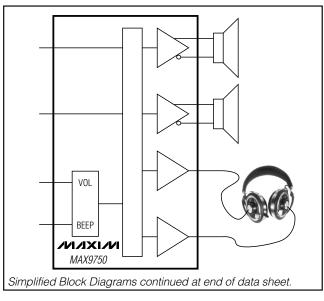


2.6W Stereo Audio Power Amplifiers and **DirectDrive Headphone Amplifiers**

General Description

The MAX9750/MAX9751/MAX9755 combine a stereo, 2.6W audio power amplifier and stereo DirectDrive™ 110mW headphone amplifier in a single device. The headphone amplifier uses Maxim's patented† DirectDrive architecture that produces a ground-referenced output from a single supply, eliminating the need for large DCblocking capacitors, saving cost, space, and component height. A high 90dB PSRR and low 0.01% THD+N ensures clean, low-distortion amplification of the audio signal.


The MAX9750 features an analog volume control, and a BEEP input. The MAX9751 features a 2:1 input multiplexer. allowing multiple audio sources to be selected. All devices feature a single-supply voltage, a shutdown mode, logicselectable gain, and a headphone sense input. Industryleading click-and-pop suppression eliminates audible transients during power and shutdown cycles.

The MAX9750/MAX9751/MAX9755 are offered in spacesaving, thermally efficient 28-pin thin QFN (5mm x 5mm x 0.8mm) and 28-pin TSSOP packages. Both devices have thermal-overload and output short-circuit protection, and are specified over the extended -40°C to +85°C temperature range.

Applications

Notebook PCs Flat-Panel TVs Tablet PCs PC Displays Portable DVD Players LCD Projectors

Simplified Block Diagrams

NIXIN

Features

- ♦ No DC-Blocking Capacitors Required—Provides **Industry's Most Compact Notebook Audio** Solution
- ♦ PC2001 Compliant
- **♦ 5V Single-Supply Operation**
- ♦ Class AB 2.6W Stereo BTL Speaker Amplifiers
- ♦ 110mW DirectDrive Headphone Amplifiers
- ♦ High 90dB PSRR
- **♦ Low-Power Shutdown Mode**
- ♦ Industry-Leading Click-and-Pop Suppression
- ♦ Low 0.01% THD+N at 1kHz
- ♦ Short-Circuit and Thermal Protection
- ♦ Selectable Gain Settings
- **♦** Analog Volume Control (MAX9750)
- ◆ BEEP Input with Glitch Filter (MAX9750)
- ♦ 2:1 Stereo Input MUX (MAX9751)
- ♦ ±8kV ESD-Protected Headphone Driver Outputs
- ♦ Available in Space-Saving, Thermally Efficient **Packages**

28-Pin Thin QFN (5mm x 5mm x 0.8mm) 28-Pin TSSOP

Ordering Information

PART*	PIN- PACKAGE	MAXIMUM GAIN (dB)	PKG CODE
MAX9750AETI+	28 Thin QFN	13.5	T2855N-1
MAX9750AEUI	28 TSSOP	13.5	U28-2
MAX9750BETI+	28 Thin QFN	19.5	T2855N-1
MAX9750BEUI	28 TSSOP	19.5	U28-2
MAX9750CETI+	28 Thin QFN	10.5	T2855N-1
MAX9750CEUI	28 TSSOP	10.5	U28-2
MAX9751ETI+	28 Thin QFN	10.5	T2855N-1
MAX9751EUI	28 TSSOP	10.5	U28-2
MAX9755ETI+	28 Thin QFN	10.5	T2855N-1
MAX9755EUI	28 TSSOP	10.5	U28-2

⁺Denotes lead-free package.

†U.S. Patent # 7,061,327

Maxim Integrated Products 1

^{*}All devices specified over the -40°C to +85°C temperature range.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VDD, PVDD, HP	
GND to PGND	±0.3V
CPVSS, C1N, VSS to GND	6.0V to (GND + 0.3V)
HPOUT_ to GND	±3V
Any Other Pin	0.3V to $(V_{DD} + 0.3V)$
Duration of OUT_ Short Circuit to	
Duration of OUT_+ Short Circuit	to OUTContinuous
Duration of HPOUT_ Short Circu	it to GND,
V _{SS} or HPV _{DD}	Continuous
Continuous Current (PVDD, OUT	_, PGND)1.7A
Continuous Current (CPVDD, C1	N, C1P, CPVSS, VSS, HPVDD,
HPOUT_)	850mA

Continuous Input Current (All Other Pins)	±20mA
Continuous Power Dissipation (T _A = +70°C, multilaye	er board)
28-Pin Thin QFN (derate 23.8mW/°C above +70°C	C) .1900mW
28-Pin TSSOP (derate 14mW/°C above +70°C)	1117mW
Junction-to-Case Thermal Resistance (θ _{JC})	
28-Pin Thin QFN	24°C/W
28-Pin TSSOP	13°C/W
Junction Temperature	+150°C
Operating Temperature Range40°	'C to +85°C
Storage Temperature Range65°C	
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = PV_{DD} = CPV_{DD} = HPV_{DD} = 5V, GND = PGND = CPGND = 0V, \overline{SHDN} = V_{DD}, C_{BIAS} = 1\mu F, C1 = C2 = 1\mu F, speaker load terminated between OUT_+ and OUT_-, headphone load terminated between HPOUT_ and GND, GAIN1 = GAIN2 = VOL = GAIN = 0V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)$

PARAMETER	SYMBOL	cc	NDITIONS	MIN	TYP	MAX	UNITS
GENERAL							
Supply Voltage Range	V _{DD} , PV _{DD}	Inferred from PSR	R test	4.5		5.5	V
Headphone Supply Voltage	CPV _{DD} , HPV _{DD}	Inferred from PSR	3.0		5.5	V	
Quiacaant Supply Current	Inn	HPS = GND, spea	ker mode, R _L = ∞		14	29	mA
Quiescent Supply Current	IDD	HPS = V _{DD} , head	ohone mode, R _L = ∞		7	13	MA
Shutdown Supply Current	ISHDN	SHDN = GND			0.2	5	μΑ
Bias Voltage	V _{BIAS}		1.7	1.8	1.9	V	
Switching Time	tsw	Gain or input swite	ching		10		μs
logot Decistors	R _{IN}	Amplifier inputs	MAX9750	10	20	30	1.0
Input Resistance		(Note 2)	MAX9751/MAX9755	4.5	6	8.0	kΩ
Turn-On Time	tson				25		ms
SPEAKER AMPLIFIER (HPS = G	iND)						
Output Offset Voltage	Vas	Measured between OUT_+	MAX9750A/MAX9750B/ MAX9751/MAX9755		±1	±15	mV
Output Offset Voltage	V _{OS}	and OUT, T _A = +25°C	MAX9750C		±0.4	±6	IIIV
		PV_{DD} or $V_{DD} = 4.5V$ to $5.5V$	MAX9750A/MAX9750B/ MAX9750C/MAX9751	75	90		
Power-Supply Rejection Ratio	PSRR	$(T_A = +25^{\circ}C)$	MAX9755	72	90		dB
(Note 3)		f = 1kHz, V _{RIPPLE}	= 200mV _{P-P}		80		
		f = 10kHz, V _{RIPPLI}	= 200mV _{P-P}	_	55		

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = PV_{DD} = CPV_{DD} = HPV_{DD} = 5V$, GND = PGND = CPGND = 0V, $\overline{SHDN} = V_{DD}$, $C_{BIAS} = 1\mu F$, $C1 = C2 = 1\mu F$, speaker load terminated between OUT_+ and OUT_-, headphone load terminated between HPOUT_ and GND, GAIN1 = GAIN2 = VOL = GAIN = 0V, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
			$R_L = 8\Omega$	MAX9750A/ MAX9750B/ MAX9751/ MAX9755	0.9	1.4		
				MAX9750C	0.65	0.8		
Output Power (Note 4)	Роит	$THD+N = 1\%,$ $f = 1kHz,$ $T_A = +25^{\circ}C$	$R_L = 4\Omega$	MAX9750A/ MAX9750B/ MAX9751/ MAX9755		2.3		W
				MAX9750C	1.2	1.5		
			$R_L = 3\Omega$	MAX9750A/ MAX9750B/ MAX9751/ MAX9755		2.6		
				MAX9750C		2.2		
Total Harmonic Distortion Plus	THD+N	$R_L = 8\Omega$, P_{OUT}	= 500mW, f =	1kHz		0.01		0/
Noise	I UD+N	$R_L = 4\Omega$, $P_{OUT} = 1W$, $f = 1kHz$				0.02		%
Signal-to-Noise Ratio	SNR	$R_L = 8\Omega$, $P_{OUT} = 500$ mW, $BW = 22$ Hz to 22 kHz				96		dB
Noise	Vn	BW = 22Hz to 2		22		μV _{RMS}		
Capacitive-Load Drive	CL	No sustained os		200		рF		
Crosstalk		L to R, R to L, f		75				
Off-Isolation		Any unselected f = 10kHz (MAX			75		dB	
Slew Rate	SR					1.4		V/µs
			GAIN1 = 0, 0	GAIN2 = 0		9		
			GAIN1 = 1, GAIN2 = 0			10.5		
		MAX9750A	GAIN1 = 0, GAIN2 = 1			12		
			GAIN1 = 1, 0	GAIN2 = 1		13.5		
			GAIN1 = 0, 0	GAIN2 = 0		15		1
			GAIN1 = 1, 0	GAIN2 = 0		16.5		
Gain (Maximum Volume Setting)	AVMAX(SPKR)	MAX9750B	GAIN1 = 0, 0	GAIN2 = 1		18		dB
			GAIN1 = 1, (GAIN2 = 1		19.5		
			GAIN1 = 0, 0	GAIN2 = 0		6		1
			GAIN1 = 1, 0	GAIN2 = 0		7.5		1
		MAX9750C	GAIN1 = 0, GAIN2 = 1			9		1
			GAIN1 = 1, GAIN2 = 1			10.5		1
<u> </u>	,	GAIN = 1				9		
Gain (MAX9751/MAX9755)	Αγ	GAIN = 0				10.5		dB

