INTEL CORP {UP/PRPHLS} &L7E D MR 482LL75 0126Y41L 779 WME ITLL

intal.
Intei386™ SX MICROPROCESSOR

m Full 32-Bit Internal Architecture m Large Uniform Address Space

— 8-, 16-, 32-Bit Data Types
— 8 General Purpose 32-Bit Registers

Runs Intel386™ Software in a Cost

.Effective 16-Bit Hardware Environment

— Runs Same Applications and 0.S.’s
as the Intel386™ DX Processor

— Object Code Compatible with 8086,
80186, 80286, and Intel386™™
Processors

High Performance 16-Bit Data Bus

— 16, 20, 25 and 33 MHz Clock

— Two-Clock Bus Cycles

— Address Pipelining Allows Use of
Slower/Cheaper Memories

Integrated Memory Management Unit

— Virtua! Memory Support

— Optional On-Chip Paging

— 4 Levels of Hardware Enforced
Protection

— MMU Fully Compatible with Those of
the 80286 and Intel386 DX CPUs

Virtual 8086 Mode Allows Execution of
8086 Software in a Protected and
Paged System

— 16 Megabyte Physical
— 64 Terabyte Virtual
— 4 Gigabyte Maximum Segment Size

Numerics Support with the Intel387™™
SX Math CoProcessor

On-Chip Debugging Support Including
Breakpoint Registers

Complete System Development

Support

— Software: C, PL/M, Assembler

— Debuggers: PMON-386 DX,
ICE™-386 SX

High Speed CHMQOS IV Technology

Operating Frequency:

— Standard
(Intel386 SX -33, -25, -20, -16)
Min/Max Frequency
(4/33, 4/25, 4/20, 4/16) MHz

— Low Power)
(Intel386 SX -33, -25, -20, -16, -12)
Min/Max Frequency
(2/33, 2/25, 2/20, 2/16, 2/12) MHz

100-Pin Plastic Quad Flatpack Package
(See Packaging Outlines and Dimensions #231369)

The Intel386™ SX Microprocessor is an entry-level 32-bit CPU with a 16-bit external data bus and a 24-bit
external address bus. The Intel386 SX CPU brings the vast software library of the Intel386™ Architecture to
entry-level systems. It provides the performance benefits of a 32-bit programming architecture with the cost
savings associated with 16-bit hardware systems.

SEGMENTATION UNIT PAGING UNIT BUS CONTROL

HOLD, INTR, NMi

3=INPUT REQUEST
EFFECTIVE ADORESS BUS 7) ADDER = crroRy, BUSTS
< ADOER PRIGRITIZER RESET. HLOA
£ DESCRIPTOR PAGE w
EFFECTIVE ADDRESS 805 > AEGISTERS CACHE 5|
32 Z|
LIMIT AND CONTROL AND
ATTRIBUTE ATTRIBUTE 3]
LA PLA
PROTECTION i
TEST UNIT Y Y | ADDRESS # BHEy, BLES,
DRIVER A1-A23
s + § /o8, DD/cc'.
PIPELINE W,/R¢, LOCKS,
TNTERNAL CONTROL BUS & CONTROL) 3??39”"'
(4
+ I 5 MUX/
BARREL o wans= Lefmmlhp 00 - 015
SHIFTER, pREFETCHER | | [4) CEIVERS
A00ER [TaTUS DECODE AND INSTRUCTION| fiis
AGS SEQUENCING DECODER CHEOKER
MULTIPLY /
DIVIDE CO0E
prra— CONTROL 3-DECODED | , STREAM | copE
| rom INSTRUCTION QUEUE
FILE
ALU QUEUE
32-BT
A CONTROL roNTROL INSTRUCTION INSTROCTION
PREDECODE PREFETCH 32
DEDICATED ALU 8US 7
7 24018747

Intel386™ SX Pipelined 32-Bit Microarchitecture

November 1992

1-314 Order Number: 240187-008

INTEL CORP {UP/PRPHLS}

‘inteL

L7E D

M 4326175 012b4l2 L35 B ITLL

Intel386™ SX MICROPROCESSOR

Intel386™ SX MicroProcessor

CONTENTS PAGE
1.0 PIN DESCRIPTION 1-31'6
2.0 BASE ARCHITECTURE 1-319
2.1 RegisterSet 1-319
22 InstructionSet 1-323
2.3 Memory Organization 1-324
2.4 AddressingModes 1-325
25DataTypescovviviiiniiininns 1-328
261/08pacevciiiiiiiiiinan 1-328
2.7 Interrupts and Exceptions 1-330
2.8 Reset and Initialization 1-333
29 Testability 1-333
2.10 Debugging Support 1-334
3.0 REAL MODE ARCHITECTURE 1-335
3.1 Memory Addressing 1-335
3.2 Reserved Locations 1-336
33interrupts ... 1-336
3.4 ShutdownandHalt 1-336
3.5LOCKOperations 1-336
4.0 PROTECTED MODE

ARCHITECTURE 1-337
4.1 Addressing Mechanism 1-337
4.2 Segmentation 1-337
43 Protection ..., 1-342
44Pagingcoiiiiiiiiiiiiii 1-346
4.5 Virtual 8086 Environment 1-349

CONTENTS PAGE
5.0 FUNCTIONALDATA 1-352
5.1 Signal Description Overview 1-352

5.2 Bus Transfer Mechanism
5.3 Memory and I/0 Spaces
5.4 Bus Functional Description
5.5 Self-test Signature

5.6 Component and Revision
Identifiers

5.7 Coprocessor Interfacing
6.0 PACKAGE THERMAL
SPECIFICATIONS
7.0 ELECTRICAL SPECIFICATIONS ..
7.1 Power and Grounding
7.2 Maximum Ratings
7.3 D.C. Specifications
7.4 A.C. Specifications
7.5 Designing for ICETM-Intel386 SX
Emulatoroooi

8.0 DIFFERENCES BETWEEN THE
Intel386™ SX CPU and the
Intel386™ DX CPU

9.0 INSTRUCTIONSET

9.1 Intel386™ SX CPU Instruction
Encoding and Clock Count
Summary

9.2 Instruction Encoding

1-377

1-315

Intel386™ SX MICROPROCESSOR

1.0 PIN DESCRIPTION

00— O 75 F== A20
Vad——F] i ==
HLOA &= 5 BE=D s
HOWD ——] 4+] ——=
Vgs &1 TTESD Ve
L —= 70 E==D a1

msu:: 7 69 =xec
s 68 == Vg
= H 87— Vss

Yee &= 10 66 = A1S
W — [==
vs,c-_— 12 =

o — I ToP view SE=a

K2 C—J18 () = ¥ 1}
A0Sy =T 15 L] =—23
BLEF o] 17] —=——1"

3—— I El—21"
EM::’::—_. Py 21 =ng

20 A

i —"m [==X

Ves & 22) ——"
M/0§ =1 23 B ==
o/ C—J 1 52— A3
w/Rg =] 25 L =——™

525222,82 SP3gIsEsbesese 3ap
5 240187-1
NOTE:
NC = No Connect
Figure 1.1. Intel386™ SX Microprocessor Pin out Top View
Table 1.1. Alphabetical Pin Assignments
Address Data Control N/C Vee Vss
Ay 18 Do 1 ADS# 16 20 8 2
Az 51 Dy 100 BHE# 19 27 9 5
A3 52 Do 99 BLE# 17 29 10 1"
Ay 53 Dy 96 BUSY # 34 30 21 12
As 54 Dy 95 CLK2 15 31 32 13
Ag 55 Ds 94 D/C# 24 43 39 14
Az 56 Dg 93 ERROR # 36 44 42 22
Ag 58 Dy 92 FLT# 28 45 48 35
Ag 59 Dg 90 HLDA 3 46 57 41
Ao 60 Dg 89 HOLD 4 47 69 49
Aqq 61 D1g 88 INTR 40 Ial 50
Az 62 Dy 87 LOCK# 26 84 63
A3 64 D42 86 M/IO# 23 91 67
Aqg 65 Dia 83 NA# 8 97 68
Aqs 66 D4 82 NMI 38 77
Ais 70 Dys 81 PEREQ 37 78
Ay7 72 READY # 7 85
A1g 73 RESET 33 98
Aqg 74 W/R# 25
Az 75
Azq 76
Azo 79
Aga 80
1-316

INTEL CORP {UP/PRPHLS}

intgl.

1.0 PIN DESCRIPTION (Continued)

L7E D

Intel386™ SX MICROPROCESSOR

The following are the Intel386™ SX Microprocessor pin descriptions. The following definitions are used in the

pin descriptions:

The named signal is active LOW.
| Input signal.
o Output signal.

I1/0 Input and Output signal.
- No electrical connection.
Symbol Type Pin Name and Function

CLK2 i 15 CLK2 provides the fundamental timing for the Intel386 SX
Microprocessor. For additional information see Clock.

RESET | 33 RESET suspends any operation in progress and places the
Intel386 SX Microprocessor in a known reset state. See
Interrupt Signals for additional information.

D45-Dg 170 | 81-83,86-90, Data Bus inputs data during memory, 170 and interrupt

92-96,99-100,1 | acknowledge read cycles and outputs data during memory and
1/0 write cycles. See Data Bus for additional information.
Azz~Aq O | 80-79,76-72,70, | Address Bus outputs physical memory or port 1/0 addresses.
66-64,62-58, See Address Bus for additional information.
56-51,18

W/R# [®) 25 Write/Read is a bus cycle definition pin that distinguishes write
cycles from read cycles. See Bus Cycle Definition Signals for
additional information.

D/C# O |24 Data/Control is a bus cycle definition pin that distinguishes data
cycles, sither memory or 170, from control cycles which are:
interrupt acknowledge, halt, and code fetch. See Bus Cycle
Definition Signals for additional information.

M/I0# 0O |23 Memory/10 is a bus cycle definition pin that distinguishes
memory cycles from input/output cycles. See Bus Cycle
Definition Signals for additional information.

LOCK # O |26 Bus Lock is a bus cycle definition pin that indicates that other
system bus masters are not to gain control of the system bus
while it is active. See Bus Cycle Deflnition Signals for
additional information.

ADS# (o} 16 Address Status indicates that a valid bus cycle definition and
address (W/R#, D/C#, M/IO#, BHE#, BLE# and Ap3~A, are
being driven at the Intel386 SX Microprocessor pins. See Bus
Control Signals for additional information.

NA# | 6 Next Address is used to request address pipelining. See Bus
Control Signals for additional information.

READY # | 7 Bus Ready terminates the bus cycle. Ses Bus Control Signals
for additional information.

BHE #, BLE# (o] 19,17 Byte Enables indicate which data bytes of the data bus take part

in a bus cycle. See Address Bus for additional information.

1-317

B 4826175 012LY4ly 405 ER ITLL

INTEL CORP {UP/PRPHLS}

Intel386™ SX MICROPROCESSOR

1.0 PIN DESCRIPTION (Continued)

LYPE D 1B

intal.

Symbol | Type Pin Name and Function

HOLD | 4 Bus Hold Request input allows another bus master to request
control of the local bus. See Bus Arbitration Signals for
additional information.

HLDA O |3 Bus Hold Acknowledge output indicates that the Intei386 SX
Microprocessor has surrendered control of its local bus to
another bus master. See Bus Arbitration Signals for additional
information.

INTR i 40 Interrupt Request is a maskable input that signals the Intel386
SX Micropracessor to suspend execution of the current program
and execute an interrupt acknowledge function. See Interrupt
Signals for additional information.

NMi | 38 Non-Maskable Interrupt Request is a non-maskable input that
signals the Intel386 SX Microprocessor to suspend execution of
the current program and execute an interrupt acknowledge
function. See Interrupt Signals for additional information.

BUSY # | 34 Busy signals a busy condition from a processor extension. See
Coprocessor Interface Signals for additional information,

ERROR # | 36 Error signals an error condition from a processor extension. See
Coprocessor Interface Signals for additional information.

PEREQ 1 37 Processor Extension Request indicates that the processor has
data to be transferred by the Intel386 SX Microprocessor. See
Coprocessor Interface Signals for additional information.

FLT# | 28 Float is an input which forces all bidirectional and output signals,
including HLDA, to the tri-state condition. This allows the
electrically isolated Intel386SX PQFP to use ONCE (On-Circuit
Emulation) method without removing it from the PCB. See Float
for additional information. .

N/C - 20, 27, 29-31, 43-47 | No Connects should always be left unconnected. Connection of
a N/C pin may cause the processor to malfunction or be
incompatible with future steppings of the Intel386 SX
Microprocessor.

Veo | 8-10,21,32,39 System Power provides the + 5V nominal DC supply input.

42,48,57,69,
71,84,91,97

Vss ! 2,5,11-14,22 System Ground provides the 0V connection from which all

35,41,49-50, inputs and qutputs are measured.
63,67-68,
77-78,85,98

1-318

4826375 01226415 344 B ITLL

INTEL CORP {UP/PRPHLSZ

intel.

INTRODUCTION

The Intel386 SX Microprocessor is 100% object
code compatible with the Intel386 DX, 286 and 8086
microprocessors. Systems based on the Intel386 SX
CPU can access the world’s largest existing micro-
computer software base, including the growing 32-
bit software base.

Instruction pipelining and a high performance ALU
ensure short average instruction execution times
and high system throughput:

The integrated memory management unit (MMU) in-
cludes an address translation cache, multi-tasking
hardware, and a four-level hardware-enforced pro-
tection mechanism to support operating systems.
The virtual machine capability of the Intel386 SX
CPU allows simultaneous execution of applications
from multiple operating systems.

The Intel386 SX CPU offers on-chip testability and
debugging features. Four breakpoint registers allow
conditional or unconditional breakpoint traps on
code execution or data accesses for powerful de-
bugging of even ROM-based systems. Other testa-
bility features include self-test, tri-state of output
buffers, and direct access to the page translation
cache.

The Low Power Intel386 SX CPU brings the benefits
of the intel386 Microprocessor 32-bit architecture to
Laptop and Notebook personal computer applica-
tions. With its power saving 2 MHz steep-mode and
extended functional temperature range of 0°C to
100°C Tgoase, the Lower Power Intei386 SX CPU
specifically satisfies the power consumption and
heat dissipation requirements of today’'s small form
factor computers.

2.0 BASE ARCHITECTURE

The Intet386 SX Microprocessor consists of a cen-
tral processing unit, a memory management unit and
a bus interface.

The central processing unit consists of the execu-
tion unit and the instruction unit. The execution unit
contains the eight 32-bit general purpose registers
which are used for both address calculation and
data operations and a 64-bit barret shifter used to
speed shift, rotate, multiply, and divide operations.
The instruction unit decodes the instruction opcodes

LYE D

Intel386™ SX MICROPROCESSOR

and stores them in the decoded instruction queue
for immediate use by the execution unit.

