP A	1	LIM	i		
D.C. PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS	
input Offset Voltage	VIO		1	+25°C	-2	2	mV	
	"		2, 3	+125°C, -55°C	-2	2	mV	
Input Bias Current	I _B +		1	+25°C	-500	500	nA	
	_		2, 3	+125°C, -55°C	-500	500	nA	
	IB-		1	+25°C	-500	500	nA	
	-		2, 3	+125°C, -55°C	-500	500	nA	
Input Offset Current	lo		1	+25°C	-500	500	nA	
	· -		2,3	+125°C, -55°C	-500	500	nΑ	
Open Loop Voltage	+Avol	FIL = 1kΩ	1	+25 ^O C	2 x 10 ⁶	-	V/V	
Gain]	V _{OUT} = +10V	2,3	+125°C, -55°C	2 x 10 ⁶	-	V/V	
	-AVOL	R _L = 1kΩ	1	+25°C	2 x 10 ⁶	-	V/V	
	'**	V _{OUT} = -10V	2,3	+125°C, -55°C	2 x 10 ⁶		V/V	
Common Mode	-CMRR	V+ = 25V, V- = -5V	1	+25°C	86	-	dB	
Rejection Ratio	1	V _{OUT} = 10V, V _{S/H} = 10.8V	2,3	+125°C, -55°C	86	-	dB	
	+CMRR	V+ = 5V, V- = -25V	1	+25°C	86	-	₫B	
	1	V _{OUT} = -10V, V _{S/H} = -9.2V	2,3	+125°C, -55°C	86	-	d₿	
Output Current	+10	V _{OUT} = +10V	1	+25°C	10	-	mА	
		""	2, 3	+125°C, -55°C	10	-	mA	
	-10	V _{OUT} = -10V	1	+25°C	-	-10	mA	
	ľ	551	2,3	+125°C, -55°C	-	-10	mA	
Output Voltage	+Vout	$R_I = 1k\Omega$	1	+25°C	+10.0	-	v	
Swing			2,3	+125°C, -55°C	+10.0	-	V	
•	-Vout	$R_1 = 1k\Omega$	1	+25°C	-	-10.0	V	
	1	-	2,3	+125°C, -55°C	-	-10.0	V	
Power Supply Current	+lcc		1	+25 ⁰ C	-	22	mA	
	00		2,3	+125°C, -55°C	-	22	mA	
	-lcc	1	1	+25°C	-23	-	mA	
	1		2,3	+125°C, -55°C	-23	-	mA	
Power Supply	+PSRR	V+ = +13.5V. +16.5V	1	+25°C	86	-	d₿	
Rejection Ratio	V- = -15V, -15V		2,3	-55°C, +125°C	86	-	₫₿	
,	-PSRR	V+ = +15V, +15V	1	+25°C	86		d₿	
		V- = -13.5V, -16.5V	2,3	-55°C, +125°C	86	-	d₿	
Digital Input	I _{IN1}	V _{IN1} = 0V	1	+25°C	-	40	μА	
Current	"""		2,3	+125°C, -55°C	-	40	μА	
	I _{IN2}	V _{IN2} = 5.0V	1	+25°C	-	40	μА	
	1142	1142	2,3	+125°C, -55°C	-	40	μА	
Digital Input	Vti		1	+25°C	 -	0.8	V	
Voltage	"	1	2, 3	+125°C, -55°C	-	0.8		
	VIH		1	+25°C	2.0		v	
	"'	İ	2,3	+125°C, -55°C	2.0	-	V	
Output Voltage Droop Rate	V _D		2	+125°C	-100	100	μV/μ	

Specifications HA-5330/883

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at V+ = +15V, V- = -15V, V_{IL} = 0.8V (Sample), V_{IH} = 2.0V (Hold), C_{H} = Internal = 90pF, SIG. GND. = SUPPLY GND., -Input Tied to Output, Unless Otherwise Specified.