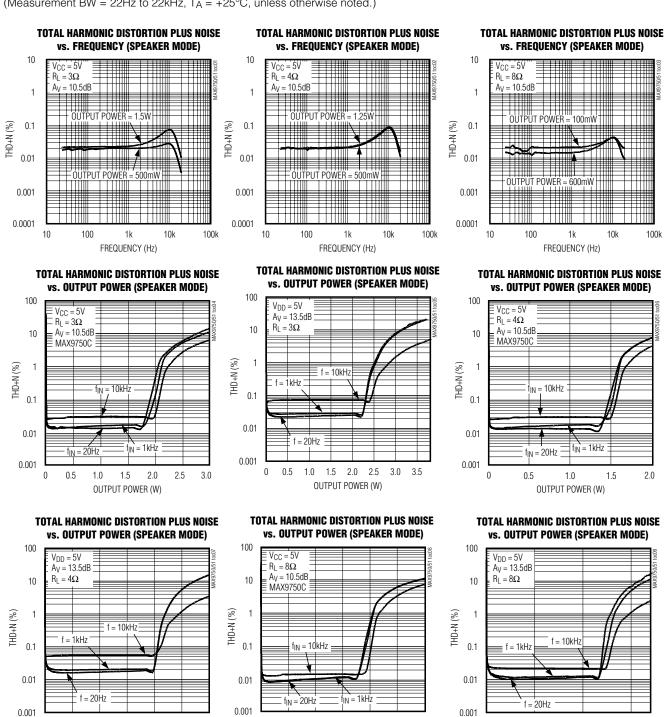
ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = PV_{DD} = CPV_{DD} = HPV_{DD} = 5V, GND = PGND = CPGND = 0V, \overline{SHDN} = V_{DD}, C_{BIAS} = 1\mu F, C1 = C2 = 1\mu F, speaker load terminated between OUT_+ and OUT_-, headphone load terminated between HPOUT_ and GND, GAIN1 = GAIN2 = VOL = GAIN = 0V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
HEADPHONE AMPLIFIER (HPS =	= V _{DD})			•			
Output Offset Voltage	Vos	T _A = +25°C			±2	±7	mV
		$HPV_{DD} = 3V \text{ to } 5.5V, T_A =$	+25°C	60	75		
Power-Supply Rejection Ratio	PSRR	f = 1kHz, VRIPPLE = 200mV	/ _{P-P}		73		dB
(Note 3)		f = 10kHz, V _{RIPPLE} = 200m	1VP-P		63		
Output Power	Роит	THD+N = 1%,	$R_L = 32\Omega$	40	50		mW
σαιρατίονοι	1 001	$f = 1kHz$, $T_A = +25$ °C	$R_L = 16\Omega$		110		11111
Total Harmonic Distortion Plus	TUD . N	$R_L = 32\Omega$, $P_{OUT} = 20$ mW,	f = 1kHz		0.007		0/
Noise	THD+N	$R_L = 16\Omega$, $P_{OUT} = 75$ mW, f	f = 1kHz		0.03		%
Signal-to-Noise Ratio	SNR	$R_L = 32\Omega$, $P_{OUT} = 50$ mW, $P_{OUT} = 50$ mW		101		dB	
Noise	Vn	BW = 22Hz to 22kHz			11		μV _{RMS}
Capacitive-Load Drive	CL	No sustained oscillations			200		рF
Crosstalk		L to R, R to L, f = 10kHz			88		
Off-Isolation		Any unselected input to any active input, f = 10kHz (MAX9751), input referred			74		dB
Slew Rate	SR				0.4		V/µs
ESD	ESD	IEC air discharge			±8		kV
0 :		GAIN2 = GAIN = 0, GAIN1	3 0			ID.	
Gain	Av	GAIN2 = GAIN = 1, GAIN1				dB	
CHARGE PUMP	•			•			•
Charge-Pump Frequency	fosc			500	550	600	kHz
VOLUME CONTROL (MAX9750_)							
VOL Input Impedance	Rvol				100		ΜΩ
VOL Input Hysteresis					10		mV
Full Mute Input Voltage		(Note 5)			0.858 x HPV _{DD}		V
Channel Matching		$A_V = -25 dB \text{ to } +13.5 dB$			±0.2		dB
BEEP INPUT (MAX9750_)	•	•					•
Beep Signal Minimum Amplitude	VBEEP	$R_B = 33k\Omega$ (Note 6)		0.8			V _{P-P}
Beep Signal Minimum Frequency	fBEEP			300			Hz

______/N/1XI/VI

ELECTRICAL CHARACTERISTICS (continued)


 $(V_{DD} = PV_{DD} = CPV_{DD} = HPV_{DD} = 5V, GND = PGND = CPGND = 0V, \overline{SHDN} = V_{DD}, C_{BIAS} = 1\mu F, C1 = C2 = 1\mu F, speaker load terminated between OUT_+ and OUT_-, headphone load terminated between HPOUT_ and GND, GAIN1 = GAIN2 = VOL = GAIN = 0V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS		
LOGIC INPUT (SHDN, GAIN1, GAIN2, GAIN, VOL, IN1/2)								
Logic Input High Voltage	VIH		2			V		
Logic Input Low Voltage	VIL				0.8	V		
Logic Input Current	I _{IN}				±1	μΑ		
LOGIC INPUT HEADPHONE (HPS	LOGIC INPUT HEADPHONE (HPS)							
Logic Input High Voltage	VIH		2			V		
Logic Input Low Voltage	VIL				0.8	V		
Logic Input Current	I _{IN}			10		μΑ		

- Note 1: All devices are 100% production tested at room temperature. All temperature limits are guaranteed by design.
- Note 2: Guaranteed by design. Not production tested.
- **Note 3:** PSRR is specified with the amplifier input connected to GND through C_{IN}.
- Note 4: Output power levels are measured with the thin QFN's exposed paddle soldered to the ground plane.
- Note 5: See Table 3 for details of the mute levels.
- Note 6: The value of RB dictates the minimum beep signal amplitude (see the Beep Input section).

Typical Operating Characteristics

(Measurement BW = 22Hz to 22kHz, $T_A = +25$ °C, unless otherwise noted.)

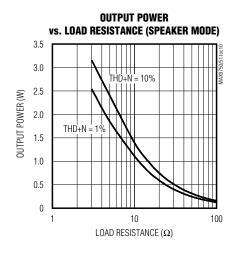
1.5

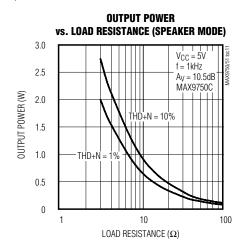
1.0

OUTPUT POWER (W)

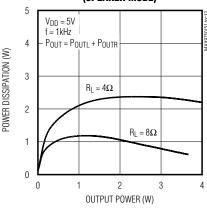
1.5

OUTPUT POWER (W)

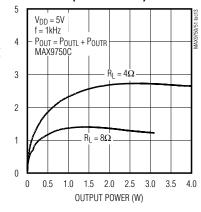

0

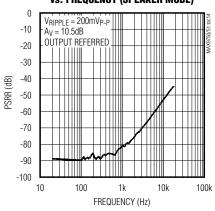

0.6

OUTPUT POWER (W)

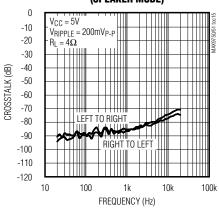

Typical Operating Characteristics (continued)

(Measurement BW = 22Hz to 22kHz, $T_A = +25$ °C, unless otherwise noted.)

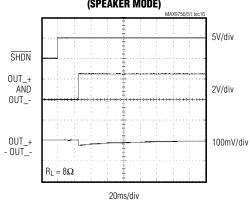



POWER DISSIPATION vs. OUTPUT POWER (SPEAKER MODE)

POWER DISSIPATION vs. OUTPUT POWER (SPEAKER MODE)



POWER-SUPPLY REJECTION RATIO vs. Frequency (Speaker Mode)



CROSSTALK vs. FREQUENCY (SPEAKER MODE)

POWER DISSIPATION (W)

TURN-ON RESPONSE (SPEAKER MODE)

10

0.1

0.01

0.001

0.0001

1000

100

10

0.1

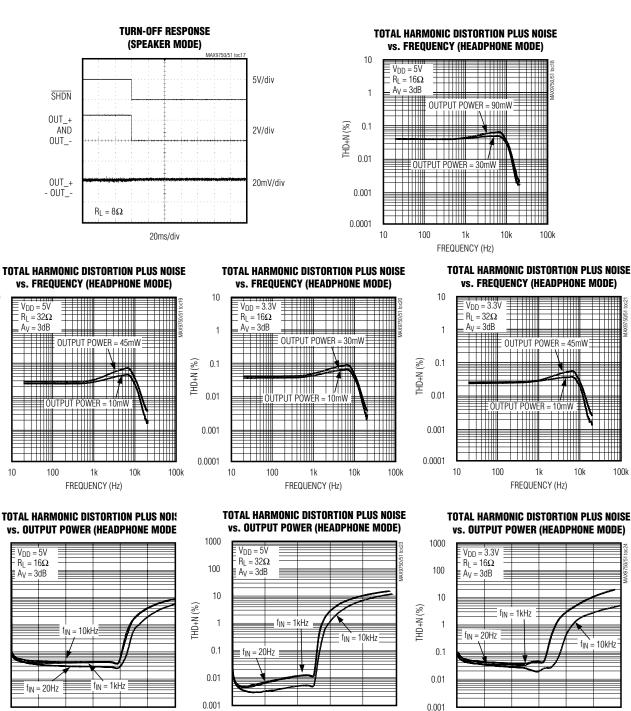
0.01

0.001

75

OUTPUT POWER (mW)

100


THD+N (%)

10

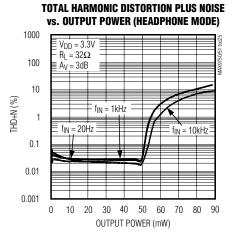
2.6W Stereo Audio Power Amplifiers and **DirectDrive Headphone Amplifiers**

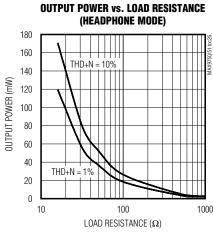
Typical Operating Characteristics (continued)

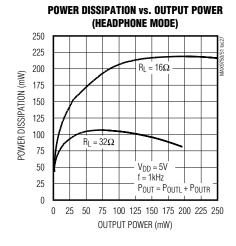
(Measurement BW = 22Hz to 22kHz, $T_A = +25$ °C, unless otherwise noted.)

100

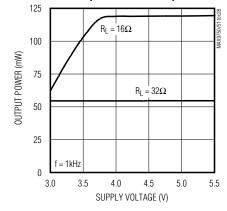
0

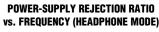

OUTPUT POWER (mW)

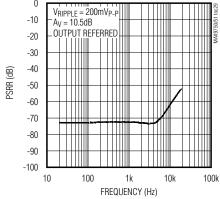

30

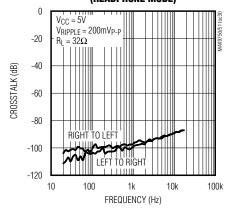

OUTPUT POWER (mW)

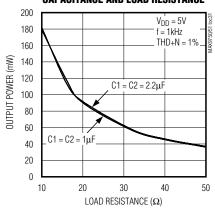
Typical Operating Characteristics (continued)


(Measurement BW = 22Hz to 22kHz, TA = +25°C, unless otherwise noted.)

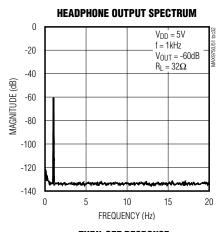


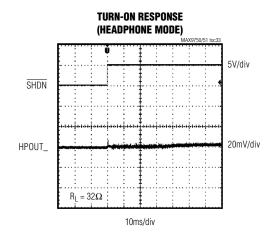


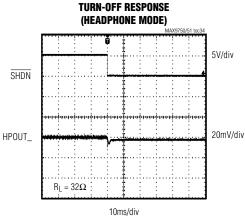

OUTPUT POWER vs. SUPPLY VOLTAGE (HEADPHONE MODE)

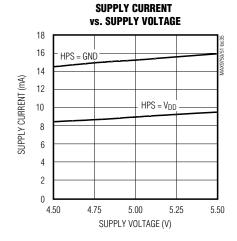


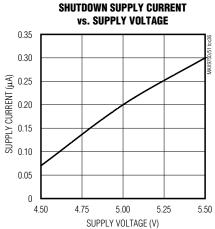
CROSSTALK vs. FREQUENCY (HEADPHONE MODE)




OUTPUT POWER vs. CHARGE-PUMP CAPACITANCE AND LOAD RESISTANCE




_Typical Operating Characteristics (continued)


(Measurement BW = 22Hz to 22kHz, $T_A = +25$ °C, unless otherwise noted.)