The memory management unit (MMLU) consists of a
segmentation unit and a paging unit. Segmentation
allows the managing of the logical address space by
providing an extra addressing component, one that
allows easy code and data relocatability, and effi-
cient sharing. The paging mechanism operates be-
neath and is transparent to the segmentation pro-
cess, to allow management of the physical address
space.

The segmentation unit provides four levels of pro-
tection for isolating and protecting applications and
the operating system from each other. The hardware
enforced protection allows the design of systems
with a high degree of integrity.

The Intel386 SX Microprocessor has two modes of
operation: Real Address Mode (Real Mode), and
Protected Virtual Address Mode (Protected Mode).
In Real Mode the Intel386 SX Microprocessor oper-
ates as a very fast 8086, but with 32-bit extensions if
desired. Real Mode is required primarily to set up the
processor for Protected Mode operation.

Within Protected Mode, software can perform a task
switch to enter into tasks designated as Virtual 8086
Mode tasks. Each such task behaves with 8086 se-
mantics, thus allowing 8086 software (an application
program or an entire operating system) to execute.
The Virtual 8086 tasks can be isolated and protect-
ed from one another and the host Intel386 SX Micro-
processor operating system by use of paging.

Finally, to facilitate system hardware designs, the
Inteld86 SX Microprocessor bus interface offers ad-
dress pipelining and direct Byte Enable signals for
each byte of the data bus.

2.1 Register Set

The Intei386 SX Microprocessor has thirty-four reg-
isters as shown in Figure 2-1. These registers are
grouped into the following seven categories:

General Purpose Registers: The eight 32-bit gen-
eral purpose registers are used to contain arithmetic
and logical operands. Four of these (EAX, EBX,
ECX, and EDX) can be used sither in their entirety as
32-bit registers, as 16-bit registers, or split into pairs
of separate 8-bit registers.

1-319

MR 4326175 012LYlL 280 =E ITLL

INTEL CORP {UP/PRPHLS}Y G&L7E D MR 432L17?S5 01l2b4l7 117 ER ITL)

.
intel386™ SX MICROPROCESSOR . Intel
®
3 1815 87 0
AR ax aL) eax
MoEx 8L EEx
o ex oot eex
' ‘
t GENERAL PURPOSE
o s REGISTERS
o1 o
£8P
s» esp
—
15 0
cs
ss
os
SEGMENT
€s REGISTERS
Fs
s
31 1% 15 0
FLAGS EFLAGS FLAGS AND
INSTRUCTION
P 1 POIKTER
31 18 15 0
—_—
l ™ cro
-
000000 7 CONTROL
PAGE FAULT LINEAR ADDRESS REGISTER | CR2 REGISTERS
PAGE DIRECTORY SASE REGISTER cR3
7 18 15 o
—
com
10TR
hid 8 SYSTEM ADORESS
LoTR REGISTERS
™
3 0
LINEAR BREAKPOINT ADORESS 0 oRO
LINEAR BREAKPOINT ADDRESS 1 ORY
LINEAR BREAKPOINT ADDRESS 2 DR2
LINEAR BREAKPOINT ADDRESS 3 DRS

DEBUG

///////////////A DR4 REGISTERS
A R

BREAKPOINT STATUS DR
BREAKPOINT CONTROL OR7
—
31 0 —_
TEST CONTROL TRE ;Eél'.snns
TEST STATUS TR7]

-~ INTEL RESERVED 0O NOT USE

240187-2

Figure 2.1. Intel386T™ SX Microprocessor Registers

1-320 I

INTEL CORP {UP/PRPHLS}

intel.

Segment Registers: Six 16-bit special purpose reg-
isters select, at any given time, the segments of
memory that are immediately addressable for code,
stack, and data.

Flags and Instruction Pointer Registers: The two
32-bit special purpose registers in figure 2.1 record
or control certain aspects of the Intei386 SX Micro-
processor state. The EFLAGS register inciudes
status and control bits that are used to reflect the
outcome of many instructions and modify the se-
mantics of some instructions. The Instruction Point-
er, called EIP, is 32 bits wide. The Instruction Pointer
controls instruction fetching and the processor auto-
matically increments it after executing an instruction.

Control Registers: The four 32-bit control register
are used to control the global nature of the Intel386
SX Microprocessor. The CRO register contains bits
that set the different processor modes (Protected,
Real, Paging and Coprocessor Emulation). CR2 and
CRa3 registers are used in the paging operation.

LYE D

Intel386™ SX MICROPROCESSOR

System Address Registers: These four special
registers reference the tables or segments support-
ed by the 80286/Intel386 SX/Intel386 DX CPU's
protection model. These tables or segments are:

GDTR (Global Descriptor Table Register),
IDTR (Interrupt Descriptor Table Register),
LDTR (Local Descriptor Table Register),
TR (Task State Segment Register).

Debug Registers: The six programmer accessible
debug registers provide on-chip support for debug-
ging. The use of the debug registers is described in
Section 2.10 Debugging Support.

Test Registers: Two registers are used to control
the testing of the RAM/CAM (Content Addressable
Memories) in the Translation Lookaside Buffer por-
tion of the Intel386 SX Microprocessor. Their use is
discussed in Testability.

SPECIAL FIELOS:

STATUS FLAGS:

OVERFLOW
SIGN
ZERQ
AUX CARRY

1/Q PRIVILEGE LEVEL

NESTED TASK

17 16 1S l‘t!! 12

PARITY
CARRY

1110 9 8 7 21 o

V %vulnrlolurl 0P Iorlorlsr TTISFIZFI(,'“IO[”[' lc‘IEFLAGS

CONTROL FLAGS

TRAP
e . INTERRUPT

DIRECTION

RESUME

VIRTUAL 8086 MODE

PROTECTION ENABLE

PAGING ENABLE MONITOR COPROCESSOR
EMULATE COPROCESSOR
TASK SWITCHED ——l
[PGV At[rslzulwlﬁ: CRO
3 16118)
MSW
240187-3
Figure 2.2. Status and Control Register Bit Functions
1-321

M 4426175 0126418 053 WA ITLL

INTEL CORP {UP/PRPHLS} L?PE D HN 4482L175 0126429 THT EE ITLL

intel386™™ SX MICROPROCESSOR

EFLAGS REGISTER

The flag register is a 32-bit register named EFLAGS.
The defined bits and bit fields within EFLAGS,
shown in Figure 2.2, control certain operations and
indicate the status of the Intel386 SX Microproces-
sor. The lower 16 bits (bits 0-15) of EFLAGS con-

CONTROL REGISTERS

The Intel386 SX Microprocessor has three control
registers of 32 bits, CRO, CR2 and CR3, to hold the
machine state of a global nature. These registers
are shown in Figures 2.1 and 2.2. The defined CRO
bits are described in Table 2.2,

tain the 16-bit flag register named FLAGS. This is
the default flag register used when executing 8086,
80286, or real mode code. The functions of the flag
bits are given in Table 2.1.

Table 2.1. Flag Definitions
Function

Bit Position Name
0 CF

Carry Flag—Set on high-order bit carry or borrow; cleared
otherwise.

2 PF Parity Flag—Set if low-order 8 bits of result contain an even

number of 1-bits; cleared otherwise.

4 AF Auxiliary Carry Flag—Set on carry from or borrow to the low

order four bits of AL; cleared otherwise.

ZF Zero Flag—Set if result is zero; cleared otherwise.

SF Sign Flag—Set equal to high-order bit of result (0 if positive, 1 if
negative).

Single Step Flag—Once set, a single step interrupt occurs after
the next instruction executes. TF is cleared by the single step
interrupt.

Interrupt-Enable Flag—When set, maskable interrupts will cause
the CPU to transfer control to an interrupt vector specified
location.

10 DF Direction Flag—Causes string instructions to auto-increment
(default) the appropriate index registers when cleared. Setting

DF causes auto-decremaent.

11 OF Overflow Flag—Set it the operation resulted in a carry/borrow
into the sign bit (high-order bit) of the result but did not resultin a

carry/borrow out of the high-order bit or vice-versa.

12,13 IOPL 1/0 Privilege Level—Indicates the maximum Current Privilege
Level (CPL) permitted to execute 1/0 instructions without
generating an exception 13 fault or consulting the 1/0 permission
bit map while executing in protected mode. For virtual 86 mode it
indicates the maximum CPL allowing alteration of the IF bit. See
Section 4.2 for a further discussion and definitions on various
privilege levels.

14 NT Nested Task—Set if the execution of the current task is nested

within another task. Cleared otherwise.

16 RF Resuma Flag—Used in conjunction with debug register
breakpoints. It is checked at instruction boundaries before
breakpoint processing. If set, any debug fault is ignored on the

next instruction.

17 VM Virtual 8086 Mode—if set while in protected mode, the Intel386
SX Microprocessor will switch to virtual 8086 operation, handling
segment loads as the 8086 doss, but generating exception 13

faults on privileged opcodes.

1-322 I

LYE D W@ 482L175 012L420 701 M ITLL

INTEL CORP {UP/PRPHLS?

intgl.

Bit Position Name
0 PE

Intel386™ SX MICROPROCESSOR

Table 2.2. CRO Definitlons
Function

Protection mode enable—places the Intel386 SX Microprocessor
into protected mode. if PE is reset, the processor operates again
in Real Mode. PE may be set by loading MSW or CRO. PE can be

instruction.

reset only by loading CRO, it cannot be reset by the LMSW

Monitor coprocessor extension—allows WAIT instructions to
cause a processor extension not present exception (number 7).

Emulate processor extension—causes a processor extension
not present exception {(number 7) on ESC instructions to allow
emulating a processor extension.

current task.

Task switched—indicates the next instruction using a processor
extension will cause exception 7, allowing software to test
whether the current processor extension context belongs to the

31 PG

Paging enable bit—is set to enable the on-chip paging unit. ltis
reset to disable the on-chip paging unit.

2.2 Instruction Set

The instruction set is divided into nine categories of
operations:

Data Transfer

Arithmetic

Shift/Rotate

String Manipulation

Bit Manipulation

Control Transfer

High Level Language Support
Operating System Support
Processor Controf

These instructions are listed in Table 9.1 Instruc-
tion Set Clock Count Summary.

All Intel386 SX Microprocessor instructions operate
on either 0, 1, 2 or 3 operands; an operand resides
in a register, in the instruction itself, or in memory.
Most zero operand instructions (e.g CLi, STI) take
only one byte. One operand instructions generally

are two bytes long. The average instruction is 3.2
bytes long. Since the Intel386 SX Microprocessor
has a 16 byte prefetch instruction queue, an average
of 5 instructions will be prefetched. The use of two
operands permits the following types of common in-
structions:

Register to Register
Memory to Register
Immediate to Register
Memory to Memory
Register to Memory
Immediate to Memory.

The operands can be either 8, 16, or 32 bits long. As
a general rule, when executing code written for the
Intel386 SX Microprocessor (32-bit code), operands
are 8 or 32 bits; when exscuting existing 8086 or
80286 code (16-bit code), operands are 8 or 16 bits.
Prefixes can be added to all instructions which over-
ride the default length of the operands (i.e. use
32-bit operands for 16-bit code, or 16-bit operands
for 32-bit code).

1-323

INTEL CORP {UP/PRPHLS}

Intel386™ SX MICROPROCESSOR

2.3 Memory Organization

Memory on the Intel386 SX Microprocessor is divid-
ed into 8-bit quantities (bytes), 16-bit quantities
(words), and 32-bit quantities (dwords). Words are
stored in two consecutive bytes in memory with the
low-order byte at the lowest address. Dwords are
stored in four consecutive bytes in memory with the
low-order byte at the lowest address. The address of
a word or dword is the byte address of the low-order
byte.

In addition to these basic data types, the Intei386 SX
Microprocessor supports two larger units of memory:
pages and segments. Memory can be divided up
into one or more variable length segments, which
can be swapped to disk or shared between pro-
grams. Memory can also be organized into one or
more 4K byte pages. Finally, both segmentation and
paging can be combined, gaining the advantages of

both systems. The Intel386 SX Microprocessor sup- .

ports both pages and segmentation in order to pro-
vide maximum flexibility to the system designer.
Segmentation and paging are complementary. Seg-
mentation is useful for organizing memory in logical
modules, and as such is a tool for the application
programmer, while pages are useful to the system
programmer for managing the physical memory of a
system.

ADDRESS SPACES

The Intel386 SX Microprocessor has three types of
address spaces: logical, linear, and physical. A
logical address (also known as a virtual address)
consists of a selector and an offset. A selector is the
contents of a segment register. An offset is formed
by summing all of the addressing components
(BASE, INDEX, DISPLACEMENT), discussed in sec-
tion 2.4 Addressing Modes, into an effective ad-
dress. This effective address along with the selector
is known as the logical address. Since each task on
the Intel386 SX Microprocessor has a maximum of

1-324

L7E D

-

intel.
16K (214 —1) selectors, and offsets can be 4 giga-
bytes (with paging enabled) this gives a total of 248
bits, or 64 terabytes, of logical address space per

task. The programmer sees the logical address
space.

The segmentation unit translates the logical ad-
dress space into a 32-bit linear address space. If the
paging unit is not enabled then the 32-bit linear ad-
dress is truncated into a 24-bit physical address.
The physical address is what appears on the ad-
dress pins.

The primary differences between Real Mode and
Protected Mode are how the segmentation unit per-
forms the translation of the logical address into the
linear address, size of the address space, and pag-
ing capability. In Real Mode, the segmentation unit
shifts the selector left four bits and adds the resuit to
the effective address to form the linear address.
This finear address is limited to 1 megabyte. In addi-
tion, real mode has no paging capability.

Protected Mode will see one of two different ad-
dress spaces, depending on whether or not paging
is enabled. Every selector has a logical base ad-
dress associated with it that can be up to 32 bits in
length. This 32-bit logical base address is added to
the effective address to form a final 32-bit linear
address. If paging is disabled this final linear ad-
dress reflects physical memory and is truncated so
that only the lower 24 bits of this address are used
to address the 16 megabyte memory address space.
It paging is enabled this final linear address reflects
a 32-bit address that is translated through the pag-
ing unit to form a 16-megabyte physical address.
The logical base address is stored in one of two
operating system tables (i.e. the Local Descriptor
Table or Global Descriptor Table).

Figure 2.3 shows the relationship between the vari-
ous address spaces.

W 4326175 012L42) Lud ERITLL

INTEL CORP {UP/PRPHLS?}

intgl.

LYPE D

Intel386™ SX MICROPROCESSOR

EFFECTIVE ADDRESS CALCULATION

INDEX
BASE DISPLACEMENT
15 0
SCALE
1,2,4,8
PHYSICAL
MEMORY
— BHE#.BLE#
Al =A23
32, EFFECTIVE
’” ADDRESS
15 2 0 LOGICAL OR SEGMENTATION 52, ,] PAGING UNIT .24 .
R] 1.4 VIRTUAL ADDRESS UNIT UINEAR * | (OPTIONAL USE) §/ prysicaL
SELECTOR | P okt o ADDRESS ADDRESS
DESCRIPTOR
INDEX
SEGMENT
REGISTER
240187-4

Figure 2.3. Address Translation

SEGMENT REGISTER USAGE

The main data structure used to organize memory is
the segment. On the Intei386 SX Microprocessor,
segments are variable sized blocks of linear ad-
dresses which have certain attributes associated
with them. There are two main types of segments,
code and data: The segments are of variable size
and can be as small as 1 byte or as large as 4 giga-
bytes (232 bits).