.	·				LIM		
PARAMETER	SYMBOL	CONDITIONS	NOTE	TEMP	MIN	MAX	UNITS
Acquisition Time	+tacq	$R_L = 2k\Omega, C_L = 50pF, A_V = +1$	2	+25°C	_	500	ns
0.1%	(0.1%)	V _{OUT} = 0V, +10V		+125°C, -55°C	-	500	ns
	-tacq	$R_L = 2k\Omega$, $C_L = 50pF$, $A_V = +1$	2	+25°C	-	500	ns
	(0.1%)	V _{OUT} = 0V, -10V		+125°C, -55°C	•	500	ns
Acquisition Time	+tacq	$R_L = 2k\Omega$, $C_L = 50pF$, $A_V = +1$	2	+25°C	-	900	ns
0.01%	(0.01%)	V _{OUT} = 0V, +10V	1	+125°C, -55°C	-	900	ns
	-tacq	$R_L = 2k\Omega$, $C_L = 50pF$, $A_V = +1$	2	+25°C	-	900	ns
	(0.01%)	V _{OUT} = 0V, -10V		+125°C, -55°C	-	900	ns
Output Voltage Droop Rate	V _D		2	+25°C, -55°C	-10	10	μV/μs

NOTE: 2. The parameters listed in this table are controlled via design or process parameters and are not directly tested. These parameters are characterized upon initial design release and upon design changes which would affect these characteristics.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1, 3)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1*, 2, 3
Group A Test Requirements	1, 2, 3
Groups C & D Endpoints	1

^{*}PDA applies to Subgroup 1 only. No other subgroups are included in PDA.

Test Circuit

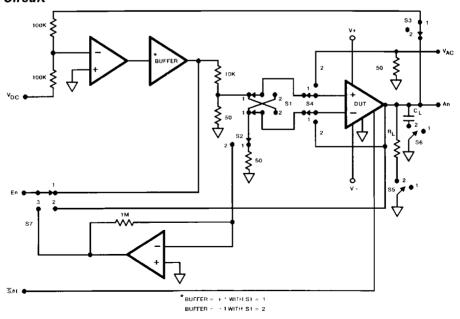
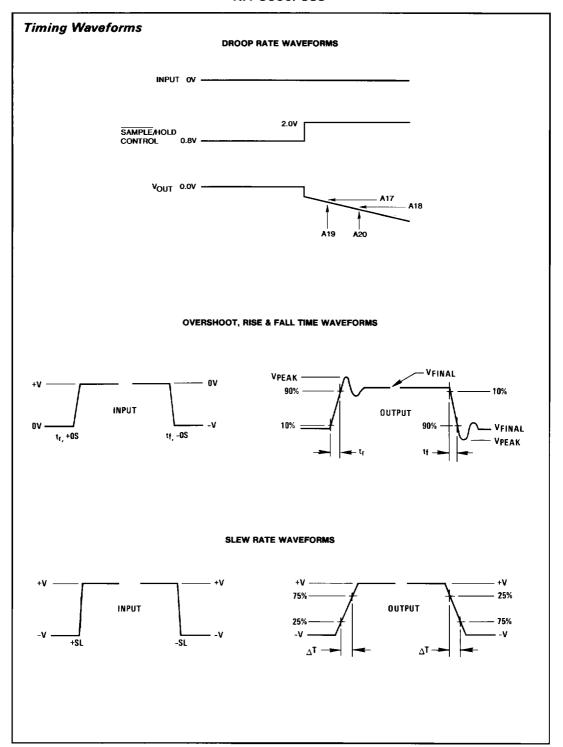
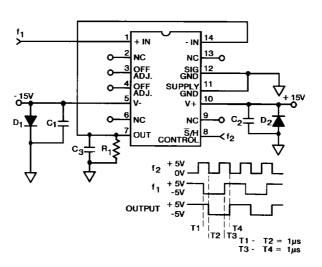


CHART A. TEST CIRCUIT CONDITIONS (SEE TEST CIRCUIT)