Pin Description

		Р	IN				
МАХ	9750	MAX	9751	MAX	9755	NAME	FUNCTION
THIN QFN	TSSOP	THIN QFN	тѕѕор	THIN QFN	тѕѕор		
1	5	_	_	2	6	INL	Left-Channel Audio Input
2	6	_		_		BEEP	Audible Alert Beep Input
3, 19	7, 23	3, 19	7, 23	3, 19	7, 23	PGND	Power Ground. Connect PGND to GND at a single point on the PCB near the device.
4	8	4	8	4	8	OUTL+	Left-Channel Positive Speaker Output
5	9	5	9	5	9	OUTL-	Left-Channel Negative Speaker Output
6, 16	10, 20	6, 16	10, 20	6, 16	10, 20	PV_{DD}	Speaker Amplifier Power Supply
7	11	7	11	7	11	CPV _{DD}	Charge-Pump Power Supply
8	12	8	12	8	12	C1P	Charge-Pump Flying-Capacitor Positive Terminal
9	13	9	13	9	13	CPGND	Charge-Pump Ground. Connect CPGND to PGND.
10	14	10	14	10	14	C1N	Charge-Pump Flying-Capacitor Negative Terminal
11	15	11	15	11	15	CPVss	Charge-Pump Output. Connect to Vss.
12	16	12	16	12	16	V _{SS}	Headphone Amplifier Negative Power Supply
13	17	13	17	13	17	HPOUTR	Right-Channel Headphone Output
14	18	14	18	14	18	HPOUTL	Left-Channel Headphone Output
15	19	15	19	15	19	HPV _{DD}	Headphone Positive Power Supply
17	21	17	21	17	21	OUTR-	Right-Channel Negative Speaker Output
18	22	18	22	18	22	OUTR+	Right-Channel Positive Speaker Output
20	24	20	24	20	24	HPS	Headphone Sense Input
21	25	21	25	21	25	BIAS	Common-Mode Bias Voltage. Bypass with a 1μF capacitor to GND.
22	26	22	26	22	26	SHDN	Shutdown. Drive SHDN low to disable the device. Connect SHDN to V _{DD} for normal operation.
23	27	_	_	_	_	GAIN2	Gain Control Input 2
24	28	_	_			GAIN1	Gain Control Input 1
25	1	25	1	25	1	V_{DD}	Power Supply
26	2	26	2	23, 26	2, 27	GND	Ground. Connect GND to PGND at a single point on the PCB near the device.
27	3	_	_	28	4	INR	Right-Channel Audio Input
28	4	_	_	_	_	VOL	Analog Volume Control Input
_	_	1	5	_	_	INL1	Left-Channel Audio Input 1
_	_	2	6	_		INL2	Left-Channel Audio Input 2
_	_	23	27			IN1/2	Input Select
_	_	24	28	24	28	GAIN	Gain Select
_	_	27	3	_	_	INR1	Right-Channel Audio Input 1
_	_	28	4	_	_	INR2	Right-Channel Audio Input 2
_	_	_	_	1, 27	3, 5	N.C.	No Connection. Not internally connected.
_	_	_	_	1, 27	3, 5	N.C.	No Connection. Not internally connected.
EP	_	EP	_	EP	_	EP	Exposed Paddle. Connect to GND.

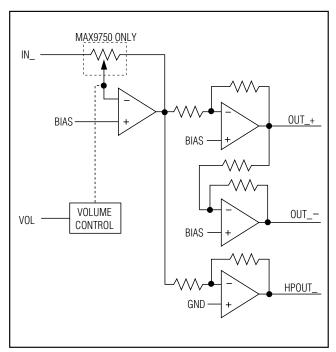


Figure 1. MAX9750/MAX9751 Signal Path

Vout V_{DD}/2 Vout V_{DD}/2 GND CONVENTIONAL DRIVER-BIASING SCHEME +V_{DD} GND DirectDrive BIASING SCHEME

Figure 2. Traditional Headphone Amplifier Output Waveform vs. DirectDrive Headphone Amplifier Output Waveform

Detailed Description

The MAX9750/MAX9751/MAX9755 combine a 2.6W BTL speaker amplifier and a 110mW DirectDrive headphone amplifier with integrated headphone sensing and comprehensive click-and-pop suppression. The MAX9750 features an analog volume control, BEEP input, and four-level gain control. The MAX9751 features a 2:1 input stereo multiplexer and two-level gain control. All devices feature high 90dB PSRR, low 0.01% THD+N, industry-leading click-pop performance, and a low-power shutdown mode.

Each signal path consists of an input amplifier that sets the gain of the signal path and feeds both the speaker and headphone amplifier (Figure 1). The speaker amplifier uses a BTL architecture, doubling the voltage drive to the speakers and eliminating the need for DC-blocking capacitors. The output consists of two signals, identical in magnitude, but 180° out of phase.

The headphone amplifiers use Maxim's patented DirectDrive architecture that eliminates the bulky output DC-blocking capacitors required by traditional headphone amplifiers. A charge pump inverts the positive supply (CPV_{DD}), creating a negative supply (CPV_{SS}). The headphone amplifiers operate from these bipolar supplies with their outputs biased about GND (Figure 2).

The amplifiers have almost twice the supply range compared to other single-supply amplifiers, nearly quadrupling the available output power. The benefit of the GND bias is that the amplifier outputs no longer have a DC component (typically VDD / 2). This eliminates the large DC-blocking capacitors required with conventional headphone amplifiers, conserving board space and system cost, and improving frequency response.

The MAX9750 features an analog volume control that varies the gain of the amplifiers based on the DC voltage applied at VOL. Both devices feature an undervoltage lockout that prevents operation from an insufficient power supply and click-and-pop suppression that eliminates audible transients on startup and shutdown. The amplifiers include thermal-overload and short-circuit protection, and can withstand $\pm 8 \text{kV}$ ESD strikes on the headphone amplifier outputs (IEC air discharge). An additional feature of the speaker amplifiers is that there is no phase inversion from input to output.

DirectDrive

Conventional single-supply headphone amplifiers have their outputs biased about a nominal DC voltage (typically half the supply) for maximum dynamic range. Large coupling capacitors are needed to block this DC bias from the headphones. Without these capacitors, a

significant amount of DC current flows to the headphone, resulting in unnecessary power dissipation and possible damage to both headphone and headphone amplifier.

Maxim's patented DirectDrive architecture uses a charge pump to create an internal negative supply voltage. This allows the MAX9750/MAX9751/MAX9755 headphone amplifier output to be biased about GND, almost doubling the dynamic range while operating from a single supply. With no DC component, there is no need for the large DC-blocking capacitors. Instead of two large capacitors (220µF typ), the MAX9750/MAX9751/MAX9755 charge pump requires only two small ceramic capacitors (1µF typ), conserving board space, reducing cost, and improving the frequency response of the headphone amplifier. See the Output Power vs. Charge-Pump Capacitance and Load Resistance graph in the *Typical Operating Characteristics* for details of the possible capacitor values.

Previous attempts to eliminate the output coupling capacitors involved biasing the headphone return (sleeve) to the DC bias voltage of the headphone amplifiers. This method raised some issues:

- 1) The sleeve is typically grounded to the chassis. Using this biasing approach, the sleeve must be isolated from system ground, complicating product design.
- 2) During an ESD strike, the amplifier's ESD structures are the only path to system ground. The amplifier must be able to withstand the full ESD strike.
- 3) When using the headphone jack as a lineout to other equipment, the bias voltage on the sleeve may conflict with the ground potential from other equipment, resulting in large ground-loop current and possible damage to the amplifiers.

Low-Frequency Response

In addition to the cost and size disadvantages, the DC-blocking capacitors limit the low-frequency response of the amplifier and distort the audio signal:

 The impedance of the headphone load to the DCblocking capacitor forms a highpass filter with the -3dB point determined by:

$$f_{-3dB} = \frac{1}{2\pi R_I C_{OUT}}$$

where R_L is the impedance of the headphone and C_{OUT} is the value of the DC-blocking capacitor.

The highpass filter is required by conventional single-ended, single-supply headphone amplifiers to block the midrail DC component of the audio signal from the headphones. Depending on the -3dB point,

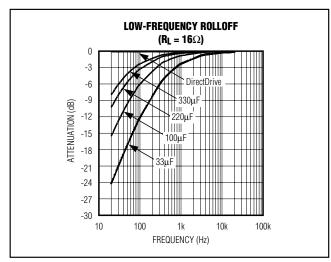


Figure 3. Low-Frequency Attenuation of Common DC-Blocking Capacitor Values

the filter can attenuate low-frequency signals within the audio band. Larger values of C_{OUT} reduce the attenuation but are physically larger, more expensive capacitors. Figure 3 shows the relationship between the size of C_{OUT} and the resulting low-frequency attenuation. Note that the -3dB point for a 16 Ω headphone with a 100 μ F blocking capacitor is 100Hz, well within the audio band.

2) The voltage coefficient of the capacitor, the change in capacitance due to a change in the voltage across the capacitor, distorts the audio signal. At frequencies around the -3dB point, the reactance of the capacitor dominates, and the voltage coefficient appears as frequency-dependent distortion. Figure 4 shows the THD+N introduced by two different capacitor dielectrics. Note that around the -3dB point, THD+N increases dramatically.

The combination of low-frequency attenuation and frequency-dependent distortion compromises audio reproduction. DirectDrive improves low-frequency reproduction in portable audio equipment that emphasizes low-frequency effects such as multimedia laptops, and MP3, CD, and DVD players.

Charge Pump

The MAX9750/MAX9751/MAX9755 feature a low-noise charge pump. The 550kHz switching frequency is well beyond the audio range, and does not interfere with the audio signals. The switch drivers feature a controlled switching speed that minimizes noise generated by turn-on and turn-off transients. Limiting the switching speed of the charge pump minimizes the di/dt noise caused by the

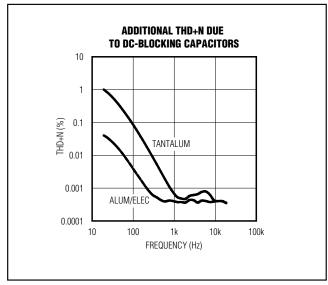


Figure 4. Distortion Contributed by DC-Blocking Capacitors

parasitic bond wire and trace inductance. Although not typically required, additional high-frequency ripple attenuation can be achieved by increasing the size of C2 (see the *Typical Application Circuit*).

Headphone Sense Input (HPS)

The headphone sense input (HPS) monitors the headphone jack and automatically configures the device based upon the voltage applied at HPS. A voltage of less than 0.8V sets the device to speaker mode. A voltage of greater than 2V disables the bridge amplifiers and enables the headphone amplifiers.

For automatic headphone detection, connect HPS to the control pin of a 3-wire headphone jack as shown in Figure 5. With no headphone present, the output impedance of the headphone amplifier pulls HPS low. When a headphone plug is inserted into the jack, the control pin is disconnected from the tip contact and HPS is pulled to V_{DD} through a $10\mu A$ current source.

BIAS

The MAX9750/MAX9751/MAX9755 feature an internally generated, power-supply independent, common-mode bias voltage of 1.8V referenced to GND. BIAS provides both click-and-pop suppression and sets the DC bias level for the amplifiers. Choose the value of the bypass capacitor as described in the *BIAS Capacitor* section. No external load should be applied to BIAS. Any load lowers the BIAS voltage, affecting the overall performance of the device.

Figure 5. HPS Configuration

Gain Selection

MAX9750

The MAX9750 features an internally set, selectable gain. The GAIN1 and GAIN2 inputs set the maximum gain of the MAX9750 speaker and headphone amplifiers (Table 1). The gain of the device can vary based upon the voltage at VOL (see the *Analog Volume Control (VOL)* section). However, the maximum gain cannot be exceeded.

MAX9751/MAX9755

The gain of the MAX9751/MAX9755 is set by the GAIN input. Driving GAIN high sets the gain of the speaker amplifiers to 9dB and the gain of the headphone amplifiers to 0dB. Driving GAIN low sets the gain of the speaker amplifiers to 10.5dB, and the gain of the headphone amplifiers to 3dB (Table 2).