In order to provide compact instruction encoding
and increase processar performance, instructions
do not need to explicitly specify which segment reg-
ister is used. The segment register is automatically
chosen according to the rules of Table 2.3 (Segment
Register Selection Rules). In general, data refer-
ences use the selector contained in the DS register,
stack references use the SS register and instruction
fetches use the CS register. The contents of the In-
struction Pointer provide the offset. Special segment
override prefixes allow the explicit use of a given
segment register, and override the implicit rules list-
ed in Table 2.3. The override prefixes also allow the
use of the ES, FS and GS segment registers.

There are no restrictions regarding the overlapping
of the base addresses of any segments. Thus, all 6
segments could have the base address set to zero
and create a system with a four gigabyte linear ad-

dress space. This creates a system where the virtual
address space is the same as the linear address
space. Further details of segmentation are dis-
cussed in chapter 4 PROTECTED MODE ARCHI-
TECTURE.

2.4 Addressing Modes

The Intel386 SX Microprocessor provides a total of 8
addressing modes for instructions to specify oper-
ands. The addressing modes are optimized to allow
the efficient execution of high level languages such
as C and FORTRAN, and they cover the vast majori-
ty of data references needed by high-level lan-
guages.

REGISTER AND IMMEDIATE MODES
Two of the addressing modes provide for instruc-
tions that operate on register or immediate oper-

ands:

Register Operand Mode: The operand is located in
one of the 8, 16 or 32-bit general registers.

Immediate Operand Mode: The operand is includ-
ed in the instruction as part of the opcode.

1-325

M 432L17?5 0l2Lbu22 S84 EEITLL

INTEI:VCORP {UP/PRPHLS} &L7E D EB 482LL7?5 0l2L423 410 WA ITLL

Intel386™ SX MICROPROCESSOR

intel.

Table 2.3. Segment Register Selection Rules

Type of implied (Defauit) Segment Override
Memory Reference Segment Use Prefixes Possible
Code Fetch CS None
Destination of PUSH, PUSHF, INT, ‘
CALL, PUSHA Instructons SS None
Source of POP, POPA, POPF, IRET, .
RET Instructions SS None
Destination of STOS, MOVE, REP STOS,
and REP MOVS instructions ES None
Other data references, with effective
address using base register of:
[EAX] DS CS,SS,ES,FS,GS
[eBX] Ds CS,SS,ES,FS,GS
[ECX] DS CS,SS,ES,FS,GS
[EDX] Ds CS,SS,ESFS,GS
[ES) DS CS,SS,ES,FS,GS
[EDH] DS CS,SS,ESFS,GS
[EBP] SS CS,DS,ES,FS,GS
[ESP] SS CS,DS,ES,FS,GS

32-BIT MEMORY ADDRESSING MODES

The remaining 6 modes provide a mechanism for
specifying the effective address of an operand. The
linear address consists of two components: the seg-
ment base address and an effective address. The
effective address is calculated by summing any
combination of the following three address elements
(see Figure 2.3):

DISPLACEMENT: an 8, 16 or 32-bit immediate val-
ue, following the instruction.

BASE: The contents of any general purpose regis-
ter. The base registers are generally used by compii-
ers to point to the start of the local variable area.

INDEX: The contents of any general purpose regis-
ter except for ESP. The index registers are used to
access the elements of an array, or a string of char-
acters. The index register's value can be multiplied
by a scale factor, sither 1, 2, 4 or 8. The scaled index
is especially useful for accessing arrays or struc-
tures.

Combinations of these 3 components make up the 6
additional addressing modes. There is no perform-
ance penalty for using any of these addressing com-
binations, since the effective address calculation is
pipelined with the execution of other instructions.
The one exception is the simultaneous use of Base
and Index components which requires one addition-
al ctock.

1-326

As shown in Figure 2.4, the effective address (EA) of
an operand is calculated according to the following
formula:

EA = BaseRegister + (Indexpegister*scaling)
+ Displacement

1. Direct Mode: The operand's offset is contained
as part of the instruction as an 8, 16 or 32-bit
displacement.

2. Register Indirect Mode: A BASE register con-
tains the address of the operand.

3. Based Mode: A BASE register's contents ars
added to a DISPLACEMENT to form the oper-
and's offset.

4. Scaled Index Mode: An INDEX register’s con-
tents are multiplied by a SCALING factor, and the
result is added to a DISPLACEMENT to form the
operand’s offset.

5. Based Scaled Index Mode: The contents of an
INDEX register are multiptied by a SCALING fac-
tor, and the result is added to the contents of a
BASE register to obtain the operand’s offset.

6. Based Scaled Index Mode with Displacement:
The contents of an INDEX register are multiplied
by a SCALING factor, and the result is added to
the contents of a BASE register and a DISPLACE-
MENT to form the operand's offset.

INTEL CORP

{UP/PRPHLS}

LPE D

intel386™ SX MICROPROCESSOR

SEGMENT REGISTER

SS
GS

€S
DS

—= CS

SELECTOR

DESCRIPTOR REGISTERS

ACCESS RIGHTS €S
LIMIT
H BASE ADDRESS

. DISPLACEMENT
» () ¢ (IN INSTRUCTION)

EFFECTIVE
ADDRESS

LINEAR

ADORESS
(©————| rarcer avoRess

4 BASE REGISTER l
INDEX REGISTER

SCALE
1,2,4,0R8
SEGMENT
LIMIY
SELECTED
SEGMENT
SEGMENT BASE ADDRESS
240187-5

Figure 2.4. Addressing Mode Calculations

DIFFERENCES BETWEEN 16 AND 32 BIT
ADDRESSES

In order to provide software compatibility with the
8086 and the 80286, the Intel386 SX Microproces-
sor can executa 16-bit instructions in Real and Pro-
tected Modes. The processor determines the size of
the instructions it is executing by examining the D bit
in a Segment Descriptor. If the D bit is O then all
operand lengths and effective addresses are as-
sumed to be 16 bits long. If the D bit is 1 then the
default length for operands and addresses is 32 bits.
In Real Mode the default size for operands and ad-
dresses is 16 bits.

Regardless of the default precision of the operands
or addresses, the Intel388 SX Microprocessor is
able to execute either 16 or 32-bit instructions. This
is specified through the use of override prefixes.
Two prefixes, the Operand Length Prefix and the
Address Length Prefix, override the vaiue of the D

bit on an individual instruction basis. These prefixes
are automaticaily added by assemblers.

The Operand Length and Address Length Prefixes
can be applied separately or in combination to any
instruction. The Address Length Prefix does not al-
low addresses over 84K bytes to be accessed in
Real Mode. A memory address which exceeds
OFFFFH will result in a General Protection Fault. An
Address Length Prefix only allows the use of the ad-
ditional Intel386 SX Microprocessor addressing

modes.

When executing 32-bit code, the Intel386 SX Micro-
processor uses either 8 or 32-hit displacements, and
any register can be used as base or index registers.
When executing 16-bit cods, the displacements are
either 8 or 16-bits, and the base and index register
conform to the 80286 model. Table 2.4 illustrates
the differences.

1-327

M 432L175 0l2ku42y 357 W ITLL

INTEL CORP {UP/PRPHLS} &L?7E D BB u4&2L1l?5 0l2kbu425 293 M ITLL

Intei386™ SX MICROPROCESSOR

intgl.

Table 2.4. BASE and INDEX Registers for 16- and 32-Bit Addresses

16-Bit Addressing

32-Bit Addressing

BASE REGISTER BX,BP
INDEX REGISTER SLDI
SCALE FACTOR None
DISPLACEMENT 0, 8, 16-bits

Any 32-bit GP Register
Any 32-bit GP Ragister
Except ESP

1,2,4,8

0, 8, 32-bits

2.5 Data Types

The Intel386 SX Microprocessor supports all of the
data types commonly used in high level languages:

Bit: A single bit quantity.

Bit Field: A group of up to 32 contiguous bits, which
spans a maximum of four bytes.

Bit String: A set of contiguous bits; on the intel386
SX Microprocessor, bit strings can be up to 4 giga-
bits long.

Byte: A signed 8-bit quantity.

Unsigned Byte: An unsigned 8-bit quantity.
Integer (Word): A signed 16-bit quantity.

Long Integer (Double Word): A signed 32-bit quan-
tity. All operations assume a 2's complement repre-
sentation.

Unsigned Integer (Word): An unsigned 16-bit
quantity.

Unsigned Long Integer (Double Word): An un-
signed 32-bit quantity.

Signed Quad Word: A signed 64-bit quantity.
Unsigned Quad Word: An unsigned 64-bit quantity.

Pointer: A 16 or 32-bit offset-only quantity which in-
directly references another memory location.

Long Pointer: A full pointer which consists of a 16-
bit segment selector and either a 16 or 32-bit offset.

Char: A byte representation of an ASCHl Alphanu-
meric or control character.

String: A contiguous sequence of bytes, words or

dwords. A string may contain between 1 byte and 4
gigabytes.

1-328

BCD: A byte (unpacked) representation of decimal
digits 0-9.

Packed BCD: A byts (packed) representation of two
decimal digits 0—9 storing one digit in each nibble.

When the Intel386 SX Microprocessor is coupled
with its numerics copracessor, the Intel387 SX, then
the following common floating point types are sup-
ported:

Floating Point: A signed 32, 64, or 80-bit real num-
ber representation. Floating point numbers are sup-
ported by the Intel387 SX numerics coprocessor.

Figure 2.5 illustrates the data types supported by the
Intel386 SX Microprocessor and the Intel387 SX.

2.6 1/0 Space

The Intel386 SX Microprocessor has two distinct
physical address spaces: physical memory and 1/0.
Generally, peripherals are placed in I/0 space al-
though the Intel386 SX Microprocessor also sup-
ports memory-mapped peripherals. The 170 space
consists of 64K bytes which can be divided into 64K
8-bit ports or 32K 16-bit ports, or any combination of
ports which add up to no more than 64K bytes. The
64K 1/0 address space refers to physical addresses
rather than linear addresses since 1/0Q instructions
do not go through the segmentation or paging hard-
ware. The M/IO# pin acts as an additional address
ling, thus allowing the system designer to easily de-
termine which address space the processor is ac-
cessing.

The I/0 ports are accessed by the IN and OUT in-
structions, with the port address supplied as an im-
mediate 8-bit constant in the instruction or in the DX
register. All 8-bit and 16-bit port addresses are zero
extended on the upper address lines. The /0 in-
structions cause the M/I0# pin to be driven LOW.
1/0 port addresses 00F8H through 0OFFH are re-
served for use by Intel. .

INTEL CORP {UP/PRPHLS} G&L?E D R ui26L?5 0l2db4cb 12T MR ITLL
a
|n o Intel386T™ SX MICROPROCESSOR
7 0
SIGNED BINARY [ﬂTm'l m"“m
BYTE CODED
SIGN BIT "I i DECIMAL
(eco)
MAGNITUDE mcur N mcn 1 mcn 0
+N +1 4]
7 0 7 0 7 07 (]
UNSIGNED [TTTTTTT AsCll El'lTl'l'l'I [""lTl'l'l'l'l'l'lTl'lTl
BYTE (YX] |
ASCH ASCIl ASCH
MAGNITUDE CHARACTERy, CHARACTER, CHARACTER,
+1 0 +N +1 0
1514 87 0 7 0 7 07 (]
SIGNED PACKED | TIT[TITITITITIT
e L oo [T] eee [
usa | L} L |
SIGN BT MOST LEAST
MAGNITUDE SIGNIFICANT DIGIT SIGNIFICANT DIGIT
+1 [} +N +1 o
15 0 7/15 0 7/15 07/15 @
UNSIGNED BYTE
vow [1] stowe L1 e [T]
.]
MAGNITUDE
+3 +2 + 0 -2 GIGABITS
31 1815 +2 GIGABITS 210

SIGNED DOUBLE
WORD

MR ARSI | st LL11{

I %% 1)

SIGN BIT Sit-use

] BITO
MAGNITUDE
+3 +*2 +1 [} +3 +2 +t 0
31 0 sHorT 3 0
UNSIGNED DOUBLE
WORD 32-BIT
POINTER
|] [-]
MAGNITUDE OFFSET
4-7 46 +5 +5 +3 42 «+i o +5 +4 +3 +2 +1 0
4847 3231 1615 47 0
SIGNED QUAD LONG
WORD 48-BIT
POINTER
SIGN BIT <[MsB L 1 |
MAGNITUDE ~ SELECTOR OFFSET
+9 +8 47 +6 +S +4 +3 +2 +t 0
0
“°""”°ﬂ[| I HERREE
POINT®
SIGN BIT i
EXPONENT MAGNITUDE
*SUPPORTED BY
+5 .4 +3 2 + 0 Intet387™™ sx
sz_a,meTrrr[rrrpﬂrrrpw‘-rrrrrrTnmq NUMERIC DATA
BIT FIELD COPROCESSOR
I BIT FIELD {
1 T0 32 BITS
240187-6

Figure 2.5. Int

el386™ SX Microprocessor Supported Data Types

1-329

INTEL CORP {UP/PRPHLS?}

Intel386™ SX MICROPROCESSOR

2.7 Interrupts and Exceptions

Interrupts and exceptions alter the normal program
flow in order to handle external events, report errors
or exceptional conditions. The difference between
interrupts and exceptions is that interrupts are used
to handle asynchronous external events while ex-
ceptions handle instruction faults. Although a pro-
gram can generate a software interrupt via an INT N
instruction, the processor treats software interrupts
as exceptions.

Hardware interrupts occur as the result of an exter-
nal event and are classified into two types: maskable
or non-maskable. interrupts are serviced after the
execution of the current instruction. After the inter-
rupt handler is finished servicing the interrupt, exe-
cution proceeds with the instruction immediately
after the interrupted instruction.

L7PE D

2

intal.
Exceptions are classified as faults, traps, or aborts,
depending on the way they are reported and wheth-
er or not restart of the instruction causing the excep-
tion is supported. Faults are exceptions that are de-
tected and serviced before the execution of the
faulting instruction. Traps are exceptions that are
reported immediately after the execution of the in-
struction which caused the problem. Aborts are ex-
ceptions which do not permit the precise location of
the instruction causing the exception to be deter-
mined.

Thus, when an interrupt service routine has been
completed, execution proceeds from the instruction
immediately following the interrupted instruction. On
the other hand, the return address from an excep-
tion fault routine will always point to the instruction
causing the exception and will include any leading
instruction prefixes. Table 2.5 summarizes the possi-
ble interrupts for the Intel386 SX Microprocessor
and shows where the return address points to.