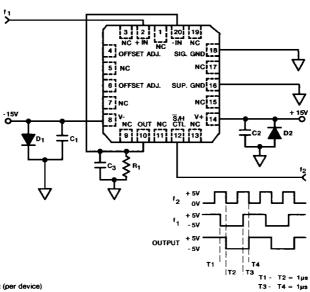

Test C	et Circuit (Continued)																				
		UNITS	Λm	Ę	ž	ž	Ψ	ΨE	쁑	8	8	d B	¥	Ā	мА∕µв	>	>	>	>	쁑	8
	MEASURED PARAMETER	OR EQUATION				9	rrent	Tent	3V (E13-E14)/200	3V (E15-E16)/200	0 10V (E1-E17)/200) 10V (E1-E18)/200	ent	ant	A20-A19 = 10ms					10V (E25-E26)/200	10V (E27-E28)/200
	MEASURE	ORE	$V_{1O} = -E1/200$	I ₁ O = (IB+)-(IB-)	1B+ = (E1-E7)/106	IB- = (E1-E10)/10 ⁶	Measure +V _{CC} Current	Measure -V _{CC} Current	-PSSR = 20Log ₁₀	+PSRR = 20Log10	+CMRR = 20Log ₁₀	-CMRR = 20Log ₁₀	Measure 3/H Current	Measure Š/H Current	Droop = A18-A17, Rate A20-A19	Measure En Volts	Measure En Volts			+Avol = 20Log10	-Avol = 20L0910
(#	FIND	>	>	>	>	μ	Ψ	>>	>>	>	>	¥	₹	SE ,>	>	>	>	>	>>	>>
TEST CIRCUIT CONDITIONS (SEE TEST CIRCUIT)	MEASURE	VALUE	£1	-	E7	E10	-		E13 E14	E15 E16	E17	E18	-	,	A17, A19 A18, A20	,	,	E23	E24	E25 E26	E27 E28
SEE TE		87	ı	-	6	ဗ	-	-	1	-	-	-	1	-	N	N,	2	2	2		
NS (8		86	1	-	-	-	1	1	1	1	-	1	-	-	-	-	1	1	1	1	
IDITIO	NOE	85	. 1	-	-	1	-	ı	ı	1	ı		1	-	2	-	ı	2	7	2	0, 0,
т со	SWITCH POSITION	84	ı	-	-	-	1	ţ	ı	1	ļ	1	ı	-	7	ļ	ŀ	1	ı	ļ	1
CIRCUI	SWIT	83	1	-	-	-	1	1	1	1	-	1	1	-	2	1	1	1	1	1	
TEST (82	1	ľ	8	2	-	1	-	٢	-	1	-	-	+	-	-	-	+		
		81	1	ľ	2	-	1	1	1	1	-	-	1	-	-	-	-	-	-		
CHART A.	Ê	Ā	-	-	<u> </u>	1		,	-	1	1	1	ı		EΕ	-	ı	-	1	1)	1.1
	(IN VOLTS) OR MEASURE (m)	Ē	ш	-	ε	ε	,	-	EE	EE	Е	E	-		-	-10шА	+10mA	ε	ш	EE	EΕ
	S) OR M	≅/H	9.0	9.0	9.0	9.8	0.8	8.0	0.8 0.8	0.8 0.8	-9.2	+10.8	0.0	5.0	2.0	9.0	9.0	9.0	8.0	0.8	0.8
	VOLTS	VDC	0.0	0.0	0.0	0:0	0.0	0.0	0.0	0.0	+10	-10	0.0	0:0	0.0	-13	+13	-14	+14	0.0 -10	0.0 +10
	APPLY (#N	,	-15	-15	-15	-15	-15	-15	-13.5 -16.5	-15 -15	-25	ςŗ	-15	-15	-15	-15	-15	-15	-15	-15 -15	-15 -15
	ď∀	^	+15	+15	+15	+15	+15	+15	+15 +15	+13.5 +16.5	+2	+25	+15	+15	+15	+15	+15	+15	+15	+15 +15	+15 +15
		NOTE	,	,		ı	ı			1 1	6	4	,		-	,		5	5	5	νo ι
	PARAMETERS	Vio	Ol	+B+	-B-	+lcc	-lcc	-PSRR	+PSRR	+CMRR	-CMRR	lN1	IN 2	Droop Rate	-lo	0 _{l+}	+Vout	-Vout	+Avol	-Avol	

NOTES:

3. Package GND to -10V for this test.


4. Package GND to +10V for this test.

5. RLDC = 1kΩ.



Burn-In Circuits

HA-5330/883 (CERAMIC DIP)

HA-5330/883 (CERAMIC LCC)

NOTES:

 $R_1 = 510\Omega$, 5%, 1/2 Watt (per device)