Analog Volume Control (VOL)

The MAX9750 features an analog volume control that varies the gain of the device in 31 discrete steps based upon the DC voltage applied to VOL. The input range of V_VOL is from 0 (full volume) to 0.858 x HPV_{DD} (full mute), with example step sizes shown in Table 3. Connect the reference of the device driving VOL (Figure 6) to HPV_{DD}. Since the volume control ADC is ratiometric to HPV_{DD}, any changes in HPV_{DD} are negated. The gain step sizes are not constant; the step sizes are 0.5dB/step at the upper extreme, 2dB/step in the midrange, and 4dB/step at the lower extreme. Figure 7 shows the transfer function of the volume control for a 3.3V supply.

Table 1. MAX9750 Maximum Gain Settings

CAING	CAINI	SPE	AKER MODE GAIN	(dB)	LIEADDHONE MODE CAIN (4D)
GAIN2	GAIN1	MAX9750A	MAX9750B	MAX9750C	HEADPHONE MODE GAIN (dB)
0	0	9	15	6	0
0	1	10.5	16.5	7.5	0
1	0	12	18	9	3
1	1	13.5	19.5	10.5	3

Table 2. MAX9751/MAX9755 Gain Settings

GAIN	SPEAKER MODE GAIN (dB)	HEADPHONE MODE GAIN (dB)		
0	10.5	3		
1	9	0		

BEEP Input

The MAX9750 features an audible alert beep input (BEEP) that accepts a mono system alert signal and mixes it into the stereo audio path. When the amplitude of VBEEP(OUT) exceeds 800mVP-P (Figure 8) and the frequency of the beep signal is greater than 300Hz, the beep signal is mixed into the active audio path (speaker or headphone). If the signal at VBEEP(OUT) is either < 800mVP-P or < 300Hz, the BEEP signal is not mixed into the audio path. The amplitude of the BEEP signal at the device output is roughly the amplitude of VBEEP(OUT) times the gain of the selected signal path.

The input resistor (R_B) sets the gain of the BEEP input amplifier, and thus the amplitude of $V_{BEEP(OUT)}$. Choose R_B based on:

$$R_B \leq \frac{V_{IN} \times R_{INT}}{0.3}$$

where R_{INT} is the value of the BEEP amplifier feedback resistor (47k Ω) and V_{IN} is the BEEP input amplitude. Note that the BEEP amplifier can be set up as either an attenuator, if the original alert signal amplitude is too large, or set to gain up the alert signal if it is below 800mVp-p. AC couple the alert signal to BEEP. Choose the value of the coupling capacitor as described in the Input Filtering section. Multiple beep inputs can be summed (Figure 8).

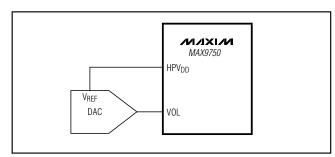


Figure 6. Volume Control Circuit

Input Multiplexer

The MAX9751 features a 2:1 input multiplexer on each amplifier, allowing input selection between two stereo sources. The logic input IN1/2 controls both multiplexers. A logic high selects input IN_1 and a logic low selects input IN_2.

Shutdown

The MAX9750/MAX9751/MAX9755 features a $0.2\mu A$, low-power shutdown mode that reduces quiescent current consumption and extends battery life. Driving SHDN low disables the drive amplifiers, bias circuitry, and charge pump, and drives BIAS and all outputs to GND. Connect \overline{SHDN} to V_{DD} for normal operation.

Click-and-Pop Suppression

Speaker Amplifier

The MAX9750/MAX9751/MAX9755 speaker amplifiers feature Maxim's comprehensive, industry-leading click-and-pop suppression. During startup, the click-pop suppression circuitry eliminates any audible transient sources internal to the device. When entering shutdown, both amplifier outputs ramp to GND quickly and simultaneously.

Table 3A. MAX9750A Volume Levels

I VMIN' I VMAY' I HPVDD' I	GAIN (dB)
0.49 0.5673 0.160 8 10 11.5 13 -1 0.5673 0.6447 0.183 7 9 11 12.5 -2 0.6447 0.722 0.207 6 8 10.5 12 -3 0.722 0.7994 0.230 4 7 10 11.5 -5 0.7994 0.8767 0.253 2 6 9 11 -7 0.8767 0.9541 0.277 0 4 8 10.5 -9 0.9541 1.0314 0.300 -2 2 7 10 -11 1.0314 1.1088 0.324 -4 0 6 9 -13 1.1088 1.1861 0.347 -6 -2 4 8 -15 1.2635 1.3408 0.394 -10 -6 0 6 -19 1.3408 1.4182 0.418 -12 -8 -2 4<	IN1 = X, IN2 = 1
0.5673 0.6447 0.183 7 9 11 12.5 -2 0.6447 0.722 0.207 6 8 10.5 12 -3 0.722 0.7994 0.230 4 7 10 11.5 -5 0.7994 0.8767 0.253 2 6 9 11 -7 0.8767 0.9541 0.277 0 4 8 10.5 -9 0.9541 1.0314 0.300 -2 2 7 10 -11 1.0314 1.1088 0.324 -4 0 6 9 -13 1.1088 1.1861 0.347 -6 -2 4 8 -15 1.2635 0.371 -8 -4 2 7 -17 1.2635 1.3408 0.394 -10 -6 0 6 -19 1.3408 1.4182 0.418 -12 -8 -2 4 -21 <td>3</td>	3
0.6447 0.722 0.207 6 8 10.5 12 -3 0.722 0.7994 0.230 4 7 10 11.5 -5 0.7994 0.8767 0.253 2 6 9 11 -7 0.8767 0.9541 0.277 0 4 8 10.5 -9 0.9541 1.0314 0.300 -2 2 7 10 -11 1.0314 1.1088 0.324 -4 0 6 9 -13 1.1088 1.1861 0.347 -6 -2 4 8 -15 1.1861 1.2635 0.371 -8 -4 2 7 -17 1.2635 1.3408 0.394 -10 -6 0 6 -19 1.3408 1.4182 0.418 -12 -8 -2 4 -21 1.4182 1.4955 0.441 -14 -10 -4	2.5
0.722 0.7994 0.230 4 7 10 11.5 -5 0.7994 0.8767 0.253 2 6 9 11 -7 0.8767 0.9541 0.277 0 4 8 10.5 -9 0.9541 1.0314 0.300 -2 2 7 10 -11 1.0314 1.1088 0.324 -4 0 6 9 -13 1.1088 1.1861 0.347 -6 -2 4 8 -15 1.1861 1.2635 0.371 -8 -4 2 7 -17 1.2635 1.3408 0.394 -10 -6 0 6 -19 1.3408 1.4182 0.418 -12 -8 -2 4 -21 1.4182 1.4955 0.441 -14 -10 -4 2 -23	2
0.7994 0.8767 0.253 2 6 9 11 -7 0.8767 0.9541 0.277 0 4 8 10.5 -9 0.9541 1.0314 0.300 -2 2 7 10 -11 1.0314 1.1088 0.324 -4 0 6 9 -13 1.1088 1.1861 0.347 -6 -2 4 8 -15 1.1861 1.2635 0.371 -8 -4 2 7 -17 1.2635 1.3408 0.394 -10 -6 0 6 -19 1.3408 1.4182 0.418 -12 -8 -2 4 -21 1.4182 1.4955 0.441 -14 -10 -4 2 -23	1.5
0.8767 0.9541 0.277 0 4 8 10.5 -9 0.9541 1.0314 0.300 -2 2 7 10 -11 1.0314 1.1088 0.324 -4 0 6 9 -13 1.1088 1.1861 0.347 -6 -2 4 8 -15 1.1861 1.2635 0.371 -8 -4 2 7 -17 1.2635 1.3408 0.394 -10 -6 0 6 -19 1.3408 1.4182 0.418 -12 -8 -2 4 -21 1.4182 1.4955 0.441 -14 -10 -4 2 -23	1
0.9541 1.0314 0.300 -2 2 7 10 -11 1.0314 1.1088 0.324 -4 0 6 9 -13 1.1088 1.1861 0.347 -6 -2 4 8 -15 1.1861 1.2635 0.371 -8 -4 2 7 -17 1.2635 1.3408 0.394 -10 -6 0 6 -19 1.3408 1.4182 0.418 -12 -8 -2 4 -21 1.4182 1.4955 0.441 -14 -10 -4 2 -23	0
1.0314 1.1088 0.324 -4 0 6 9 -13 1.1088 1.1861 0.347 -6 -2 4 8 -15 1.1861 1.2635 0.371 -8 -4 2 7 -17 1.2635 1.3408 0.394 -10 -6 0 6 -19 1.3408 1.4182 0.418 -12 -8 -2 4 -21 1.4182 1.4955 0.441 -14 -10 -4 2 -23	-1
1.1088 1.1861 0.347 -6 -2 4 8 -15 1.1861 1.2635 0.371 -8 -4 2 7 -17 1.2635 1.3408 0.394 -10 -6 0 6 -19 1.3408 1.4182 0.418 -12 -8 -2 4 -21 1.4182 1.4955 0.441 -14 -10 -4 2 -23	-2
1.1861 1.2635 0.371 -8 -4 2 7 -17 1.2635 1.3408 0.394 -10 -6 0 6 -19 1.3408 1.4182 0.418 -12 -8 -2 4 -21 1.4182 1.4955 0.441 -14 -10 -4 2 -23	-3
1.2635 1.3408 0.394 -10 -6 0 6 -19 1.3408 1.4182 0.418 -12 -8 -2 4 -21 1.4182 1.4955 0.441 -14 -10 -4 2 -23	-5
1.3408 1.4182 0.418 -12 -8 -2 4 -21 1.4182 1.4955 0.441 -14 -10 -4 2 -23	-7
1.4182 1.4955 0.441 -14 -10 -4 2 -23	-9
	-11
1 4955 1 5728 0 464 -16 -12 -6 0 -25	-13
	-15
1.5728 1.6502 0.488 -18 -14 -8 -2 -27	-17
1.6502 1.7275 0.511 -20 -16 -10 -4 -29	-19
1.7275 1.8049 0.535 -22 -18 -12 -6 -31	-21
1.8094 1.8822 0.558 -24 -20 -14 -8 -33	-23
1.8822 1.9596 0.582 -26 -22 -16 -10 -35	-25
1.9596 2.0369 0.605 -28 -24 -18 -12 -37	-27
2.0369 2.1143 0.628 -30 -26 -20 -14 -39	-29
2.1143 2.1916 0.652 -32 -28 -22 -16 -41	-31
2.1916 2.269 0.675 -34 -30 -24 -18 -43	-33
2.269 2.3463 0.699 -38 -32 -26 -20 -47	-35
2.3463 2.4237 0.722 -42 -34 -28 -22 -51	-37
2.4237 2.501 0.746 -46 -38 -30 -24 -55	-39
2.501 2.5783 0.769 -50 -42 -32 -26 -59	-41
2.5783 2.6557 0.793 -54 -46 -34 -28 -63	-43
2.6557 2.733 0.816 -58 -50 -38 -30 -67	-47
2.733 2.8104 0.839 -62 -54 -42 -32 -71	-51
2.8104 3.3 0.858 MUTE MUTE MUTE MUTE MUTE N	

*Based on $HPV_{DD} = 3.3V$

X = Don't care.