Table 2.5. Interrupt Vector Assignments

Function Interrupt Imt(r::‘:\ﬂ(c:,:uv:: on net:;?nxj?;ess Type
Number Faulting
Exception Instruction

Divide Error 0 DIV, IDIV YES FAULT
Debug Exception 1 any instruction YES TRAP*
NM! Interrupt 2 INT 2 or NMI NO NM|
One Byte Interrupt 3 INT NO TRAP
Interrupt on Overflow 4 INTO NO TRAP
Array Bounds Check 5 BOUND YES FAULT
invalid OP-Code 6 Any illegal instruction YES FAULT“
Device Not Available 7 ESC, WAIT YES FAULT
R ey
Coprocessor Segment Overrun 9 ESC NO ABORT
Invalid TSS 10 JMP, CALL, IRET, INT YES FAULT
Segment Not Present 11 Segment Register Instructions YES FAULT
Stack Fault 12 Stack References YES FAULT
General Protection Fault 13 Any Memory Reterence YES FAULT
Page Fault 14 Any Memory Access or Code Fetch YES FAULT
Coprocessor Error 16 ESC, WAIT YES FAULT
tntel Reserved 17-32
Two Byte Interrupt 33-255 | INTn NO TRAP

*Soms debug exceptions may report both traps on the previous instruction and faults on the next instruction.

1-330

M 4826175 012L427 OLL BN ITLL

INTEL CORP {UP/PRPHLSZ}

intgl.

The Intel386 SX Microprocessor has the ability to
handle up to 256 different interrupts/exceptions. In
order to service the interrupts, a table with up to 256
interrupt vectors must be defined. The interrupt vec-
tors are simply pointers to the appropriate interrupt
service routine. In Real Mode, the vectors are 4-byte
quantities, a Code Segment plus a 16-bit offset; in
Protected Mode, the interrupt vectors are 8 byte
quantities, which are put in an Interrupt Descriptor
Table. Of the 256 possible interrupts, 32 are re-
served for use by Intel and the remaining 224 are
free to be used by the system designer.

INTERRUPT PROCESSING

When an interrupt occurs, the following actions hap-
pen. First, the current program address and Flags
are saved on the stack to allow resumption of the
interrupted program. Next, an 8-bit vector is supplied
to the Intel386 SX Microprocessor which identifies
the appropriate entry in the interrupt table. The table
contains the starting address of the interrupt service
routine. Then, the user supplied interrupt service
routing is executed. Finally, when an IRET instruc-
tion is executed the old processor state is restored
and program execution resumes at the appropriate
instruction.

The 8-bit interrupt vector is supplied to the Intel386
SX Microprocessor in several different ways: excep-
tions supply the interrupt vector internally; software
INT instructions contain or imply the vector; maska-
ble hardware interrupts supply the 8-bit vactor via
the interrupt acknowledge bus sequence. Non-
Maskable hardware interrupts are assigned to inter-
rupt vector 2.

Maskable interrupt

Maskable interrupts are the most common way to
respond to asynchronous external hardware events.
A hardware interrupt occurs when the INTR is pulled
HIGH -and the Interrupt Flag bit (IF) is enabled. The
processor only responds to interrupts between in-
structions (string instructions have an ‘interrupt win-
dow' between memory moves which allows inter-
rupts during long string moves). When an interrupt
occurs the processor reads an 8-bit vector supplied
by the hardware which identifies the source of the
interrupt (one of 224 user defined interrupts).

L?E D

Intel386™ SX MICROPROCESSOR

Interrupts through interrupt gates automatically reset
IF, disabling INTR requests. Interrupts through Trap
Gates leave the state of the IF bit unchanged. Inter-
rupts through a Task Gate change the IF bit accord-
ing to the image of the EFLAGS register in the task’'s

. Task State Segment (TSS). When an IRET instruc-

tion is executed, the original state of the IF bit is
restored.

Non-Maskable Interrupt

Non-maskable interrupts provide a method of servic-
ing very high priority interrupts. When the NM! input |
is pulled HIGH it causes an interrupt with an internal-
ly supplied vector value of 2. Unlike a normal hard-
ware interrupt, no interrupt acknowledgment se-
quence is performed for an NML.

While executing the NM! servicing procedurs, the In-
tel386 SX Microprocessor will not service any further
NMI request or INT requests until an interrupt return
(IRET) instruction is executed or the processor is
reset. If NMI occurs while currently servicing an NMI,
its presence will be saved for servicing after execut-
ing the first IRET instruction. The IF bit is cleared at
the beginning of an NM! interrupt to inhibit further
INTR interrupts.

Software Interrupts

A third type of interrupt/exception for the Intel386
SX Microprocessor is the software interrupt. An INT
n instruction causes the processor to execute the
interrupt service routine pointed to by the nth vector
in the interrupt table.

A special case of the two byte software interrupt INT
n is the one byte INT 3, or breakpoint interrupt. By
inserting this one byte instruction in a program, the
user can set breakpoints in his program as a debug-
ging tool.

A final type of software interrupt is the single step
interrupt. It is discussed in Single Step Trap.

1-331

B 4826175 0l2L428 TTS ER ITLL

INTEL CORP {UP/PRPHLSI}

intel386™ SX MICROPROCESSOR

INTERRUPT AND EXCEPTION PRIORITIES

Interrupts are externally generated events. Maska-
ble Interrupts (on the INTR input) and Non-Maskable
Interrupts (on the NM! input) are recognized at in-
- struction boundaries. When NMI and maskable
INTR are both recognized at the same instruction
boundary, the Intel386 SX Microprocessor invokes
the NMI service routine first. if maskable interrupts
are still enabled after the NMI service routine has
been invoked, then the Intel386 SX Microprocessor
will invoke the appropriate interrupt service routine.

L?E D

n

intgl.
peated as each instruction is executed, and occurs
in parallel with instruction decoding and execution,

INSTRUCTION RESTART

The Intel386 SX Microprocessor fully supports re-
starting all instructions after Faults. If an exception is
detected in the instruction to be executed (exception
categories 4 through 10 in Table 2.6), the Intel386
SX Microprocessor invokes the appropriate excep-
tion service routine. The Intel386 SX Microprocessor
is in a state that permits restart of the instruction, for

B 4626175 012ku429 939 WR ITLL

all cases but those given in Table 2.7. Note that all
such cases will be avoided by a properly designed
operating system.

As the Intel386 SX Microprocessor executes instruc-
tions, it follows a consistent cycle in checking for
exceptions, as shown in Table 2.6. This cycle is re-

Table 2.6. 'Sequence of Exception Checking

Consider the case of the Intel386 SX Microprocessor having just completed an instruction. it then performs
the following checks before reaching the point where the next instruction is completed:

1. Check for Exception 1 Traps from the instruction just completed (singie-step via Trap Flag, or Data
Breakpoints set in the Debug Registers).

2. Check for external NMI and INTR.

3. Check for Exception 1 Faults in the next instruction (lnstructlon Execution Breakpoint sst in the Debug
Registers for the next instruction).

4. Check for Segmentation Faults that prevented fetching the entire next instruction (exceptions 11 or 13).
. Check for Page Faults that prevented fetching the entire next instruction (exception 14).

6. Check for Faults decoding the next instruction (exception 6 if illegal opcode; exception 6 if in Real Mode
or in Virtual 8086 Mode and attempting to execute an instruction for Protected Mode only; or exception
13 if instruction is longer than 15 bytes, or privilege violation in Protected Mode (i.e. not at IOPL or at
CPL=0).

7. If WAIT opcode, check if TS=1 and MP=1 (exception 7 if both are 1).
8. If ESCape opcode for numeric coprocessor, check if EM=1 or TS=1 (exception 7 if either are 1).

8. If WAIT opcode or ESCape opcode for numeric coprocessor, check ERROR # input signal (exception 16
if ERROR # input is asserted).

10. Check in the following order for each memory reference required by the instruction:

a. Check for Segmentation Faults that prevent transferring the entire memory quantity (exceptions 11,
12, 13).

b. Check for Page Faults that prevent transferring the entire memory quantity (exception 14).

[4)]

NOTE:
Segmentation exceptions are generated before paging exceptions.

Table 2.7. Conditions Preventing Instruction Restart

1. An instruction causes a task switch to a task whose Task State Segment is partially ‘not present' (An
entirely ‘not present’ TSS is restartable). Partially present TSS’s can be avoided either by keeping the
TSS'’s of such tasks present in memory, or by aligning TSS segments to reside entirely within a single 4K
page (for TSS segments of 4K bytes or less).

2. A coprocessor operand wraps around the top of a 64K-byte segment or a 4G-byte segment, and spans
three pages, and the page holding the middle portion of the operand is ‘not present'. This condition can
be avoided by starting at a page boundary any segments containing coprocessor operands if the
segments are approximately 64K-200 bytes or larger (i.e. large enough for wraparound of the coproces-
sor operand to possibly occur).

Note that these conditions are avoided by using the operating system designs mentioned in this table.

1-332 I

INTEL CORP {UP/PRPHLS}?

intgl.

L7PE D

Intel386™ SX MICROPROCESSOR

Table 2.8. Register Values after Reset

Flag Word (EFLAGS) uuuuQ002H Note 1
Machine Status Word (CR0) uuuuuu10H
Instruction Pointer (EIP) 0000FFFOH
Code Segment (CS) FOOOH Note 2
Data Segment (DS) 0000H Note 3
Stack Segment (SS) 0000H
Extra Segment (ES) 0000H Note 3
Extra Segment (FS) 0000H
Extra Segment (GS) 0000H
EAX register 0000H Note 4
EDX register component and stepping ID Note 5
All other registers undefined Note 6

NOTES:

1. EFLAG Register. The upper 14 bits of the EFLAGS register are undefined, all defined flag bits are zero.
2. The Code Segment Register (CS) will have its Base Address set to OFFFFO000H and Limit set to OFFFFH.
3. The Data and Extra Segment Registers (DS, ES) wilt have their Base Address set to 000000000H and Limit set to

OFFFFH.

4. If self-test is selected, the EAX register should contain a 0 value. If a value of 0 is not found then the self-test has

detected a flaw in the part.

5. EDX register always holds component and stepping identifier.
6. All undefined bits are Intel Reserved and should not be used.

DOUBLE FAULT

A Double Fault (exception 8) results when the proc-
essor attempts to invoke an exception service rou-
tine for the segment exceptions (10, 11, 12 or 13),
but in the process of doing so detects an exception
other than a Page Fault (exception 14).

One other cause of generating a Double Fault is the
Iintel386 SX Microprocessor detecting any other ex-
ception when it is attempting to invoke the Page
Fault (exception 14) service routine (for example, if a
Page Fault is detected when the Intel386 SX Micro-
processor attempts to invoke the Page Fault service
routine). Of course, in any functional system, not
only in Intel386 SX Microprocessor-based systems,
the entire page fault service routine must remain
'present’ in memory.

2.8 Reset and Initialization

When the processor is initialized or Reset the regis-
ters have the values shown in Table 2.8. The In-
tel386 SX Microprocessor will then start executing
instructions near the top of physical memory, at lo-
cation OFFFFFOH. When the first intersegment
Jump or Call is executed, address lines Azg~Agz will
drop LOW for CS-relative memory cycles, and the
Intel386 SX Microprocessor will only execute in-
structions in the lower one megabyte of physical
memory. This allows the system designer to use a
shadow ROM at the top of physical memory to ini-
tialize the system and take care of Resets.

RESET forces the Intel386 SX Microprocessor to
terminate all execution and local bus activity. No in-
struction execution or bus activity will occur as long
as Reset is active. Between 350 and 450 CLK2 peri-
ods after Reset becomes inactive, the Intel386 SX
Microprocessor will start executing instructions at
the top of physical memory.

2.9 Testability

The Intel386 SX Microprocessor, like the Intel386
Microprocessor, offers testability features which in-
clude a self-test and direct access to the page trans-
lation cache.

SELF-TEST

The Intei386 SX Microprocessor has the capability
to perform a self-test. The self-test checks the func-
tion of all of the Control ROM and most of the non-
random logic of the part. Approximately one-half of
the Intel386 SX Microprocessor can be tested during
self-test.

Self-Test is initiated on the Intel386 SX Microproces-
sor when the RESET pin transitions from HIGH to
LOW, and the BUSY# pin is LOW. The self-test
takes about 220 clocks, or approximately 33 millisec-
onds with a 16 MHz Intel386 SX CPU. At the com-
pletion of self-test the processor performs reset and
begins normal operation. The part has successfully
passed seli-test if the contents of the EAX are zero.
if the results of the EAX are not zero then the self-
test has detected a flaw in the part.

1-333

B 4426175 0126430 L50 ERM ITLL

INTEL CORP {UP/PRPHLS?

Intei386™ SX MICROPROCESSOR

TLB TESTING

The Intel386 SX Microprocessor also provides a
mechanism for testing the Translation Lookaside
Buffer (TLB) if desired. This particular mechanism
may not be continued in the same way in future
processors.

There are two TLB testing operations: 1) writing en-
tries into the TLB, and, 2) performing TLB lookups.
Two Test Registers, shown in Figure 2.6, are provid-
ed for the purpose of testing. TR6 is the “test com-
mand register”, and TR7 is the “test data register".
For a more detailed explanation of testing the TLB,
see the Intel386™ SX Microprocessor Program-
mer’s Reference Manual.

2.10 Debugging Support

The Intel386 SX Microprocessor provides several
features which simplify the debugging process. The
three categories of on-chip debugging aids are:

1. The code execution breakpoint opcode (OCCH).

2. The single-step capability provided by the TF bit
in the flag register.

3. The code and data breakpoint capability provided
by the Debug Registers DR0O-3, DR6, and DR7.
BREAKPOINT INSTRUCTION

A single-byte software interrupt (Int 3) breakpoint in-
struction is available for use by software debuggers.

E7E D

. .

intgl.
The breakpoint opcode is 0CCh, and generates an
exception 3 trap when executed.

SINGLE-STEP TRAP

If the single-step flag (TF, bit 8) in the EFLAG regis-
ter is found to be set at the end of an instruction, a
single-step exception occurs. The single-step ex-
ception is auto vectored to exception number 1.

DEBUG REGISTERS

The Debug Registers are an advanced debugging
feature of the Intel386 SX Microprocessor. They al-
low data access breakpoints as well as code execu-
tion breakpoints. Since the breakpoints are indicated
by on-chip registers, an instruction execution break-
point can be placed in ROM code or in code shared
by several tasks, neither of which can be supported
by the INT 3 breakpoint opcode.

The Intel386 SX Microprocessor contains six Debug
Registers, consisting of four breakpoint address reg-
isters and two breakpoint control registers. Initially
after reset, breakpoints are in the disabled state;
therefors, no breakpoints will occur unless the de-
bug registers are programmed. Breakpoints set up in
the Debug Registers are auto-vectored to exception
1. Figure 2.7 shows the breakpoint status and con-
trol registers.