 $C_1 = C_2 = 0.1 \mu F$ (per device)

C₃ = 47pF, 10%, 50V (per device)

D₁ = D₂ = 1N4002 or Equivalent (per board)

t₂ = 250kHz, TTL Levels, 50% Duty Cycle

11 = 125kHz, +5V to -5V, 50% Duty Cycle

Die Characteristics

DIE DIMENSIONS: 99 x 166 x 19 mils

METALLIZATION:

Type: Al

Thickness: 16kÅ ± 2kÅ

GLASSIVATION:

Type: Silox

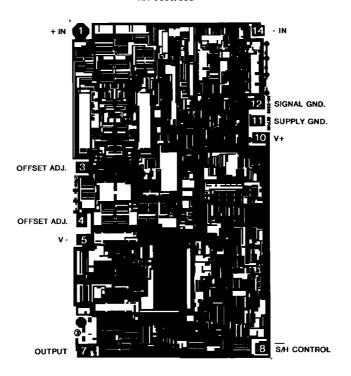
Thickness: 14kÅ ± 2.0kÅ

WORST CASE CURRENT DENSITY: 1.36 x 10⁵A/cm²

TRANSISTOR COUNT:

HA-5330/883 205

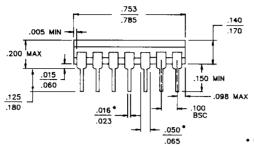
PROCESS: Bipolar DI DIE ATTACH:

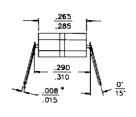

Material: Gold/Silicon Eutectic Alloy

Temperature: Ceramic DIP - 460°C (Max)

Ceramic LCC - 420°C (Max)

Metallization Mask Layout


HA-5330/883



NOTE: Pad Numbers Correspond to DIP Package Only.

Packaging †

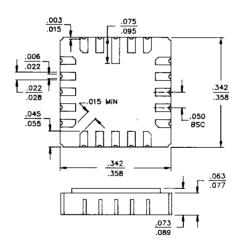
14 PIN CERAMIC DIP

 INCREASE MAX LIMIT BY .003 INCHES MEASURED AT CENTER OF FLAT FOR SOLDER FINISH

LEAD MATERIAL: Type B LEAD FINISH: Type A

PACKAGE MATERIAL: Ceramic, 90% Alumina

PACKAGE SEAL:


Material: Glass Frit Temperature: 450°C ±10°C Method: Furnace Seal

INTERNAL LEAD WIRE:

Material: Aluminum Diameter: 1.25 Mil

Bonding Method: Ultrasonic COMPLIANT OUTLINE: 38510 D-1

20 PAD CERAMIC LCC

PAD MATERIAL: Type C
PAD FINISH: Type A
FINISH DIMENSION: Type A

PACKAGE MATERIAL: Multilayer Ceramic, 90% Alumina

PACKAGE SEAL:

Material: Gold/Tin (80/20) Temperature: 320°C ±10°C Method: Furnace Braze

INTERNAL LEAD WIRE:

Material: Aluminum Diameter: 1.25 Mil

Bonding Method: Ultrasonic COMPLIANT OUTLINE: 38510 C-2

NOTE: All Dimensions are Min Dimensions are in inches.

HA-5330

DESIGN INFORMATION

Very High Speed Precision Monolithic Sample and Hold Amplifier

The information contained in this section has been developed through characterization by Harris Semiconductor and is for use as application and design data only. No guarantee is implied.

Applying the HA-5330

The HA-5330 has the uncommitted differential inputs of an op amp, allowing the Sample/Hold function to be combined with many conventional op amp circuits. See the Harris Application Note 517 for a collection of circuit ideas.

Layout

A printed circuit board with ground plane is recommended for best performance. Bypass capacitors (0.01 to $0.1 \mu F$, ceramic) should be provided from each power supply terminal to the Supply Gnd terminal on pin 11.

Applications

The HA-5330 is configured as a unity gain noninverting amplifier by simply connecting the output (pin 7) to the inverting input (pin 14). As an input device for a fast, successive-appoximation A/D converter, it offers an extremely high throughput rate. Also, the HA-5330's pedestal error is adjustable to zero by using an Offset Adjust potentiometer (10K to 50K) center tapped to V-.