Table 3B. MAX9750B Volume Levels

Vvol (V)			SPEAKER MODE GAIN (dB)				MODE GAIN B)	
V _{MIN} *	V _{MAX} *	HPV _{DD} *	GAIN1 = 0, GAIN2 = 0	GAIN1 = 1, GAIN2 = 0	GAIN1 = 0, GAIN2 = 1	GAIN1 = 1 GAIN2 = 1	GAIN1 = X, GAIN2 = 0	GAIN1 = X, GAIN2 = 1
0	0.49	0.074	15	16.5	18	19.5	0	3
0.49	0.5673	0.160	14	16	17.5	19	-1	2.5
0.5673	0.6447	0.183	13	15	17	18.5	-2	2
0.6447	0.722	0.207	12	14	16.5	18	-3	1.5
0.722	0.7994	0.230	10	13	16	17.5	-5	1
0.7994	0.8767	0.253	8	12	15	17	-7	0
0.8767	0.9541	0.277	6	10	14	16.5	-9	-1
0.9541	1.0314	0.300	4	8	13	16	-11	-2
1.0314	1.1088	0.324	2	6	12	15	-13	-3
1.1088	1.1861	0.347	0	4	10	14	-15	-5
1.1861	1.2635	0.371	-2	2	8	13	-17	-7
1.2635	1.3408	0.394	-4	0	6	12	-19	-9
1.3408	1.4182	0.418	-6	-2	4	10	-21	-11
1.4182	1.4955	0.441	-8	-4	2	8	-23	-13
1.4955	1.5728	0.464	-10	-6	0	6	-25	-15
1.5728	1.6502	0.488	-12	-8	-2	4	-27	-17
1.6502	1.7275	0.511	-14	-10	-4	2	-29	-19
1.7275	1.8049	0.535	-16	-12	-6	0	-31	-21
1.8049	1.8822	0.558	-18	-14	-8	-2	-33	-23
1.8822	1.9596	0.582	-20	-16	-10	-4	-35	-25
1.9596	2.0369	0.605	-22	-18	-12	-6	-37	-27
2.0369	2.1143	0.628	-24	-20	-14	-8	-39	-29
2.1143	2.1916	0.652	-26	-22	-16	-10	-41	-31
2.1916	2.269	0.675	-28	-24	-18	-12	-43	-33
2.269	2.3463	0.699	-32	-26	-20	-14	-47	-35
2.3463	2.4237	0.722	-36	-28	-22	-16	-51	-37
2.4237	2.501	0.746	-40	-32	-24	-18	-55	-39
2.501	2.5783	0.769	-44	-36	-26	-20	-59	-41
2.5783	2.6557	0.793	-48	-40	-28	-22	-63	-43
2.6557	2.733	0.816	-52	-44	-32	-24	-67	-47
2.733	2.8104	0.839	-56	-48	-36	-26	-71	-51
2.8104	3.3	0.858	MUTE	MUTE	MUTE	MUTE	MUTE	MUTE

^{*}Based on $HPV_{DD} = 3.3V$

X = Don't care.

Table 3C. MAX9750C Volume Levels

	V _{VOL} (V)			SPEAKER MC	HEADPHONE MODE GAIN (dB)				
V _{MIN} *	V _{MAX} *	HPV _{DD} *	GAIN1 = 0, GAIN2 = 0	GAIN1 = 1, GAIN2 = 0	GAIN1 = 0, GAIN2 = 1	GAIN1 = 1 GAIN2 = 1	GAIN1 = X, GAIN2 = 0	GAIN1 = X, GAIN2 = 1	
0	0.49	0.074	6	7.5	9	10.5	0	3	
0.49	0.5673	0.160	5	7	8.5	10	-1	2.5	
0.5673	0.6447	0.183	4	6	8	9.5	-2	2	
0.6447	0.722	0.207	3	5	7.5	9	-3	1.5	
0.722	0.7994	0.230	1	4	7	8.5	-5	1	
0.7994	0.8767	0.253	-1	3	6	8	-7	0	
0.8767	0.9541	0.277	-3	1	5	7.5	-9	-1	
0.9541	1.0314	0.300	-5	-1	4	7	-11	-2	
1.0314	1.1088	0.324	-7	-3	3	6	-13	-3	
1.1088	1.1861	0.347	-9	-5	1	5	-15	-5	
1.1861	1.2635	0.371	-11	-7	-1	4	-17	-7	
1.2635	1.3408	0.394	-13	-9	-3	3	-19	-9	
1.3408	1.4182	0.418	-15	-11	-5	1	-21	-11	
1.4182	1.4955	0.441	-17	-13	-7	-1	-23	-13	
1.4955	1.5728	0.464	-19	-15	-9	-3	-25	-15	
1.5728	1.6502	0.488	-21	-17	-11	-5	-27	-17	
1.6502	1.7275	0.511	-23	-19	-13	-7	-29	-19	
1.7275	1.8049	0.535	-25	-21	-15	-9	-31	-21	
1.8049	1.8822	0.558	-27	-23	-17	-11	-33	-23	
1.8822	1.9596	0.582	-29	-25	-9	-13	-35	-25	
1.9596	2.0369	0.605	-31	-27	-21	-15	-37	-27	
2.0369	2.1143	0.628	-33	-29	-23	-17	-39	-29	
2.1143	2.1916	0.652	-35	-31	-2	-19	-41	-31	
2.1916	2.269	0.675	-37	-3	-27	-21	-43	-33	
2.269	2.3463	0.699	-41	-35	-29	-23	-47	-35	
2.3463	2.4237	0.722	-45	-37	-31	-25	-51	-37	
2.4237	2.501	0.746	-48	-41	-33	-27	-55	-39	
2.501	2.5783	0.769	-53	-45	-35	-29	-59	-41	
2.5783	2.6557	0.793	-57	-49	-37	-31	-63	-43	
2.6557	2.733	0.816	-61	-53	-41	-33	-67	-47	
2.733	2.8104	0.839	-65	-57	-45	-35	-71	-51	
2.8104	3.3	0.858	MUTE	MUTE	MUTE	MUTE	MUTE	MUTE	

^{*}Based on $HPV_{DD} = 3.3V$

X = Don't care.

_ M/XI/M

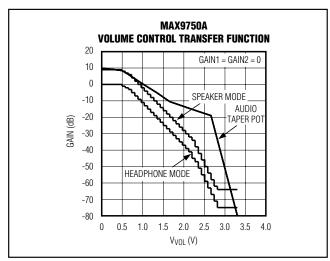


Figure 7a. Volume Control Transfer Function

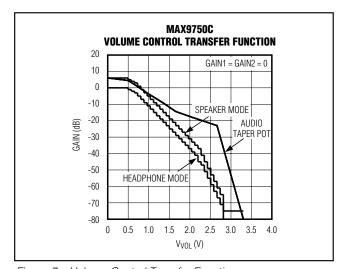


Figure 7c. Volume Control Transfer Function

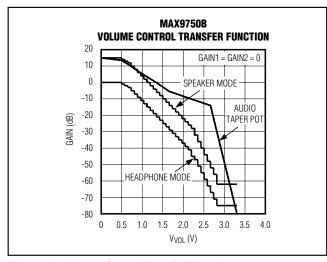


Figure 7b. Volume Control Transfer Function

Headphone Amplifier

In conventional single-supply headphone amplifiers, the output-coupling capacitor is a major contributor of audible clicks and pops. Upon startup, the amplifier charges the coupling capacitor to its bias voltage, typically half the supply. Likewise, during shutdown, the capacitor is discharged to GND. A DC shift across the capacitor results, which in turn appears as an audible transient at the speaker. Since the MAX9750/MAX9751/MAX9755 do not require output-coupling capacitors, no audible transient occurs.

Additionally, the MAX9750/MAX9751/MAX9755 features extensive click-and-pop suppression that eliminates any audible transient sources internal to the device. The Turn-On/Turn-Off Response (Headphone Mode) Waveforms in the *Typical Operating Characteristics* shows that there are minimal transient components in the audible range at the output upon startup and shutdown.

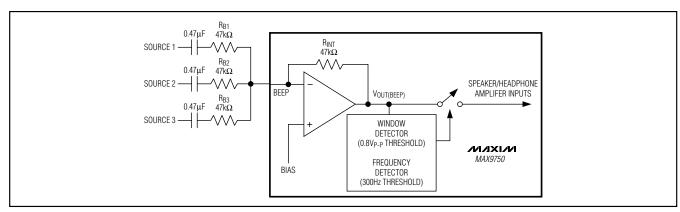


Figure 8. BEEP Input

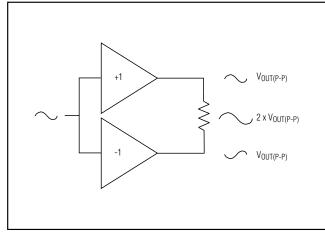


Figure 9. Bridge-Tied Load Configuration

Applications Information

BTL Speaker Amplifiers

The MAX9750/MAX9751/MAX9755 feature speaker amplifiers designed to drive a load differentially, a configuration referred to as bridge-tied load (BTL). The BTL configuration (Figure 9) offers advantages over the single-ended configuration, where one side of the load is connected to ground. Driving the load differentially doubles the output voltage compared to a single-ended amplifier under similar conditions. Thus, the device's differential gain is twice the closed-loop gain of the input amplifier. The effective gain is given by:

$$A_{VD} = 2 \times \frac{R_F}{R_{INI}}$$

Substituting 2 x $V_{OUT(P-P)}$ into the following equation yields four times the output power due to double the output voltage:

$$V_{RMS} = \frac{V_{OUT(P-P)}}{2\sqrt{2}}$$

$$P_{OUT} = \frac{V_{RMS}^2}{R_L}$$

Since the differential outputs are biased at midsupply, there is no net DC voltage across the load. This eliminates the need for DC-blocking capacitors required for single-ended amplifiers. These capacitors can be large and expensive, can consume board space, and can degrade low-frequency performance.

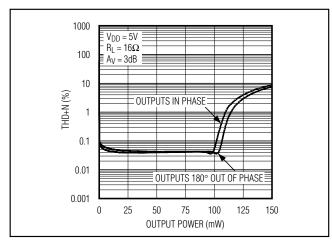


Figure 10. Total Harmonic Distortion Plus Noise vs. Output Power with Inputs In/Out of Phase (Headphone Mode)

Power Dissipation and Heat Sinking

Under normal operating conditions, the MAX9750/MAX9751/MAX9755 can dissipate a significant amount of power. The maximum power dissipation for each package is given in the *Absolute Maximum Ratings* under Continuous Power Dissipation, or can be calculated by the following equation:

$$P_{DISSPKG(MAX)} = \frac{T_{J(MAX)} - T_{A}}{\theta_{JA}}$$

where $T_{J(MAX)}$ is +150°C, T_A is the ambient temperature, and θ_{JA} is the reciprocal of the derating factor in °C/W as specified in the *Absolute Maximum Ratings* section. For example, θ_{JA} of the thin QFN package is +42°C/W. For optimum power dissipation, the exposed paddle of the package should be connected to the ground plane (see the *Layout and Grounding* section).

For 8Ω applications, the worst-case power dissipation occurs when the output power is 1.1W/channel, resulting in a power dissipation of about 1W. In this case, both the TSSOP and TQFN packages can be used without violating the maximum power dissipation or exceeding the thermal protection threshold. For 4Ω applications, the TSSOP package may require heat-sinking or forced air cooling to prevent the device from reaching its thermal limit. The more thermally efficient TQFN package is suggested for speaker loads less than 8Ω .

Output Power (Speaker Amplifier)

The increase in power delivered by the BTL configuration directly results in an increase in internal power dissipation over the single-ended configuration. The

Table 4. Suggested Capacitor Manufacturers

SUPPLIER	PHONE	FAX	WEBSITE					
Taiyo Yuden	800-348-2496	847-925-0899	www.t-yuden.com					
TDK	807-803-6100	847-390-4405	www.component.tdk.com					

maximum power dissipation for a given V_{DD} and load is given by the following equation:

$$P_{DISS(MAX)} = \frac{2V_{DD}^2}{\pi^2 R_I}$$

If the power dissipation for a given application exceeds the maximum allowed for a given package, either reduce VDD, increase load impedance, decrease the ambient temperature, or add heatsinking to the device. Large output, supply, and ground PC board traces improve the maximum power dissipation in the package.