COMMAND

WRITABLE

USER

OIRTY
VALID

TEST
CONTROL

4

A
N
LINEAR ADORESS v |) [wl u Iu;[w Iw;;V % <{TRB6
31 1211 10 9 8 7 6 5 o
TEST
STATUS
1
L PHYSICAL ADDRESS V pLl rep W TR7
'l
31 12 « 3 2
~ INTEL RESERYED DO NOT USE
240187-7

Figure 2.6. Test Registers

1-334

M 44626175 012E43Y 597 ER ITLY

INTEL CORP {UP/PRPHLS}

L7PE D

Intel386™ SX MICROPROCESSOR

BREAKPOINT O OEBUG FAULT/TRAP

BREAKPOINT 1 DEBUG FAULT/TRAP

BREAKPOINT 2 DEBUG FAULT/TRAP

BREAKPOINT 3 DEBUG FAULT/TRAP

REGISTER ACCESS FAULT
SINGLE~STEP DEBUG TRAP
TASK SWITCH DEBUG TRAP

4

DEBUG
STATUS
REGISTER

i

70007

Gi: GLOBAL BREAKPOINT ENABLE |]

15 14 13

Aas[szIaZIE;IDRS
3 2 1 0

LOCAL EXACT BREAKPOINT MATCH

Liz LOCAL BREAKPOINT ENABLE I |

GLOBAL EXACT BREAKPOINT MATCH
GLOBAL DEBUG REGISTER ACCESS DETECT

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 18

BREAKPOINT

T T T T T
I LEN3 I Rw3 [LENZ I Rw2 l LEN 1
i 1 L 4 I

L

[[l =077

A SER ' l
GEILElGSILSlGZ]LZIG!ILIIGOILDlDR7
9 8 7 6 5 4 3 2 1 0

{" LENI: BREAKPOINT LENGTH

= INTEL RESERVED DO NOT USE

{, RWi: MEMORY ACCESS QUALIFIER |

240187-8

Figure 2.7. Debug Registers

3.0 REAL MODE ARCHITECTURE

When the processor is reset or powerad up it is ini-
tialized in Real Mode. Real Mode has the same base
architecture as the 8086, but allows access to the
32-bit register set of the Intel386 SX Microproces-
sor. The addressing mechanism, memory size, and
interrupt handling are all identical to the Real Mode
on the 80286.

The default operand size in Real Mode is 16 bits, as
in the 8086. In order to use the 32-bit registers and
addressing modes, override prefixes must be used.
In addition, the segment size on the Intel386 SX Mi-
croprocessor in Real Mode is 64K bytes so 32-bit
addresses must have a value less then 0000FFFFH.
The primary purpose of Real Mode is to set up the
processor for Protected Mode operation.

3.1 Memory Addressing

In Real Mode the linear addresses are the same as
physical addresses {paging is not allowed). Physical
addresses are formed in Real Mode by adding the
contents of the appropriate segment register which
is shifted left by four bits to an effective address.
This addition results in a 20-bit physical address or a
1 megabyte address space. Since segment registers
are shifted left by 4 bits, Real Mode segments al-
ways start on 16-byte boundaries.

All segments in Real Mode are exactly 64K bytes
long, and may be read, written, or executed. The
Intel386 SX Microprocessor will generate an excep-
tion 13 if a data operand or instruction fetch occurs
past the end of a segment.

1-335

M 4476175 0l2Lu32 423 MM ITL)

INTEL CORP {UP/PRPHLS} &LYE D ®R u482L175 01.2L4Y33 3LT M ITLL

]
Intel386™ SX MICROPROCESSOR |nte| .

Table 3.1. Exceptions in Real Mode

Interrupt Related Return
Function Number Instructions Address Location

Interrupt table limit 8 INT vector is not Before
too small within table limit Instruction
CS, DS, ES, FS, GS 13 Word memory reference Before
Segment overrun exception with offset = OFFFFH. Instruction

an attempt to execute

past the end of CS segment.
S8 Segment overrun 12 Stack Reference Before
exception beyond offset = OFFFFH Instruction

3.2 Reserved Locations

There are two fixed areas in memory which are re-
served in Real address mode: the system initializa-
tion area and the interrupt table area. Locations
00000H through 003FFH are reserved for interrupt
vectors. Each one of the 256 possible interrupts has
a 4-byte jump vector reserved for it. Locations
OFFFFFGQH through OFFFFFFH are reserved for sys-
tem initialization.

3.3 Interrupts

Many of the exceptions discussed in section 2.7 are
not applicable to Real Mode operation; in particular,
exceptions 10, 11 and 14 do not occur in Real
Mode. Other exceptions have slightly different
meanings in Real Mode; Table 3.1 identifies these
exceptions.

3.4 Shutdown and Hait

The HLT instruction stops program execution and
prevents the processor from using the local bus until
restarted. Either NMI, FLT#, INTR with interrupts
enabled (IF = 1), or RESET will force the Intel386 SX
Microprocessor out of halt. If interrupted, the saved
CS:IP will point to the next instruction after the HLT.

Shutdown will occur when a severe error is detected
that prevents further processing. In Real Mode,
shutdown can occur under two conditions:

1. An interrupt or an exception occurs (Exceptions 8
or 13) and the interrupt vector is larger than the
Interrupt Descriptor Table.

2. A CALL, INT or PUSH instruction attempts to

wrap around the stack segment when SP is not
even.

An NMI input can bring the processor out of shut-

down if the Interrupt Descriptor Table limit is large
enough to contain the NMI interrupt vector (at least

1-336

000FH) and the stack has enough room to contain
the vector and flag information (i.e. SP is greater that
0005H). Otherwise, shutdown can only be exited by
a processor reset.

3.5 LOCK Operation

The LOCK prefix on the Intel386 SX Microprocessor,
even in Real Mode, is more restrictive than on the
80286. This is due to the addition of paging on the
Intel386 SX Microprocessor in Protected Mode and
Virtual 8086 Mode. The LOCK prefix is not support-
ed during repeat string instructions.

The only instruction forms where the LOCK prefix is
legal on the intel386 SX Microprocessor are shown
in Table 3.2.

Table 3.2. Legatl Instructions for the LOCK Prefix

Operands
Opcode (Dest, Source)

BIT Test and

SET/RESET Mem, Rag/Immediate

/COMPLEMENT
XCHG Reg, Mem
XCHG Mem, Reg
ADD, OR, ADC, SB8,

AND, SUB, XOR Mem, Reg/Immediate
NOT, NEG, INC, DEC Mem

An exception 6 will be generated if a LOCK prefix is
placed before any instruction form or opcode not
listed above. The LOCK prefix allows indivisible
read/modify/write operations on memory operands
using the instructions above.

The LOCK prefix is not IOPL-sensitive on the
Intel386 SX Microprocessor. The LOCK prefix can
be used at any privilege level, but only on the in-
struction forms listed in Table 3.2.

INTEL CORP

intal.
4.0 PROTECTED MODE
ARCHITECTURE

The complete capabilities of the Intel386 SX Micro-
processor are unlocked when the processor oper-
ates in Protected Virtual Address Mode (Protected
Mode). Protected Mode vastly increases the linear
address space to four gigabytes (232 bytes) and al-
lows the running of virtual memory programs of al-
most unlimited size (64 terabytes (246 bytes)). In ad-
dition, Protected Mode allows the Intel386 SX Micro-
processor to run all of the existing Inte!386 DX CPU
(using only 16 megabytes of physical memory),
80286 and 8086 CPU’s softwars, while providing a
sophisticated memory management and a hard-
ware-assisted protection mechanism. Protected
Mode allows the use of additional instructions spe-
cially optimized for supporting multitasking operating
systems. The base architecture of the Intel386 SX
Microprocessor remains the same; the registers, in-
structions, and addressing modes described in the
previous sections are retained. The main differsnce
between Protected Mode and Real Mode from a
programmer’s viewpoint is the increased address
space and a different addressing mechanism.

4.1 Addressing Mechanism

Like Real Mode, Protected Mode uses two compo-
nents to form the logical address; a 16-bit selector is
used to determine the linear base address of a seg-
ment, the base address is added to a 32-bit effective
address to form a 32-bit linear address. The linear
address is then either used as a 24-bit physical ad-
dress, or if paging is enabled the paging mechanism
maps the 32-bit linear address into a 24-bit physical
address.

The difference between the two modes lies in calcu-
lating the base address. In Protected Mode, the se-
lector is used to specify an index into an operating
system defined table (see Figure 4.1). The table
contains the 32-bit base address of a given seg-
ment. The physical address is formed by adding the
base address obtained from the table to the offset.

Paging provides an additional memory management
machanism which operates only in Protected Mode.
Paging provides a means of managing the very large
segments of the Intel386 SX Microprocessor, as
paging operates beneath segmentation. The page
mechanism translates the protected linear address
which comes from the segmentation unit into a
physical address. Figure 4.2 shows the complete In-
tel386 SX Microprocessor addressing mechanism
with paging enabled.

{UP/PRPHLS}

L7PE D

Intei386™ SX MICROPROCESSOR

4.2 Segmentation

Segmentation is one method of memory manage-
ment. Segmentation provides the basis for protsc-
tion. Segments are used to encapsulate regions of
memory which have common attributes. For exam-
ple, all of the code of a given program could be con-
tained in a segment, or an operating system table
may reside in a segment. All information about each
segment is stored in an 8 byte data structure called
a descriptor. All of the descriptors in a system are
contained in descriptor tables which are recognized
by hardware.

TERMINOLOGY

The following terms are used throughout the discus-
sion of descriptors, privilege levels and protection:

PL: Privilege Level—One of the four hierarchical
privilege levels. Level 0 is the most privileged
level and level 3 is the least privileged.

RPL: Requestor Privilege Level—The privilege level
of the original supplier of the selector, RPL is
determined by the least two significant bits of
a selector.

DPL: Descriptor Privilege Level—This is the least
privileged level at which a task may access
that descriptor (and the segment associated
with that descriptor). Descriptor Privilege Lev-
el is determined by bits 6:5 in the Access
Right Byte of a descriptor.

CPL: Current Privilege Level—The privilege level at
which a task is currently executing, which
equals the privilege level of the code segment
being executed. CPL can also be determined
by examining the lowest 2 bits of the CS regis-
ter, except for conforming code segments.

EPL: Effective Privilege Level—The effective privi-
lege level is the least privileged of the RPL
and the DPL. EPL is the numerical maximum
of RPL and DPL.

Task: One instance of the execution of a program.
Tasks are also referred to as processes.

DESCRIPTOR TABLES

The descriptor tables define all of the segments
which are used in a Intel386 SX Microprocessor sys-
tem. There are three types of tables which hold de-
scriptors: the Global Descriptor Table, Local De-
scriptor Table, and the Interrupt Descriptor Table. All
of the tables are variable length memory arrays and
can vary in size from 8 bytes to 64K bytes. Each
table can hold up to 8192 8-byts descriptors. The
upper 13 bits of a selector are used as an index into
the descriptor table. The tables have registers asso-
ciated with them which hold the 32-bit linear base
address and the 16-bit limit of each table.

1-337

MW 4426175 0126434 2THL WM ITLL

INTEL CORP {UP/PRPHLS} L?E D W 482L175 012LuY35 132 WW ITL]

Intei386™ SX MICROPROCESSOR

48/32 BIT POINTER

SEGMENT LIMIT
SELECTOR | OFFSET
47/31 31/15 0
- (*)——>{ WEMORY OPERAND] 16 MBYTES
W/0 PAGING
oR
ACCESS RIGHTS 4 GBYTES
WITH PAGING

LIMIT
BASE ADDRESS

SEGMENT BASE

SELECTED
SEGMENT

ACCESS RIGHTS
LiMIT

MICROPROCESSOR
PAGING
MECHANISM

PHYSICAL

ADORESS

A 4

MEMORY OPERAND

SEGMENT ADDRESS
R
DESCRIPTO 240187 -9
Figure 4.1. Protected Mode Addressing
48 BIT POINTER
PHYSICAL ADDRESS
SEGMENT I OFFSET 4K BYTES
135 31 Q
4K BYTES
™
intel386'™ SX 4K BYTES

PHYSICAL PAGE:

31

0 24018711

BASE ADORESS PAGE FRAME 4KBYTES
SEGMENT 32 P ADRESS
ADDRESS
DESCRIPTOR 4K BYTES
4KBYTES
4KBYTES
24018710
Figure 4.2. Paging and Segmentation
recenmeanananany
) (]
15 0! 15 o !
LDT DESCR | | H
LOTR SELECTOR | LOT LiMrT .
’ [}
v | LoT BasE ’
1 | unear aooress |
15 0! '
32 H
DT LIMiT) PROGRAM INVISIBLE » '
} AUTOMATICALLY LOADED ' !
10T BASE 3 FROM LDT DESCRIPTOR §
TR | FCEAR aoDRESS | Pommmm e ene
31 0
15 0
GOT LIMIT
GDT BASE
GOTR 1 |INEAR ADDRESS

Figure 4.3. Descriptor Table Registers

1-338

INTEL CORP {UP/PRPHLS} GL7E D

intgl.

Each of the tables has a register associated with it:
GDTR, LDTR, and IDTR; see Figure 2.1. The LGDT,
LLDT, and LIDT instructions load the base and limit
of the Global, Local, and Interrupt Descriptor Tables
into the appropriate register. The SGDT, SLDT, and
SIDT store the base and limit values. These are priv-
ileged instructions.

Global Descriptor Table

The Giobal Descriptor Table (GDT) contains de-
scriptors which are available to all of the tasks in a
system. The GDT can contain any type of segment
descriptor except for interrupt and trap descriptors.
Every Intel386 SX CPU system contains a GDT.

The first slot of the Global Descriptor Table corre-
sponds to the null selector and is not used. The null
selector defines a null pointer value.

Local Descriptor Table

LDTs contain descriptors which are associated with
a given task. Generally, operating systems are de-
signed so that each task has a separate LDT. The
LDT may contain only code, data, stack, task gate,
and call gate descriptors. LDTs provide a mecha-
nism for isolating a given task's code and data seg-
ments from the rest of the operating system, while
the GDT contains descriptors for segments which
are common to all tasks. A segment cannot be ac-
cessed by a task if its segment descriptor does not
exist in either the current LDT or the GDT. This pro-
vides both isolation and protection for a task’s seg-
ments while still allowing global data to be shared
among tasks.

B 4426175 012L43L 079 WW ITLY

Intel386™ SX MICROPROCESSOR

Unlike the 6-byte GDT or IDT registers which contain
a base address and limit, the visible portion of the
LDT register contains only a 18-bit selector. This se-
lector refers to a Local Descriptor Table descriptor in
the GDT (see figure 2.1).

interrupt Descriptor Table

The third table needed for Inte{386 SX Microproces-
sor systems is the Interrupt Descriptor Table. The
IDT contains the descriptors which point to the loca-
tion of the up to 256 interrupt service routines. The
IDT may contain only task gates, interrupt gates, and
trap gates. The IDT should be at least 256 bytes in 3
size in order to hold the descriptors for the 32 Intel
Reserved Interrupts. Every interrupt used by a sys-
tem must have an entry in the IDT. The IDT entries
are referenced by INT instructions, external interrupt
vectors, and exceptions.