The ideal ground connections are pin 12 (Signal Ground) directly to the system Signal Ground (Analog Ground), and pin 11 (Supply Ground) directly to the system Supply Common.

Hold Capacitor

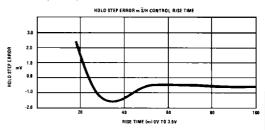
The HA-5330 includes a 90pF MOS hold capacitor, sufficient for most high speed applications (the Electrical Characterisitics section is based on this internal capacitor).

Output Stage

The HA-5330 output circuit does not include short circuit protection, and consequently its output impedance remains low at high frequencies. Thus, the step changes in load current which occur during an A/D conversion are absorbed at the \overline{S}/H output with minimum voltage error. A momentary short circuit to ground is permissible, but the output is not designed to tolerate a short of indefinite duration. D.C. Output Resistance at +25°C is typically 1 x $10^{-5}\Omega$ for Sample Mode and 0.2Ω for Hold Mode.

Glossary of Terms

Acquisition Time:


The time required following a "sample" command, for the output to reach its final value within ±0.1% or ±0.01%. This is the minimum sample time required to obtain a given accuracy, and includes switch delay time, slewing time and settling time.

Aperture Time:

The time required for the sample-and-hold switch to open, independent of delays through the switch driver and input amplifier circuitry. The switch opening time is that interval between the conditions of 10% open and 90% open.

Hold Step Error:

Hold step error is the output shift due to charge transfer from the sample to the hold mode. It is also referred to as "offset step" or "pedestal error".

Effective Aperture Delay Time (EADT):

The difference between propagation time from the analog input to the \overline{S}/H switch, and digital delay time between the Hold command and opening of the switch.

EADT may be positive, negative or zero. If zero, the \$\overline{S}\$/H amplifier will output a voltage equal to VIN at the instant the Hold command was received. For negative EADT, the output in Hold (exclusive of pedestal and droop errors will correspond to a value of VIN that occured before the Hold command.

Aperture Uncertainty:

The range of variation in Effective Aperture Delay Time. Aperture Uncertainty (also called Aperture Delay Uncertainty, Aperture Time Jitter, etc.) sets a limit on the accuracy with which a waveform can be reconstructed from sample data.

DESIGN INFORMATION (Continued)

The information contained in this section has been developed through characterization by Harris Semiconductor and is for use as application and design data only. No guarantee is implied.

TYPICAL PERFORMANCE CHARACTERISTICS

Device Characterized at V+ = +15V, V- = -15V, V_{IL} = 0.8V (Sample), V_{IH} = 2.0V (Hold), C_{H} = Internal = 90pF, SIG. GND. = Supply GND., -Input Tied to Output; Unless Otherwise Specified.

PARAMETERS	CONDITIONS	TEMP	TYP	UNITS
Hold Step Error	$V_{IN} = 0V, V_{IH} = +3.5V$	+25°C	0.5	mV
	t _r = 22ns			
Rise Time	V _i =200mV Step	+25°C	70	ns
	$R_L = 2k\Omega$, $C_L = 50pF$			
Overshoot	V _i =200mV Step	+25°C	10	%
	$R_L = 2k\Omega$, $C_L = 50pF$			
Slew Rate	V _i =20V Step	+25°C	90	V/µs
	$R_L = 2k\Omega$, $C_L = 50pF$			
Aperture Time	From Computer Simulation Only	+25°C	20	ns
Effective Aperture Delay Time		+25°C	-25	ns
Aperture Uncertainty		+25°C	0.1	ns
Hold Mode Settling Time (0.01%)		+25°C	100	ns
Hold Mode Feedthrough Attenuation	20V _{p-p} , 100kHz	Full	-88	dB
Output Resistance				
Hold Mode	D.C.	+25°C	0.2	Ω
Sample Mode	D.C.	+25°C	10-5	Ω
Input Resistance	From Computer Simulation Only	Full	15 x 10 ⁶	Ω
Input Capacitance		+25°C	3	ρF
Total Output Noise				
Sample	D.C. to 4.0MHz	+25°C	230	μVRMS
Hold	D.C. to 4.0MHz	+25°C	190	μ∨нма