Thermal-overload protection limits total power dissipation in these devices. When the junction temperature exceeds +160°C, the thermal-protection circuitry disables the amplifier output stage. The amplifiers are enabled once the junction temperature cools by 15°C. This results in a pulsing output under continuous thermal-overload conditions as the device heats and cools.

Output Power (Headphone Amplifier)

The headphone amplifiers have been specified for the worst-case scenario—when both inputs are in phase. Under this condition, the drivers simultaneously draw current from the charge pump, leading to a slight loss in headroom of Vss. In typical stereo audio applications, the left and right signals have differences in both magnitude and phase, subsequently leading to an increase in the maximum attainable output power. Figure 10 shows the two extreme cases for in and out of phase. In reality, the available power lies between these extremes.

Power Supplies

The MAX9750/MAX9751/MAX9755 have different supplies for each portion of the device, allowing for the optimum combination of headroom and power dissipation and noise immunity. The speaker amplifiers are powered from PVDD. PVDD ranges from 4.5V to 5.5V. The headphone amplifiers are powered from HPVDD and VSS. HPVDD is the positive supply of the headphone amplifiers and ranges from 3V to 5.5V. VSS is the negative supply of the headphone amplifiers. Connect VSS to CPVSS. The charge pump is powered by CPVDD. CPVDD ranges from 3V to 5.5V and should be the same potential as HPVDD. The charge pump inverts the voltage at CPVDD, and the resulting voltage appears at CPVSS. The remainder of the device is powered by VDD.

Component Selection

Input Filtering

The input capacitor (C_{IN}), in conjunction with the amplifier input resistance (R_{IN}), forms a highpass filter that removes the DC bias from an incoming signal (see the *Typical Application Circuit*). The AC-coupling capacitor allows the amplifier to bias the signal to an optimum DC level. Assuming zero source impedance, the -3dB point of the highpass filter is given by:

$$f_{-3dB} = \frac{1}{2\pi R_{IN} C_{IN}}$$

RIN is the amplifier's internal input resistance value given in the *Electrical Characteristics* table. Choose CIN such that f-3dB is well below the lowest frequency of interest. Setting f-3dB too high affects the amplifier's low-frequency response. Use capacitors with low-voltage coefficient dielectrics, such as tantalum or aluminum electrolytic. Capacitors with high-voltage coefficients, such as ceramics, may result in increased distortion at low frequencies.

BIAS Capacitor

BIAS is the output of the internally generated DC bias voltage. The BIAS bypass capacitor, CBIAS, improves PSRR and THD+N by reducing power supply and other noise sources at the common-mode bias node, and also generates the clickless/popless, startup/shutdown DC bias waveforms for the speaker amplifiers. Bypass BIAS with a 1µF capacitor to GND.

Charge-Pump Capacitor Selection

Use capacitors with an ESR less than $100m\Omega$ for optimum performance. Low-ESR ceramic capacitors minimize the output resistance of the charge pump. For best performance over the extended temperature range, select capacitors with an X7R dielectric. Table 4 lists suggested manufacturers.

Flying Capacitor (C1)

The value of the flying capacitor (C1) affects the load regulation and output resistance of the charge pump. A C1 value that is too small degrades the device's ability to provide sufficient current drive, which leads to a loss of output voltage. Increasing the value of C1 improves load regulation and reduces the charge-pump output

resistance to an extent. See the Output Power vs. Charge-Pump Capacitance and Load Resistance graph in the *Typical Operating Characteristics*. Above 2.2µF, the on-resistance of the switches and the ESR of C1 and C2 dominate.

Output Capacitor (C2)

The output capacitor value and ESR directly affect the ripple at CPVss. Increasing the value of C2 reduces output ripple. Likewise, decreasing the ESR of C2 reduces both ripple and output resistance. Lower capacitance values can be used in systems with low maximum output power levels. See the Output Power vs. Charge-Pump Capacitance and Load Resistance graph in the *Typical Operating Characteristics*.

CPV_{DD} Bypass Capacitor (C3)

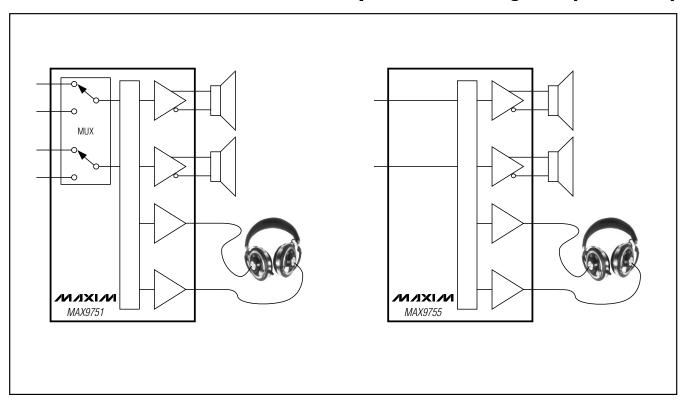
The CPV_{DD} bypass capacitor (C3) lowers the output impedance of the power supply and reduces the impact of the MAX9750/MAX9751/MAX9755's charge-pump switching transients. Bypass CPV_{DD} with C3, the same value as C1, and place it physically close to CPV_{DD} and PGND (refer to the MAX9750 Evaluation Kit for a suggested layout).

Powering Other Circuits from a Negative Supply

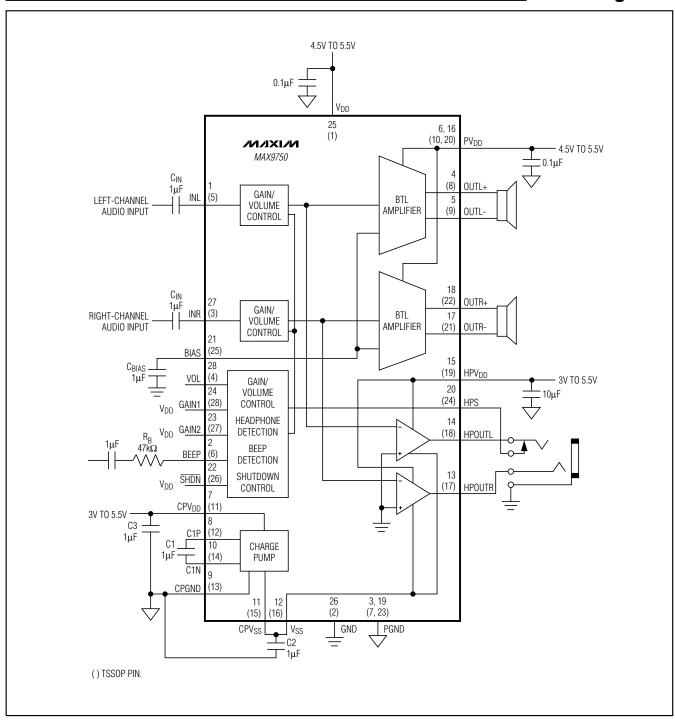
An additional benefit of the MAX9750/MAX9751/MAX9755 is the internally generated negative supply voltage (CPVss). CPVss is used by the MAX9750/MAX9751/MAX9755 to provide the negative supply for the headphone amplifiers. It can also be used to power other devices within a design. Current draw from CPVss should be limited to 5mA, exceeding this affects the operation of the headphone amplifier. A typical application is a negative supply to adjust the contrast of LCD modules.

When considering the use of CPVss in this manner, note that the charge-pump voltage of CPVss is roughly proportional to CPVDD and is not a regulated voltage. The charge-pump output impedance plot appears in the *Typical Operating Characteristics*.

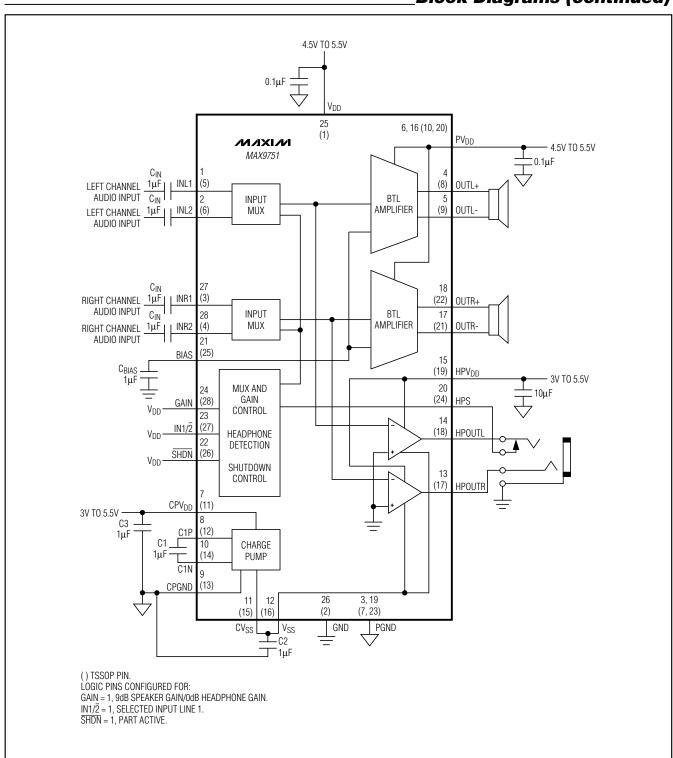
Layout and Grounding

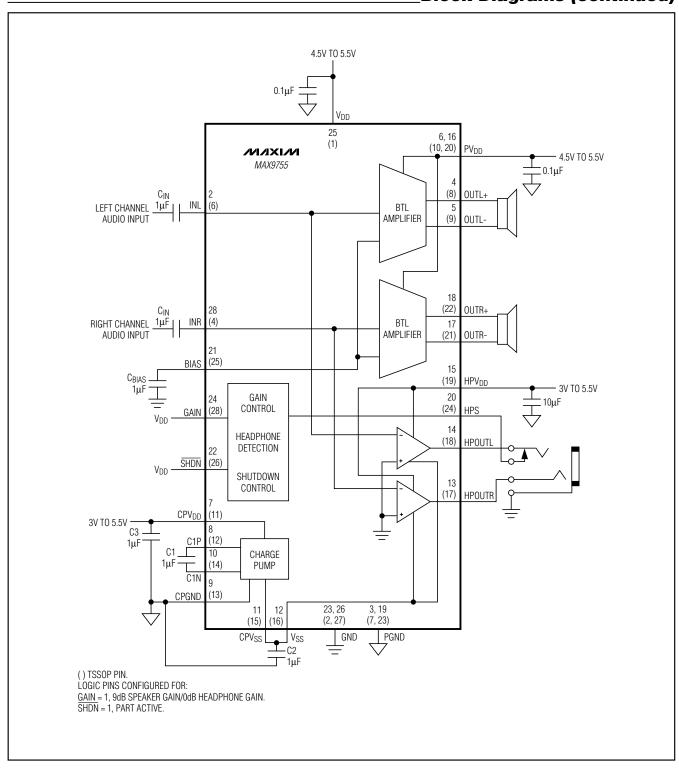

Proper layout and grounding are essential for optimum performance. Use large traces for the power-supply inputs and amplifier outputs to minimize losses due to parasitic trace resistance, as well as route head away from the device. Good grounding improves audio performance, minimizes crosstalk between channels, and prevents any switching noise from coupling into the audio signal. Connect CPGND, PGND and GND together at a single point on the PC board. Route CPGND and all traces that carry switching transients away from GND, PGND, and the traces and components in the audio signal path.