DESCRIPTORS

The object to which the segment selector points to
is called a descriptor. Descriptors are eight byte
quantities which contain attributes about a given re-
gion of linear address space. These attributes in-
clude the 32-bit base linear address of the segment,
the 20-bit length and granularity of the segment, the
protection level, read, write or execute privileges,
the default size of the operands (16-bit or 32-bit),
and the type of segment. All of the attribute informa-
tion about a segment is contained in 12 bits in the
segment descriptor. Figure 4.4 shows the general
format of a descriptor. All segments on the Intel386
SX Microprocessor have three attribute fields in
common: the P bit, the DPL bit, and the S bit. The P

P
DPL Descriptor Pnvilege Level 0-3
s Segmaent Descriptor 0= System Descriptor

AVL Available fisld for user or OS

31 0 BYTE
ADDRESS
SEGMENT BASE 15...0 SEGMENT LIMIT15...0 0
LIMIT BASE
BASE31...24 |G (D | 0| AVL 19...16 P DTL S ';’YPT A 23.. 16 +4
BASE Base Address of the sagment
LiMIT The length of the segment
Prasent Bit 1=Present 0= Not Presaent

1=_Code or Data Segment Descriptor

TYPE Type of Segment

A Accessed Bit

G Granularity Bit 1= Segment length is page granular 0= Segment length is byts granular

D Defauit Operation Size (recognized in code segment descriptors only) 1=32-bit segment 0= 16-bit segment
0 Bit must be zero (0) for compatibility with future processors

Figure 4.4, Segment Descriptors

1-339

INTEL CORP {UP/PRPHLS}

intel386™ SX MICROPROCESSOR

(Present) Bit is 1 if the segment is loaded in physical
memory. if P=0 then any attempt to access this
segment causes a not present exception (exception
11). The Descriptor Privilege Level, DPL, is a two bit
field which specifies the protection level, 0-3, asso-
ciated with a segment.

The Intel386 SX Microprocessor has two main cate-
gories of segments: system segments and non-sys-
tem segments (for code and data). The segment bit,
S, determines if a given segment is a system seg-

L7?E D

intgl.

ment or a code or data segment. if the S bitis 1 then
the segment is either a code or data segment; if it is
0 then the segment is a system segment.

Code and Data Descriptors (S= 1)

Figure 4.5 shows the general format of a code and
data descriptor and Table 4.1 illustrates how the bits
in the Access Right Byte are interpreted.

31 0
SEGMENT BASE 15...0 SEGMENTLIMIT15...0 0
LMIT ACCESS BASE
BASE31...24 [G [D] 0| AVL 19...18 RIGHTS 23...16 +4
e BYTE .

D/B 1=Default Instructions Attributes are 32-Bits
0 = Defauit instruction Attributes are 16-Bits
AVL Available field for user or OS

-

G Granularity Bit 1= Segment length is page granular
0=Segment length is byte granular

0 Bit must be zero (0) tor compatibility with future processors

Figure 4.5. Code and Data Descriptors

Table 4.1. Access Rights Byte Definition for Code and Data Descriptors

Po:i‘ttlon Name Function
7 Present (P) P =1 Segmentis mapped into physical memory.
P = 0 No mapping to physical memory exists, base and limt are
not used.
6-5 Descriptor Privilege Segment privilege attribute used in privilege tests.
Level (DPL)
4 Segment Descrip- § = 1 Code or Data (includes stacks) segment descriptor
tor (S) S =0 System Segment Descriptor or Gate Descriptor
3 Executable (E) E = 0 Descriptor type is data segment: A lL;
2 Expansion Direc- ED = 0 Expand up segment, offsets must be < limit. Data
tion (ED) ED = 1 Expand down segment, offsets must be > limit. ¢ Segment
1 Wiriteable (W) W = 0 Data segment may not be written into. S=1,
W = 1 Data segment may be written into. J E=0)
3 Executable (E) E = 1 Descriptor type is code segment: If
2 Conforming (C) C =1 Code segment may only be executed 1 Code
when CPL = DPL and CPL Segment
remains unchanged. r (S=1,
1 Readable (R) R = 0 Code segment may not be read. =1)
R = 1 Code segment may be read. J
0 Accessed (A) A = 0 Segment has not been accessed.
A =1 Segment selector has been loaded into segment register
or used by selector test instructions.
1-340

B 4426175 01l2L43? TOS mA ITLY

INTEL CORP {UP/PRPHLS?}

intel.

L?PE D

intel386™ SX MICROPROCESSOR

31 16 0
SEGMENT BASE 15...0 SEGMENT LIMIT15...0 0
LIMIT BASE
BASEd1...24 | G| 0| O} O P| DPL | O TYP +4
19...16 ‘ . PE 123 .16
Type Defines Type Defines
0 Invalid 8 Invalid
1 Available 80286 TSS 9 Available Intel386™ SX Microprocessor TSS
2 DT A Undefined (Intel Reserved)
3 Busy 80286 TSS B Busy Intel386™™ SX Microprocessor TSS
4 80286 Calt Gate c Intei3B6™ SX Microprocessor Call Gate
5 Task Gate (for 80286 or Intel386™ SX D Undefined (Intel Reserved)
Micropracessor Tasgk) E Intel386™ SX Microprocessor Interrupt Gate
[80286 Interrupt Gate F Intel386™ SX Microprocessor Trap Gate
7 80286 Trap Gate

Figure 4.6. System Descriptors

Code and data segments have several descriptor
fields in common. The accessed bit, A, is set when-
ever the processor accesses a descriptor. The gran-
ularity bit, G, specifies if a segment length is byte-
granular or page-granular.

System Descriptor Formats (S=0)

System segments describe information about oper-
ating system tables, tasks, and gates. Figure 4.6
shows the general format of system segment de-
scriptors, and the various typss of system segments.
Intei386 SX system descriptors (which are the same
as Intel386 DX CPU system descriptors) contain a
32-bit base linear address and a 20-bit segment lim-
it. 80286 system descriptors have a 24-bit base ad-
dress and a 16-bit segment timit. 80286 system de-
scriptors are identified by the upper 16 bits being all
zero.

Ditferences Between Intei386™ SX
Microprocessor and 80286 Descriptors

in order to provide operating system compatibility
with the 80286 the Intel386 SX CPU supports all of
the 80286 segment descriptors. The 80286 system
segment descriptors contain a 24-bit base address
and 186-bit limit, while the Inte!386 SX CPU system
segment descriptors have a 32-bit base address, a
20-bit limit field, and a granularity bit. The word count
field specifies the number of 16-bit quantities to copy
for 80286 call gates and 32-bit quantities for
Intel386 SX CPU call gates.

Selector Fields

A selector in Protected Mods has three fields: Local
or Global Descriptor Table indicator (T1), Descriptor
Entry Index (Index), and Requestor (the selector’s)
Privilege Level (RPL) as shown in Figure 4.7. The Ti
bit selects either the Global Descriptor Table or the
Local Descriptor Table. The Index selects one of 8k
descriptors in the appropriate descriptor table. The
RPL bits allow high speed testing of the selector's
privilege attributes.

Segment Descriptor Cache

In addition to the selector value, every segment reg-
ister has a segment descriptor cache register asso-
ciated with it. Whenever a segment register's con-
tents are changed, the 8-byte descriptor associated
with that selector is automatically foaded (cached)
on the chip. Once loaded, all references to that seg-
ment use the cached descriptor information instead
of reaccessing the descriptor. The contents of the
descriptor cache are not visible to the programmer.
Since descriptor caches only change when a seg-
ment register is changed, programs which modify
the descriptor tables must reload the appropriate
segment registers after changing a descriptor’s val-
ue.

1-341

M 4426175 012L438 941 EE ITLL

INTEL CORP {UP/PRPHLS} L?E D W 482L175 01l2ku39 446 BB ITLL
[]
Intel386™ SX MICROPROCESSOR |n'te|
®
SELECTOR
T 43210
SEGMENT TiRPL
RecisTER JoJo ---- ofo] 1} 1} 1} 4
— " | TABLE
INDEX mAmcnon
Ti=1 TI=0 1
N N
A DESCRIPTOR ~
A NUMBER A
6 6
5 5
4 4
3| oescriptor 3
2 2
1 1
0 o NULL
LOCAL GLOBAL
DESCRIPTOR DESCRIPTOR
TABLE TABLE 24018712

Figure 4.7. Example Descriptor Selection

4.3 Protection

The Intel386 SX Microprocessor has four levels of
protection which are optimized to support a multi-
tasking operating system and to isolate and protect
user programs from each other and the operating
system. The privilege levels control the use of privi-
leged instructions, 1/0 instructions, and access to
segments and segment descriptors. The Intel386 SX
Microprocessor also offers an additional type of pro-
tection on a page basis when paging is enabled.

The four-level hierarchical privilege system is an ex-
tension of the user/supervisor privilege mode com-
monly used by minicomputers. The user/supervisor
mode is fully supported by the Intel386 SX Micro-
processor paging mechanism. The privilege levels
(PL) are numbered 0 through 3. Level 0 is the most
privileged level.

RULES OF PRIVILEGE

The Intel386 SX Microprocessor controls access to
both data and procedures between levels of a task,
according to the following rules.)

— Data stored in a segment with privilege level p
can be accessed only by code executing at a
privitege level at least as privileged as p.

— A code segment/procedure with privilege level p
can only be called by a task executing at the
same or a lesser privilege leval than p.

1-342

PRIVILEGE LEVELS

At any point in time, a task on the Intel386 SX Micro-
processor always executes at one of the four privi-
lege levels. The Current Privilege Level (CPL) speci-
fies what the task’s privilege level is. A task’'s CPL
may only be changed by control transfers through
gate descriptors to a code segment with a different
privilege level. Thus, an application program running
at PL=3 may call an operating system routine at
PL=1 (via a gate) which would cause the task's CPL
to be set to 1 until the operating system routine was
finished.

Selector Privilege (RPL)

The privilege level of a selector is specified by the
RPL field. The selector's RPL is only used to estab-
lish a less trusted privilege level than the current
privilege level of the task for the use of a segment.
This level is called the task’s effective privilege level
(EPL). The EPL is defined as being the least privi-
leged (numerically larger) level of a task’'s CPL and a
selector's RPL. The RPL is most commonly used to
verify that pointers passed to an operating system
procedure do not access data that is of higher privi-
lege than the procedure that originated the pointer.
Since the originator of a selector can specify any
RPL value, the Adjust RPL (ARPL) instruction is pro-
vided to force the RPL bits to the originator's CPL.

INTEL CORP {UP/PRPHLS} &L?E D ER 482L1?5 0L2k440 S5TT EE ITLI

Intel386™ SX MICROPROCESSOR

intgl.

Table 4.2. Descriptor Types Used for Control Transfer

Descriptor Descriptor
Control Transfer Types Operation Types Referenced Table
Intersegment within the same privilege level JMP, CALL RET, IRET* | Code Segment | GDT/LDT
intersegment to the same or higher privilege level | CALL Call Gate GDT/LDT
Interrupt within task may change CPL Interrupt instruction Trap or DT
Exception External interrupt
Interrupt Gate
Intersegment to a lower privilege level RET, IRET"* Code Segment | GDT/LDT
(changes task CPL) .
CALL, JMP Task State GDT
Segment
Task Switch CALL, JMP Task Gate GDT/LDT
IRET** Task Gate IDT
Interrupt instruction,
Exception, External
Interrupt

*NT (Nested Task bit of flag register) = 0
**NT (Nested Task hit of flag register) = 1

1/0 Privilege

The 1/0 privilege level (IOPL) lets the operating sys-
tem code executing at CPL=0 define the least privi-
leged level at which I/Q instructions can be used. An
exception 13 (General Protection Violation) is gener-
ated if an 1/0 instruction is attempted when the CPL
of the task is less privileged then the IOPL. The
IOPL is stored in bits 13 and 14 of the EFLAGS reg-
ister. The following instructions cause an exception
13 if the CPL is greater than IOPL: [N, INS, OUT,
OUTS, STi, CLI, LOCK prefix.

Descriptor Access

There are basically two types of segment accesses:
those involving code segments such as control
transfers, and those involving data accesses. Deter-
mining the ability of a task to access a segment in-
volves the type of segment to be accessed, the in-
struction used, the type of descriptor used and CPL,
RPL, and DPL as described above.

Any time an instruction loads a data segment regis-
ter (DS, ES, FS, GS) the Intel386 SX Microprocessor
makes protection validation checks. Selectors load-
ed in the DS, ES, FS, GS registers must refer only to
data segment or readable code segments.

Finally the privilege validation checks are performed.
The CPL is compared to the EPL and if the EPL is
more privileged than the CPL, an exception 13 (gen-
eral protection fault) is generated.

The rules regarding the stack segment are slightly
different than those involving data segments. In-
structions that load selectors into SS must refer to -
data segment descriptors for writeable data seg-
ments. The DPL and RPL must equal the CPL of all
other descriptor types or a privilege leve! violation
will cause an exception 13. A stack not present fault
causes an exception 12.

PRIVILEGE LEVEL TRANSFERS

Inter-segment control transfers occur when a selec-
tor is loaded in the CS register. For a typical system
most of these transfers are simply the result of a call
or a jump to another routine. There are five types of
control transfers which are summarized in Table 4.2.
Many of these transfers result in a privilege level
transfer. Changing privilege levels is done only by
control transfers, using gates, task switches, and in-
terrupt or trap gates.

Control transfers can only occur if the operation
which loaded the selactor references the corract de-
scriptor type. Any violation of these descriptor usage
rules will cause an exception 13.

1-343

INTEL CORP {UP/PRPHLS} L?7E D ®B 4826175 0l2buul 43L ER ITLL
a2
Intel386™ SX MICROPROCESSOR In
31 16 15) J
0000000000000000 | BACK LINK o TS5 BASE
ESPO 4
0000000000000000 | sso 8
ESP1 € | stacks
0000000000000000 | $$1 10 ;,O,f o2
ESP2 14
0000000000000000] ss52 8)
CR3 © :
P 20
EFLAGS 24
EAX 28
ECX ©
EDX 30
£8X 34
ESP 38
EBP 3
s o s
€01 44 STATE
0000000000000000 £s 48
0000000000000000 cs 4
0000000000000000 s 50
6000000000000000 os 54
0000000000000000 FS 58
0000000000000000) 5¢
0000000000000000 LDT L
BIT_MAP_OFFSET(15:0) 0000000000000000 | T {
AVAILABLE — 1 58 g
L) SYSTEM STATUS, ETC. L) TRAP BIT
v IN TSS ¢
31 24] 23 16]1s 8|7 [
63 5655 48|47 40} 39 32] BT MaP_oFFsET
95 saa7 8079 72]71 64
ErTETT e : 96] OFFSET# C
[| o+ 1
: : L, L)
. BASE HT T 1/0 PERMISSION BITMAP h
Es‘ orooram 0 E 65407 (gg:TEg W,E:Pgﬁi | 450 OFFSET ¢ 1FEC
Lo.. NvislLE e 55439 TRUNCATED USING TSS LIMIT.) OFFSET + 1FFO
TASK REGISTER 85471 OFFSET & 1FF4
65503 65472 § OFFSET + 1FFB
TR[_ SELECTOR [65535 65504 | OFFSET + 1FFC
15 0 “FFH" OFFSET + 2000
% rss Liwr=orrser + 20004
3 1SS DESCRIPTOR(IN GOT) o
SEGMENT BASE 15..0 SEGMENT LIMIT 15..0
BASE 31..24 |c[1 lolo[i P[D:LIO[e I Bt 24018713
Type = 9: Available Intel386™ SX Microprocessor TSS.
Type = B: Busy Intel386 SX Microprocessor TSS.