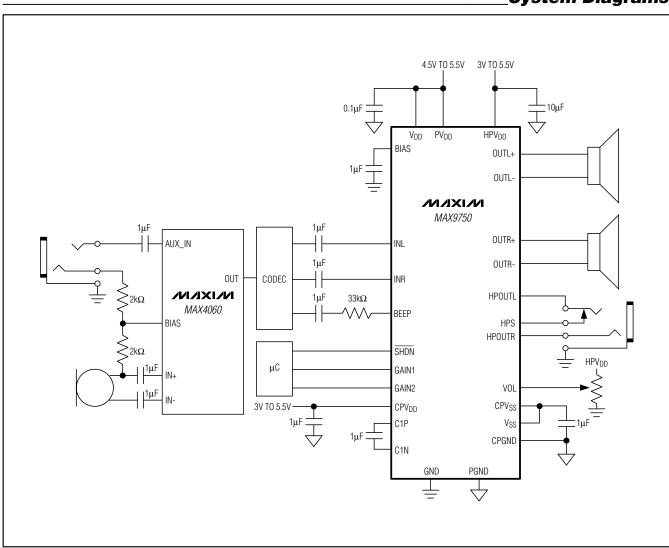
Connect all components associated with the charge pump (C2 and C3) to the CPGND plane. Connect Vss and CPVss together at the device. Place the charge-pump capacitors (C1, C2, and C3) as close to the device as possible. Bypass HPVDD and PVDD with a 0.1 μ F capacitor to GND. Place the bypass capacitors as close to the device as possible.

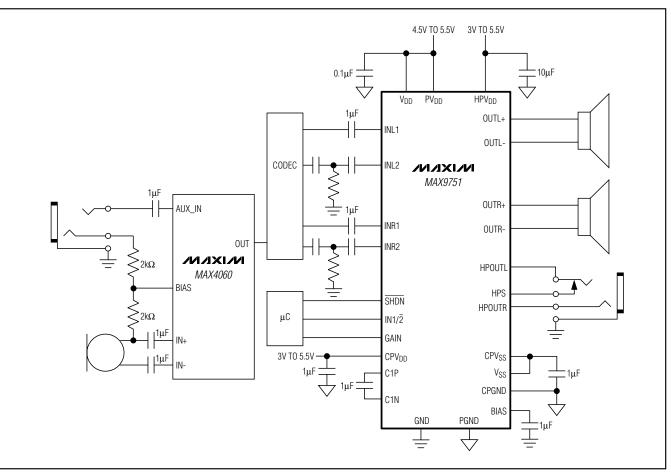

Use large, low-resistance output traces. As load impedance decreases, the current drawn from the device outputs increase. At higher current, the resistance of the output traces decrease the power delivered to the load. For example, when compared to a 0Ω trace, a $100\text{m}\Omega$ trace reduces the power delivered to a 4Ω load from 2.1W to 2W. Large output, supply, and GND traces also improve the power dissipation of the device.

The MAX9750/MAX9751/MAX9755 thin QFN package features an exposed thermal pad on its underside. This pad lowers the package's thermal resistance by providing a direct heat conduction path from the die to the printed circuit board. Connect the exposed thermal pad to GND by using a large pad and multiple vias to a GND plane on the bottom of the PCB.


Simplified Block Diagrams (continued)

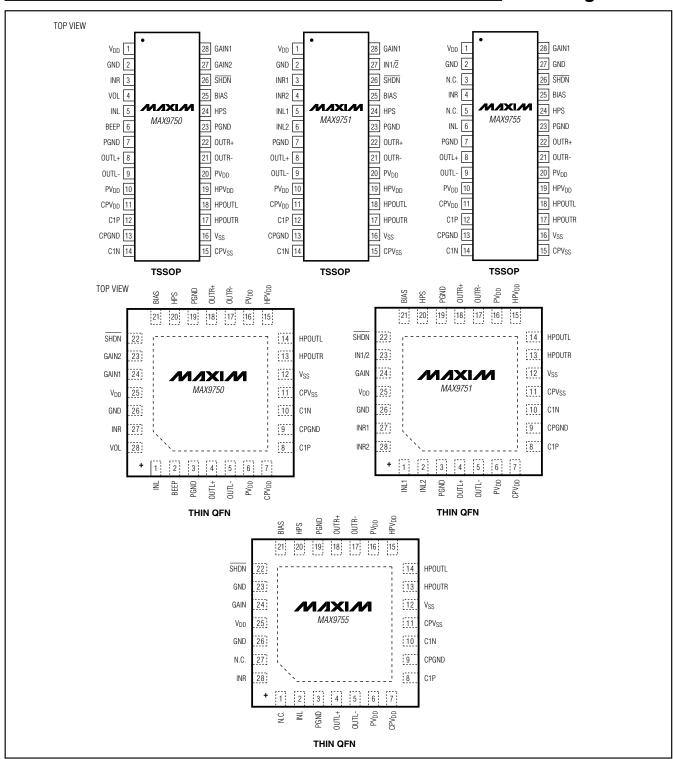

Block Diagrams


Block Diagrams (continued)


Block Diagrams (continued)

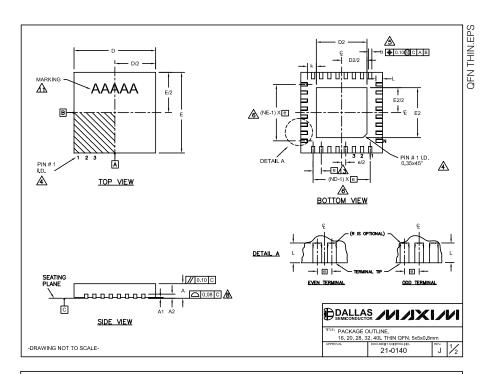
System Diagrams

System Diagrams (continued)



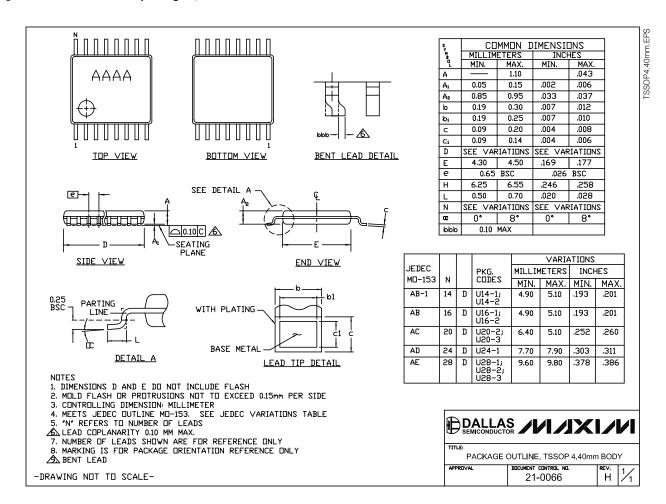
_Chip Information

PROCESS: BiCMOS


28 _______/II/XI/VI

Pin Configurations

Package Information


(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

PKG.			С	OMM	DI NC	MENS	SIONS											EXI	POSE	D PAD	VARI	ATIO	NS		
		6L 5x			0L 5x			BL 5x			2L 5>			10L 5			PKG.		D2			E2		1	
SYMBOL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	MOM	MAX.		CODES	MIN.	NOM.	MAX.	MIN.	NOM	MAX	đ	
Α	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80		T1655-2	3.00	3.10	3.20	3.00	3.10	3.20	5	
A1	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05		T1655-3	3,00	3,10	3,20	3.00	3,10	3,20	5	
A2	0.	20 RE	F.	0.	20 RE			0 RE			20 RE		0	20 R	F.		T1655N-1	3,00		3.20	3.00	3.10		5	
b				0.25			0.20							0.20			T2055-3	3.00	3.10	3.20	3.00	3.10		5	
D							4.90		5.10								T2055-4	3.00	3,10	3,20	3.00	3.10	3.20	5	
E	_						4.90										T2055-5	3.15	_	3.35	_	3.25	_	_	
e		80 B			65 BS			50 BS	$\overline{}$		50 B	SC.	-	.40 B	SC.		T2855-3	3.15	3.25		3.15	3.25			
k L	0.25			0.25	0.55		0.25	- 0.55		0.25	0.40	0.50	0.25		0.50		T2855-4	2.60	2.70	_	2.60	2.70	2.80	_	
N N	0.30	-	0.50	0.45	20	0.00	U.45	28	บ.ช5	0.30	32	0.50	0.30	40	10.50		T2855-5	2.60	2.70			2.70	2.80		
ND ND	<u> </u>	16			5	-		7	-		8		\vdash	10			T2855-6	3.15	3.25		3.15	3.25			
NE	\vdash	4	_	\vdash	5	-		7	-		8		-	10	_		T2855-7	2.60	2.70			2.70	2.80		
JEDEC	,	WHHE	3	1	NHHO	: 1	W	/HHD	-1	V	VHHD	1-2	\vdash				T2855-8	3.15	3.25			3.25	3.35	_	
													_				T2855N-1	3.15	3.25		3.15	3.25	3.35	_	
																	T3255-3	3.00	3.10	3,20		3,10			
OTES:																	T3255-4	3.00	3 10	3,20	3.00	3.10	3,20	_	
	ENSIC																						3.20)	
			8 TC	LERA	NCIN	G COI	NFOR	м то	ASME	Y14	5M-1	994.					T3255-5	3.00	3.10		3.00	3.10	3.20		
																			3.10		3.00	3.10 3.10	3.20)	
2. ALL 3. N.IS	DIME	NSIO	NS AF	RE IN I	MILLI	METER	RS. AN										T3255-5 T3255N-1 T4055-1	3.00 3.00 3.40	3.10 3.10 3.50	3.20 3.20 3.60	3.00 3.00 3.40	3.10 3.10 3.50	3.20 3.20 3.60	0	
2. ALL 3. N IS	DIME	NSIO TOTA	NS AF	RE IN I	OF T	METER	RS. AN	IGLE	S ARE	IN D	EGRE	ES.	TION	SHAL	L		T3255-5 T3255N-1	3.00 3.00 3.40 3.40	3.10 3.10 3.50 3.50	3.20 3.20 3.60 3.60	3.00 3.00 3.40 3.40	3.10 3.10 3.50 3.50	3.20 3.20 3.60 3.60	0	
2. ALL 3. N IS CO OP' IDE	DIME THE TERI NFORI FIONA NTIFIE	NSIO TOTA MINAL M TO L, BU ER MA	NS AF L NUI . #1 IE JESD T MUS XY BE	MBER DENTI 95-1: ST BE EITHE	OF TI FIER / SPP-0 LOC/ ER A I	METER ERMIN AND T 112. D ATED V MOLD	RS. AN IALS. ERMII ETAIL WITHI OR M	NAL N S OF N THI ARKE	S ARE IUMB TERM E ZON ED FE	ERING MINAL IE IND ATUR	EGRE 3 COI #1 IE DICAT	NVEN DENTI	FIER HE T	ARE ERMII	NAL #1		T3255-5 T3255N-1 T4055-1	3.00 3.00 3.40 3.40	3.10 3.10 3.50 3.50	3.20 3.20 3.60 3.60	3.00 3.00 3.40	3.10 3.10 3.50 3.50	3.20 3.20 3.60 3.60	0	
2. ALL 3. N IS CO OP IDE	DIME THE TERI NFORI FIONA NTIFIE	NSIO TOTA MINAL M TO L, BU ER MA	NS AF L NUM . #1 IE JESD T MUS NY BE	MBER DENTII 95-1: ST BE EITHE	MILLIM OF TI FIER / SPP-0 LOC/ ER A M	METER ERMIN AND T 112. D ATED V MOLD ALLIZ	RS. AN IALS. ERMII ETAIL WITHI OR M	VAL N S OF N THI ARKE	S ARE IUMB TERM E ZON ED FE	ERING MINAL IE IND ATUR	EGRE 3 COI #1 IE DICAT	NVEN DENTI	FIER HE T	ARE ERMII	NAL #1		T3255-5 T3255N-1 T4055-1	3.00 3.00 3.40 3.40	3.10 3.10 3.50 3.50	3.20 3.20 3.60 3.60	3.00 3.00 3.40 3.40	3.10 3.10 3.50 3.50	3.20 3.20 3.60 3.60	0	
2. ALL 3. N IS CO OP' IDE DIM 0.29	DIME THE TERM NFORI FIONA NTIFIE ENSIG 5 mm /	NSIO TOTA MINAL M TO L, BU ER MA ON 6 A ND 0	NS AF L NUM #1 IE JESD T MUS XY BE APPLI 30 m	MEER MEER DENTH 95-1: ST BE EITHE ES TO TH	MILLIM OF TI FIER / SPP-0 LOCA ER A M OM TE E NUI	METER ERMIN AND T 112. D ATED V MOLD ALLIZI ERMIN MBER	RS. AN IALS. ERMII ETAIL WITHI OR M ED TE AL TIF	NAL N S OF N THI ARKE RMIN	S ARE IUMB TERM E ZON ED FE IAL AI	ERING JINAL JE IND ATUR ND IS ON E	EGRE #1 IE DICAT E. MEA!	NVEN DENTI ED. 1	FIER 'HE T D BE	ARE ERMII TWEE	NAL #1		T3255-5 T3255N-1 T4055-1 T4055-2	3.00 3.00 3.40 3.40	3.10 3.10 3.50 3.50	3.20 3.20 3.60 3.60	3.00 3.00 3.40 3.40	3.10 3.10 3.50 3.50	3.20 3.20 3.60 3.60	0	
2. ALL 3. N IS CO OP IDE A DIM 0.2: A ND	DIME THE TERMORITIONA NTIFIE SIENSIG MM / AND N	NSIO TOTA MINAL MITO L, BU ER MA ON b A ND 0 NE RE ATIO	NS AF L NUM #1 IE JESD T MUS XY BE XPPLI 130 m FER	MBER DENTIL 95-1: ST BE EITHE ES TO m FRO TO TH	MILLIM OF TI FIER / SPP-0 LOC/ ER A M MET OM TE E NUI BLE II	METER ERMIN AND T 112. D ATED I MOLD ALLIZ ERMIN MBER N A SY	RS. AN IALS. ERMII ETAIL WITHI OR M ED TE AL TIF OF TI	NAL N S OF N THI ARKE RMIN C. ERMII	S ARE IUMB TERM ZON D FE IAL AI VALS	ERING MINAL MINAL ME INC ATUR ND IS ON E SHIOI	EGRE #1 IE DICAT E. MEA: ACH I	NVENDENTI ED. T	FIER THE T	ARE ERMII TWEE DE R	NAL #1	STIVE	T3255-5 T3255N-1 T4055-1 T4055-2	3.00 3.00 3.40 3.40	3.10 3.10 3.50 3.50	3.20 3.20 3.60 3.60	3.00 3.00 3.40 3.40	3.10 3.10 3.50 3.50	3.20 3.20 3.60 3.60	0	
2. ALL 3. N IS CO OP IDE A DIM 0.2: A ND	DIME THE TERMORITIONA NTIFIE SIENSIG MM / AND N	NSIO TOTA MINAL MITO L, BU ER MA ON b A ND 0 NE RE ATIO	NS AF L NUM #1 IE JESD T MUS XY BE XPPLI 130 m FER	MBER DENTIL 95-1: ST BE EITHE ES TO m FRO TO TH	MILLIM OF TI FIER / SPP-0 LOC/ ER A M MET OM TE E NUI BLE II	METER ERMIN AND T 112. D ATED I MOLD ALLIZ ERMIN MBER N A SY	RS. AN IALS. ERMII ETAIL WITHI OR M ED TE AL TIF OF TI	NAL N S OF N THI ARKE RMIN C. ERMII	S ARE IUMB TERM ZON D FE IAL AI VALS	ERING MINAL MINAL ME INC ATUR ND IS ON E SHIOI	EGRE #1 IE DICAT E. MEA: ACH I	NVENDENTI ED. T	FIER THE T	ARE ERMII TWEE DE R	NAL #1	STIVE	T3255-5 T3255N-1 T4055-1 T4055-2	3.00 3.00 3.40 3.40	3.10 3.10 3.50 3.50	3.20 3.20 3.60 3.60	3.00 3.00 3.40 3.40	3.10 3.10 3.50 3.50	3.20 3.20 3.60 3.60	0	
2. ALL 3. N IS CO OP IDE DIM 0.2: ND 7. DEI CO 9. DR	DIME THE TERRIFORM TIONA NTIFIE S mm / AND N POPUL	NSIO TOTA MINAL M TO L, BU ER MA ON b A ND 0 NE RE ATIO MRITY S CON	NS AF L NUM #1 [E JESD T MUS VY BE APPLI 30 m FER N IS F APPL IFORI	MEE IN I MBER 95-1: 95-1: ST BE EITHE ES TO TO TH POSSI JIES T MS TO	OF TI FIER / SPP-0 LOC/ ER A I OM TE E NUI BLE II	METER ERMIN AND TI 112. D ATED I MOLD ALLIZI ERMIN MBER N A SY E EXP	RS. AN IALS. ERMII ETAIL WITHI OR M ED TE AL TIF OF TI /MME OSED	NAL N S OF N THI ARKE RMIN P. ERMII TRIC HEA	S ARE IUMB TERM E ZON ED FE IAL AI VALS AL FA T SIN	ERING MINAL ME IND ATUR ND IS ON E SHIOI K SLL	EGRE 3 COI .#1 IE DICAT E. MEA! MEA! ACH I	NVENDENTI ED. 1 SURE D ANI	FIER THE T D BE	ARE ERMII TWEE DE RI	NAL #1	STIVE	T3255-5 T3255N-1 T4055-1 T4055-2	3.00 3.00 3.40 3.40	3.10 3.10 3.50 3.50	3.20 3.20 3.60 3.60	3.00 3.00 3.40 3.40	3.10 3.10 3.50 3.50	3.20 3.20 3.60 3.60	0	
2. ALL 3. N IS CO OD IDE DIN 0.2: A ND 7. DEI A CO 9. DR. 7. T28	DIME THE TERMINED TIONA NTIFIE TIONA NTIFIE TIONA NTIFIE TIONA NTIFIE TIONA NTIFIE TIONA NTIFIE TIONA TIONA NTIFIE TIONA	NSIO TOTA MINAL M TO L, BU ER MA ON b A ND 0 NE RE ATIO ARITY ND T	NS AF L NUI #1 IE JESD T MUS Y BE APPLI 30 m FER N IS F APPL IFORI 2855-	MEE IN I MBER 95-1: 95-1: 95-1: 95-1: EITHE ES TO TO TH POSSI JIES T MS TO 6.	MILLIN OF TI FIER / SPP-0 LOC/ ER A N MET DM TE E NUI BLE II O THE	METER ERMIN AND T 112. D ATED MOLD ALLIZ ERMIN MBER N A SY E EXP	RS. AN IALS. ERMII ETAIL WITHI OR M ED TE AL TIF OF TI (MME OSED)220, F	NAL N S OF N THI ARKE RMIN P. ERMII TRIC HEA	S ARE IUMB TERM E ZON ED FE IAL AI VALS AL FA T SIN	ERING MINAL ME IND ATUR ND IS ON E SHIOI K SLL	EGRE 3 COI .#1 IE DICAT E. MEA! MEA! ACH I	NVENDENTI ED. 1 SURE D ANI	FIER THE T D BE	ARE ERMII TWEE DE RI	NAL #1	STIVE	T3255-5 T3255N-1 T4055-1 T4055-2	3.00 3.00 3.40 3.40	3.10 3.10 3.50 3.50 *SEE C	3.20 3.20 3.60 3.60	3.00 3.40 3.40 DIMER	3.10 3.10 3.50 3.50 SIONS	3.20 3.60 3.60 3.60		71
2. ALL 3. N IS CO OP IDE DIM 0.25 A ND 7. DEI A CO 9. DR. 728	DIME THE TERMONA TIPLE TONA TIPLE TONA TIPLE TONA TIPLE TONA TONA TONA TONA TONA TONA TONA TONA	NSIO TOTA MINAL MITO L, BU ER MA NND 0 NE RE ATIO ARITY ND T E SHA	NS AF L NUF L #1 IE JESD T MUS LY BE APPLI 130 m FER N IS F APPL IFORI 2855-	MEE IN I MBER DENTII 95-1: ST BE EITHE ES TO FO TH POSSI JES T MS TO 6.	MILLIM OF TI FIER / SPP-0 LOC/ ER A M OM TE E NUI BLE II O THE JEDE	METER ERMIN AND T 112. D ATED (MOLD ALLIZ ERMIN MBER N A S) E EXP EC MC	RS. AN IALS. ERMII ETAIL WITHII OR M ED TE AL TIF OF TI (MME OSED 0220, E	NAL N S OF N THI ARKE RMIN P. ERMII HEA HEA	S ARE IUMB TERM E ZON ED FE IAL AI VALS AL FA T SIN PT E	ERING MINAL MINAL ME IND ATUR ND IS ON E SHIOM K SLL (POSI	EGRE #11E DICAT E MEAS ACH I	NVENDENTI ED. 1 SURE D ANI	FIER THE T D BE	ARE ERMII TWEE DE RI	NAL #1	STIVE	T3255-5 T3255N-1 T4055-1 T4055-2	3.00 3.00 3.40 3.40	3.10 3.10 3.50 3.50 *SEE C	3.20 3.20 3.60 3.60	3.00 3.00 3.40 3.40	3.10 3.10 3.50 3.50 SIONS	3.20 3.60 3.60 3.60		< I.
2. ALL 3. N IS CO OP IDE DIM 0.2: ND 7. DEI CO 9. DR. T28 WA	DIME THE TERRINFORI FIONA NTIFIE ENSIGN AND N POPUL PLANA WING S5-3 A RPAGI RKING	NSIO TOTA MINAL MITO L, BU L,	NS AF L NUI #1 IE JESD T MUS XY BE APPLI 30 m FER N IS F APPL IFORI 2855- ALL NO DR PA	MEER DENTH 95-1: ST BE EITHE ES TO THE POSSILIES TO MS TO 6. OT EX.	MILLIMITED AND AND AND AND AND AND AND AND AND AN	METER ERMIN AND T 112. D ATED MOLD ALLIZ ERMIN MBER N A S) E EXP EC MC	RS. AN IALS. ERMII ETAIL WITHI OR M ED TE AL TIF OF TI (MME OSED 0220, E mm.	NAL N S OF N THI ARKE RMIN P. ERMII TRIC HEA	S ARE	ERING MINAL JE INDIS ATUR ON E SHIOI K SLU KPOSI	EGRE #11E DICAT E MEAS ACH I	NVENDENTI ED. 1 SURE D ANI	FIER THE T D BE	ARE ERMII TWEE DE RI	NAL #1	STIVE	T3255-5 T3255N-1 T4055-1 T4055-2	3.00 3.00 3.40 3.40	3.10 3.10 3.50 3.50 *SEE C	3.20 3.20 3.60 3.60 0 MMOI	3.00 3.40 3.40 DIMER	3.10 3.10 3.50 3.50 3.50 SIONS	3.20 3.60 3.60 3.60		CI

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

_Revision History

Pages changed at Rev 7: 1–4, 8, 11, 12, 15, 19, 20–26, 28, 29, 31

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.