1-344

Figure 4.8. Intel386™ SX Microprocessor TSS and TSS Registers

INTEL CORP {UP/PRPHLS}

L?E D

Intel386™ SX MICROPROCESSOR

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 O
s1{r 11101 10J/00O0O0 11T 11 1]01-0011 0030000000111
633|001 000 IfT TOO1OTO|Y 1111 1Q00ft 1t 11OOT1
{130 [N 1R T T T T TN I T N N AN B S N TG TN R T TN O O R AR N AR AR B |
127|000 00 0C0C0{0000Q0Q0O0D0O0O0Oj000O0O0CO0OO0CO0Cl0000Q00D0

11111111

L otc.

170 Ports Accessible: 2 —> 8, 12, 13, 15, 20 — 24, 27, 33, 34, 40, 41, 48, 50, 52,

240187-14
53, 58 — 60, 62, 63, 96 — 127

Figure 4.9. Sample 1/0 Permission Bit Map

CALL GATES

Gates provide protected indirect CALLs. One of the
major uses of gates is to provide a secure method of
privilege transfers within a task. Since the operating
system defines all of the gates in a system, it can
ensure that all gates only allow entry into a few trust-
od procedures.

TASK SWITCHING

A very important attribute of any multi-tasking/multi-
user operating system is its ability to rapidly switch
between tasks or processes. The Intel386 SX Micro-
processor directly supports this operation by provid-
ing a task switch instruction in hardware. The task
switch operation saves the entire state of the ma-
chine (all of the registers, address space, and a link
to the previous task), loads a new execution state,
performs protection checks, and commences execu-
tion in the new task. Like transfer of control by
gates, the task switch operation is invoked by exe-
cuting an inter-segment JMP or CALL instruction
which refers to a Task State Segment (TSS), or a
task gate descriptor in the GDT or LDT. An INT n
instruction, exception, trap, or external interrupt may
also invoke the task switch operation if there is a
task gate descriptor in the associated IDT descriptor
slot.

The TSS descriptor points to a segment (see Figure
4.8) containing the entire execution state. A task
gate descriptor contains a TSS selector. The
Intel386 SX Microprocessor supports both the
80286 and Intei386 SX CPU TSSs. The limit of a
Intel386 SX Microprocessor TSS must be greater
than 64H (2BH for an 80286 TSS), and can be as
large as 16 megabytes. in the additional TSS space,
the operating system is free to store additional infor-
mation such as the reason the task is inactive, time
the task has spent running, or open files belonging
to the task.

Each task must have a TSS associated with it. The
current TSS is identified by a special register in the
Intel386 SX Microprocessor called the Task State
Segment Register (TR). This register contains a se-
lector referring to the task state segment descriptor
that defines the current TSS. A hidden base and limit
register associated with TSS descriptor are loaded
whenever TR is loaded with a new selector. Return-
ing from a task is accomplished by the IRET instruc-
tion. When IRET is executed, control is returned to

the task which was interrupted. The currently exe-
cuting task's state is saved in the TSS and the old
task state is restored from its TSS.

Several hits in the flag register and machine status
word (CRO) give information about the state of a
task which is useful to the operating system. The
Nested Task bit, NT, controls the function of the
IRET instruction. If NT=0 the IRET instruction per-
forms the regular return. If NT=1 IRET performs a
task switch operation back to the previous task. The

" NT bit is set or reset in the following fashion:

When a CALL or INT instruction initiates a task
switch, the new TSS will be marked busy and
the back link field of the new TSS set to the old
TSS selector. The NT bit of the new task is set
by CALL or INT initiated task switches. An in-
terrupt that does not cause a task switch will
clear NT (The NT bit will be restored after exe-
cution of the interrupt handler). NT may also be
set or cleared by POPF or IRET instructions.

The Intel386 SX Microprocessor task state segment
is marked busy by changing the descriptor type field
from TYPE 9 to TYPE OBH. An 80286 TSS is
marked busy by changing the descriptor type field
from TYPE 1 to TYPE 3. Use of a selector that refer-
ences a busy task state segment causes an excep-
tion 13.

The VM (Virtual Mode) bit is used to indicate if a task
is a Virtual 8086 task. if VM=1 then the tasks will
use the Real Mode addressing mechanism. The vir-
tual 8086 environment is only entered and exited by
a task switch,

The coprocessor’s state is not automatically saved
when a task switch occurs. The Task Switched Bit,
TS, in the CRO register helps deal with the coproces-
sor's state in a muiti-tasking environment. Whenever
the Intel386 SX Microprocessor switches task, it
sets the TS bit. The Intel386 SX Microprocessor de-
tects the first use of a processor extension instruc-
tion after a task switch and causes the processor
extension not available exception 7. The exception
handler for exception 7 may then decide whether to
save the state of the coprocessor.

The T bit in the Intel386 SX Microprocessor TSS
indicates that the processor should generate a de-
bug exception when switching to a task. if T=1 then
upon entry to a new task a debug exception 1 will be
generated.

1-345

M 4826175 0l2byy2 372 MR ITLL

INTEL CORP {UP/PRPHLSY

Intei386™ SX MICROPROCESSOR

INITIALIZATION AND TRANSITION TO
PROTECTED MODE

Since the Intel386 SX Microprocessor begins exe-
cuting in Real Mode immediately after RESET it is .
necessary to initialize the system tables and regis-
ters with the appropriate values. The GDT and IDT
registers must refer to a valid GDT and IDT. The IDT
should be at least 256 bytes long, and the GDT must
contain descriptors for the initial code and data seg-
ments.

Protected Mode is enabled by loading CRO with PE
bit set. This can be accomplished by using the MOV
CRO, R/M instruction. After enabling Protected
Mode, the next instruction should execute an inter-
segment JMP to load the CS register and flush the
instruction decode queue. The final stepis to load alt
of the data segment registers with the initial selector
values.

An alternate approach to entering Protected Mode is
to use the built in task-switch to load all of the regis-
ters. In this case the GDT would contain two TSS
descriptors in addition to the code and data descrip-
tors needed for the first task. The first JMP instruc-
tion in Protected Mode would jump to the TSS caus-
ing a task switch and loading all of the registers with
the values stored in the TSS. The Task State Seg-
ment Register should be initialized to point to a valid
TSS descriptor.

L?E D

intel.

Paging is another type of memory management use-
ful for virtual memory muiti-tasking operating sys-
tems. Unlike segmentation, which modularizes pro-
grams and data into variable length segments, pag-
ing divides programs into multiple uniform size
pages. Pages bear no direct relation to the logical
structure of a program. While segment selectors can
be considered the logical ‘name’ of a program mod-
ule or data structure, a page most likely corresponds
to only a portion of a module or data structure.

4.4 Paging

PAC?E ORGANIZATION

The Intel386 SX Microprocessor uses two levels of
tables to translate the linear address (from the seg-
mentation unit) into a physical address. There are
three components to the paging mechanism of the
Intel386 SX Microprocessor: the page directory, the
page tables, and the page itself (page frame). All
memory-resident elements of the Intel386 SX Micro-
processor paging mechanism are the same size,
namely 4K bytes. A uniform size for all of the ele-
ments simplifies memory allocation and reallocation
schemes, since there is no problem with memory
fragmentation. Figure 4.10 shows how the paging
mechanism works.

M 4325175 0l2kL443 209 WM ITLL

TWO LEVEL PAGING SCHEME

31 22 12]
———| orecrory | TasLe | orrser | USER
LINEAR MEMORY
ADDRESS 12 OFFFFFFH
10 10}
31 0 é—» ADDRESS
w o |
31 0 Oaq >
) | { T o
' - »
CRt + > >
(/ PAGE TABLE
CR2 T
CR3 ROOT >
DIRECTORY
CONTROL REGISTERS
24018715
Figure 4.10. Paging Mechanism
31 12 1 10 9 8 7 [} 5 4 3 2 1 0
System Ui R
PAGE TABLE ADDRESS 31..12 Software 0 0 D| A 0 0Ol —~|—1P
Defineable S| W

Figure 4.11. Page Directory Entry (Points to Page Table)

1-346 I

INTEL CORP {UP/PRPHLS}

intgl.

L7E D

Intel386™ SX MICROPROCESSOR

31 12 1 10 9 8 7 6 5 4 3 2 1 0
System Uil R

PAGE FRAME ADDRESS 31..12 Software 0] DA O O|—|—| P
Defineable S| W

Figure 4.12. Page Table Entry (Points to Page)

Page Fault Register

CR2 is the Page Fault Linear Address register. It
holds the 32-bit linear address which caused the last
Page Fault detected.

Page Descriptor Base Register

CR3 is the Page Directory Physical Base Address
Register. It contains the physical starting address of
the Page Directory (this value is truncated to a 24-bit
value associated with the Intel386 SX CPU's 16
megabyte physical memaory limitation). The lower 12
bits of CR3 are always zero to ensure that the Page
Directory is always page aligned. Loading it with a
MOV CR3, reg instruction causes the page table en-
try cache to be flushed, as will a task switch through
a TSS which changes the value of CRO.

Page Directory

The Page Directory is 4k bytes long and allows up to
1024 page directory entries. Each page directory en-
try contains information about the page table and
the address of the next level of tables, the Page
Tables. The contents of a Page Directory Entry are
shown in figure 4.11. The upper 10 bits of the linear
address (A31-Apg) are used as an index to select
the correct Page Directory Entry.

The page table address contains the upper 20 bits
of a 32-bit physical address that is used as the base
address for the next set of tables, the page tables.
The lower 12 bits of the page table address are zero
s0 that the page table addresses appear on 4 kbyte
boundaries. For a Intel386 DX CPU system the up-
per 20 bits will select one of 220 page tables, but for
a Intel386 SX Microprocessor system the upper 20
bits only select one of 212 page tables. Again, this is
because the Intel386 SX Microprocessor is limited to
a 24-bit physical address and the upper 8 bits (Ap4-
Agy) are truncated when the address is output on its
24 address pins.

Page Tables

Each Page Table is 4K bytes lang and allows up to
1024 Page table Entries. Each page table entry con-
tains information about the Page Frame and its ad-

dress. The contents of a Page Table Entry are
shown in figure 4.12. The middle 10 bits of the linear
address (Ap;—-Aq2) are used as an index to select
the correct Page Table Entry.

The Page Frame Address contains the upper 20 bits 38 A
of a 32-bit physical address that is used as the base

address for the Page Frame. The lower 12 bits of the
Page Frame Address are zero so that the Page
Frame addresses appear on 4 kbyte boundaries. For
an Intel386 DX CPU system the upper 20 bits will
select one of 220 Page Frames, but for an
Intei386 SX Microprocessor system the upper 20
bits only select one of 212 Page Frames. Again, this
is because the Intel386 SX Microprocessor is limited
to a 24-bit physical address space and the upper 8
bits (A24—-Asz4) are truncated when the address is
output on its 24 address pins.

Page Directory/Table Entries

The lower 12 bits of the Page Table Entries and
Page Directory Entries contain statistical information
about pages and page tables respectively. The P
(Present) bit indicates if a Page Directory or Page
Table entry can be used in address translation. if
P=1, the entry can be used for address translation.
If P=0, the entry cannot be used for translation. All
of the other bits are available for use by the soft-
ware. For example, the remaining 31 bits could be
used to indicate where on disk the page is stored.

The A (Accessed) bit is set by the Intei386 SX CPU
for both types of entries before a read or write ac-
cess occurs to an address covered by the entry. The
D (Dirty) bit is set to 1 before a write to an address
covered by that page table entry occurs. The D bitis
undefined for Page Directory Entries. When the P, A
and D bits are updated by the Intel386 SX CPU, the
processor generates a Read- Modify-Write cycle
which locks the bus and prevents conflicts with oth-
er processors or peripherals. Software which modi-
fies these bits should use the LOCK prefix to ensure
the integrity of the page tables in muiti-master sys-
tems.

The 3 bits marked system software definable in Fig-
ures 4.11 and Figure 4.12 are software definable.
System software writers are free to use these bits
for whatever purpose they wish.

1-347

B 432L175 0l2bY4y Lu5 W ITLL

INTEL CORP {UP/PRPHLS?}

Intel386™ SX MICROPROCESSOR

PAGE LEVEL PROTECTION (R/W, U/S BITS)

The Intel386 SX Microprocessor provides a set of
protection attributes for paging systems. The paging
mechanism distinguishes between two levels of pro-
tection: User, which corresponds to level 3 of the
segmentation based protection, and supervisor
which encompasses all of the other protection levels
(0, 1, 2). Programs exscuting at Level 0, 1 or 2 by-
pass the page protection, although segmentation-
based protection is still enforced by the hardware.

The U/S and R/W bits are used to provide User/Su-

pervisor and Read/Write protection for individual
pages or for ail pages covered by a Page Table Di-
rectory Entry. The U/S and R/W bits in the sacond
level Page Table Entry apply only to the page de-
scribed by that entry. While the U/S and R/W bits in
the first level Page Directory Table apply to all pages
described by the page table pointed to by that direc-
tory entry. The U/S and R/W bits for a given page
are obtained by taking the most restrictive of the
U/S and R/W from the Page Directory Table Entries
and using these bits to address the page.

TRANSLATION LOOKASIDE BUFFER

The Intel386 SX Microprocessor paging hardware is
designed to support demand paged virtual memory
systems. However, performance would degrade
substantially if the processor was required to access
two levels of tables for every memory reference. To
solve this problem, the Intel386 SX Microprocessor
keeps a cache of the most recently accessed pages,
this cache is called the Translation Lookaside Buffer
(TLB). The TLB is a four-way set associative 32-an-
try page table cache. It automatically keeps the most
commonly used page table entries in the processor.
The 32-entry TLB coupled with a 4K page size re-
sults in coverage of 128K bytes of memory address-
es. For many common multi-tasking systems, the
TLB will have a hit rate of greater than 98%. This
means that the processor will only have to access
the two-level page structure for less than 2% of all
memory references.

PAGING OPERATION

The paging hardware operates in the following fash-
ion. The paging unit hardware receives a 32-bit lin-
ear address from the segmentation unit. The upper
20 linear address bits are compared with all 32 en-
tries in the TLB to determina if there is a match. it
there is a match (i.e. a TL8 hit), then the 24-bit phys-
ical address is calculated and is placed on the ad-
dress bus.

If the page table entry is not in the TLB, the Intel386
SX Microprocessor will read the appropriate Page
Directory Entry. If P=1 on the Page Directory Entry,
indicating that the page table is in memory, then the
Intel386 SX Microprocessor will read the appropriate

1-348

L?E D

a

intgl.
Page Table Entry and set the Access bit. If P=1 on
the Page Table Entry, indicating that the page is in
memory, the Intel386 SX Microprocessor will update
the Access and Dirty bits as needed and fetch the
operand. The upper 20 bits of the linear address,
read from the page table, will be stored in the TLB
for future accesses. If P=0 for either the Page Di-

rectory Entry or the Page Table Entry, then the proc-
essor will generate a page fault Exception 14.

The processor will also generate a Page Fault (Ex-
ception 14) if the memory reference violated the
page protection attributes. CR2 will hold the linear
address which caused the page fault. Since Excep-
tion 14 is classified as a fault, CS:EIP will point to the
instruction causing the page-fault. The 16-bit error
code pushed as part of the page fault handler will
contain status bits which indicate the cause of the
page fault.

The 16-bit error code is used by the operating sys-
tem to determine how to handle the Page Fault. Fig-
ure 4.13 shows the format of the Page Fault error
code and the interpretation of the bits. Even though
the bits in the error code (U/S, W/R, and P) have
similar names as the bits in the Page Directory/Ta-
ble Entries, the interpretation of the error code bits is
different. Figure 4.14 indicates what type of access
caused the page fault.

15 3 0

2
U
ViUjUjujujujuivju|uiviuju|ul—

1
w
—|P
R

S

Figure 4.13. Page Fault Error Code Format

U/S: The U/S bit indicates whether the access
causing the fauit occurred when the processor was
exacuting in User Mode (U/S = 1) or in Supervisor
mode (U/S = 0) .

W/R: The W/R bit indicates whether the access
causing the fault was a Read (W/R = 0) or a Write
W/R = 1)

P: The P bit indicates whether a page fault was
caused by a not-present page (P = 0), or by a page
level protection violation (P = 1)

U = Undefined
uss W/R Access Type
0 0 Supervisor* Read
0 1 Supervisor Write
1 0 User Read
1 1 User Write

*Descriptor table access will fault with U/S = 0, even if
the program is executing at level 3.

Figure 4.14. Type of Access Causing Page Fault

W 4826175 012LYy5 081 Wm ITLL

INTEL CORP {UP/PRPHLS}

intgl.

OPERATING SYSTEM RESPONSIBILITIES

When the operating system enters or exits paging
mode (by setting or resetting bit 31 in the CRO regis-
ter) a short JMP must be executed to flush the In-
tel386 SX Microprocessor's prefetch queue. This
ensures that all instructions executed after the ad-
dress mode change will generate correct addresses.

The Intel386 SX Microprocessor takes care of the
page address translation process, relisving the bur-
den from an operating system in a demand-paged
systam. The operating system is responsible for set-
ting up the initial page tables and handling any page
faults. The operating system also is required to inval-
idate (i.e. flush) the TLB when any changes are
made to any of the page table entries. The operating
system must reload CR3 to cause the TLB to be
flushed.

Setting up the tables is simply a matter of loading
CR3 with the address of the Page Directory, and
allocating space for the Page Directory and the
Page Tables. The primary responsibility of the oper-
ating system is to implement a swapping policy and
handle all of the page faults.

A final concern of the operating system is to ensure
that the TLB cache matches the information in the
paging tables. In particular, any time the operating
systems sets the P (Present) bit of page table entry
to zero. The TLB must be flushed by reloading CR3.
Operating systems may want to take advantage of
the fact that CR3 is stored as part of a TSS, to give
every task or group of tasks its own set of page
tables.

4.5 Virtual 8086 Environment

The Intel386 SX Microprocessor allows the execu-
tion of 8086 application programs in both Real Mode
and in the Virtual 8086 Mode. The Virtual B086
Mode allows the exscution of 8086 applications,
while still allowing the system designer to take full
advantage of the Intel386 SX CPU’s protection
mechanism.

VIRTUAL 8086 ADDRESSING MECHANiSM

One of the major differences between Intel386 SX
CPU Real and Protected modes is how the segment
selectors are interpreted. When the processor is ex-
ecuting in Virtual 8086 Mode, the segment registers
are used in a fashion identical to Real Mode. The
contents of the segment register are shifted left 4
bits and added to the offset to form the segment
base linear address.

The Intel386 SX Microprocessor allows the operat-
ing system to specify which programs use the 8086

L7PE D

Intel386™ SX MICROPROCESSOR

address mechanism and which programs use Pro-
tected Mode addressing on a per task basis.
Through the use of paging, the one megabyte ad-
dress space of the Virtual Mode task can be mapped
to anywhere in the 4 gigabyte linear address space
of the Intel386 SX Microprocessor. Like Real Mode,
Virtual Mode addresses that exceed one megabyte
will cause an exception 13. However, these restric-
tions should not prove to be important, because
most tasks running in Virtual 8086 Mode will simply
be existing 8086 application programs. :

PAGING IN VIRTUAL MODE

The paging hardware allows the concurrent running
of multiple Virtual Mode tasks, and provides protec-
tion and operating system isolation. Although it is
not strictly necessary to have the paging hardware
enabled to run Virtual Mode tasks, it is needed in
order to run muiltiple Virtual Mode tasks or to relo-
cate the address space of a Virtual Mode task to
physical address space greater than one megabyte.

The paging hardware allows the 20-bit linear ad-
dress produced by a Virtual Mode program to be
divided into as many as 256 pages. Each one of the
pages can be located anywhere within the maximum -
16 megabyte physical address space of the Intel386
SX Microprocessor. In addition, since CR3 (the Page
Directory Base Register) is loaded by a task switch,
each Virtual Mods task can use a different mapping
scheme to map pages to different physical locations.
Finally, the paging hardware allows the sharing of
the 8086 operating system code between muttiple
8086 applications.

PROTECTION AND 1/0 PERMISSION BIT MAP

All Virtual Mode programs execute at privilege level
3. As such, Virtual Mode programs are subject to all
of the protection checks defined in Protected Mode.
This is different than Real Mode, which implicitly is
executing at privilege level 0. Thus, an attempt to
sxecute a privileged instruction in Virtual Mode will
cause an exception 13 fault.

The following are privileged instructions, which may
be executed only at Privilege Level 0. Attempting to
execute these instructions in Virtual 8086 Mode (or
anytime CPL>0) causes an exception 13 fault:

LIDT; MOV DRn,REG; MOV reg,DRn;

LGDT; MOV TRn,reg; MOV reg, TRn;
LMSW; MOV CRn,reg; MOV reg,CRn;
CLTS;
HLT;

1-349

M 4825175 0l2LuukL T18 HE ITLD

INTEL CORP {UP/PRPHLS?

Intel386™ SX MICROPROCESSOR

Several instructions, particularly those applying to
the multitasking and the protection model, are avail-
able only in Protected Mode. Therefore, attempting
to execute the following instructions in Real Mode or
in Virtual 8086 Mode generates an axception 6 fault:

LTR; STR;
LLDT; SLDT;
LAR; VERR;
LSL; VERW,
ARPL;

The instructions which are IOPL sensitive in Protect-
ed Mode are:

IN; ST,
ouT; Cu
INS;

QuTS;

REP INS;
REP QUTS;

In Virtual 8086 Mode the following instructions are
I0OPL-sensitive:

INTn; ST
PUSHF; CLI;
POPF; IRET;

The PUSHF, POPF, and IRET instructions are IOPL-
sensitive in Virtual 8086 Mode only. This provision
allows the IF flag to be virtualized to the virtual 8086
Mode program. The INT n software interrupt instruc-
tion is also |OPL-sensitive in Virtual 8086 mode.
Note that the INT 3, INTQ, and BOUND instructions
are not IOPL-sensitive in Virtual 8086 Mode.

The 170 instructions that directly refer to addresses
in the processor’s 1/0 space are IN, INS, OUT, and
OUTS. The Intel386 SX Microprocessor has the abil-
ity to selectively trap references to specific 1/0 ad-
dresses. The structure that enables selective trap-
ping is the //O Permission Bit Map in the TSS seg-
ment (see Figures 4.8 and 4.9). The 1/0 permission
map is a bit vector. The size of the map and its loca-
tion in the TSS segment are variable. The processor
locates the 1/0 permission map by means of the I/0
map base field in the fixed portion of the TSS. The
170 map base field is 16 bits wide and contains the
offset of the beginning of the 1/0 permission map.

In protected mode when an 1/0 instruction (IN, INS,
OUT or OUTS) is encountered, the processor first
checks whether CPL <IOPL. If this condition is true,
the 1/0 operation may proceed. If not true, the proc-
essor checks the 170 permission map (in Virtual
8086 Mode, the processor consults the map without
regard for the IOPL).

1-350

L?E D

»

intgl.
Each bit in the map corresponds to an 170 port byte
address; for example, the bit for port 41 is found at
1/0 map base + 5, bit offset 1. The processor tests
all the bits that correspond to the 1/0O addresses
spanned by an I/0 operation; for example, a double
word operation tests four bits corresponding to four
adjacent byte addresses. if any tested bit is set, the
processor signals a general protection exception. If
all the tested bits are zero, the 1/0O operations may
proceed.

it is not necessary for the 1/0 permission map to
represent all the 170 addresses. 1/0 addresses not
spanned by the map are treated as if they had one-
bits in the map. The I/O map base should be at
least one byte less than the TSS limit, the last byte
beyond the 1/0 mapping information must contain
all 1’s. ’

Because the 1/0 permission map is in the TSS seg-
ment, different tasks can have different maps. Thus,
the operating system can allocate ports o a task by
changing the |/Q permission map in the task’s TSS.

IMPORTANT IMPLEMENTATION NOTE: Beyond
the last byte of 1/0 mapping information in the 1/0
permission bit map must be a byte containing all 1's.
The byte of all 1’s must be within the limit of the
Intel386 SX CPU TSS segment (see Figure 4.8).

Interrupt Handling

In order to fully support the emulation of an 8086
machine, interrupts in Virtual 8086 Mode are han-
dled in a unique fashion. When running in Virtual
Mode all interrupts and exceptions involve a privi-
lege change back to the host Intel386 SX Microproc-
essor operating system. The Intel386 SX Microproc-
essor operating system determines if the interrupt
comes from a Protected Mode application or from a
Virtual Mode program by examining the VM bit in the
EFLAGS image stored on the stack.

When a Virtual Mode program is interrupted and ex-
ecution passes to the interrupt routine at level 0, the
VM bit is cleared. However, the VM bit is still set in
the EFLAG image on the stack.

The Intel386 SX Microprocessor operating system in
turn handles the exception or interrupt and then re-
turns control to the 8086 program. The Intei386 SX
Microprocessor operating system may choose to let
the 8086 operating system handie the interrupt or it
may emulate the function of the interrupt handler.
For example, many BO86 operating system calls are
accessed by PUSHing parameters on the stack, and
then executing an INT n instruction. If the IOPL is set
to 0 then all INT n instructions will be intercepted by
the Intel386 SX Microprocessor operating system.

M 4826175 0l2kuu? 954 WM ITLL

INTEL CORP {UP/PRPHLS}

[

intgl.

An Intel386 SX Microprocessor operating system
can provide a Virtual B086 Environment which is to-
tally transparent to the application software by inter-

cepting and then emulating 8086 operating system's
calls, and intercepting IN and QUT instructions.

Entering and Leaving Virtual 8086 Mode

Virtual 8086 mode is entered by executing a 32-bit
IRET instruction at CPL =0 where the stack has a 1
in the VM bit of its EFLAGS image, or a Task Switch
(at any CPL) to a Intel386 SX Microprocessor task
whose Intel386 SX CPU TSS has a EFLAGS image
containing a 1 in the VM bit position while the proc-
essor is executing in the Protected Mode. POPF
does not affect the VM bit but a PUSHF always
pushes a 0 in the VM bit.

The transition out of Virtual 8086 mode to protected
mode occurs only on receipt of an interrupt or ex-
ception. In Virtual 8086 mode, all interrupts and ex-
ceptions vector through the protected mode IDT,
and enter an interrupt handler in protected mode. As
part of the interrupt processing the VM bit is cleared.

Because the matching IRET must occur from level 0,
Interrupt or Trap Gates used to field an interrupt or
exception out of Virtual 8086 mode must perform an
inter-level interrupt only to level 0. Interrupt or Trap
Gates through conforming segments, or through
segments with DPL >0, will raise a GP fault with the
CS selactor as the srror code.

Task Switches To/From Virtual 8086 Mode

Tasks which can execute in Virtual 8086 mode must
be described by a TSS with the Intel386 SX CPU
format (type 9 or 11 descriptor). A task switch out of
virtual 8086 mode will operate exactly the same as
any other task switch out of a task with a Intel386 SX
CPU TSS. Al of the programmer visible state. includ-
ing the EFLAGS register with the VM bit set to 1, is
stored in the TSS. The segment registers in the TSS
will contain 8086 segment base values rather than
selectors.

A task switch into a task described by a Intel386 SX
CPU TSS will have an additional check to determine
if the incoming task should be resumed in Virtual
8086 mode. Tasks described by 286 format TSSs
cannot be resumed in Virtual 8086 mode, so no
check is required there (the FLAGS image in 286
format TSS has only the low order 16 FLAGS bits).
Before loading the segment register images from a
Intel386 SX CPU TSS, the FLAGS image is loaded,
so that the segment registers are loaded from the
TSS image as 8086 segment base values. The task
is now ready to resume in Virtual 8086 mode.

L?PE D

Intei386™ SX MICROPROCESSOR

Transitions Through Trap and Interrupt Gates,
and IRET

A task switch is one way to enter or exit Virtual 8086
mode. The other method is to exit through a Trap or
Interrupt gate, as part of handling an interrupt, and
to enter as part of executing an IRET instruction.
The transition out must use a Intel386 SX CPU Trap
Gate (Type 14), or Intel386 SX CPU Interrupt Gate
(Type 15), which must point to a non-conforming lev-
el 0 sagment (DPL=0) in order to permit the trap
handter to IRET back to the Virtual 8086 program.
The Gate must point to a non-conforming level 0
segment to perform a level switch to level 0 so that
the matching IRET can change the VM bit. Intel386
SX CPU gates must be used since 286 gates save
only the low 16 bits of the EFLAGS register (the VM
bit will not be saved). Also, the 16-bit IRET used to
terminate the 286 interrupt handier will pop only the
lower 16 bits from FLAGS, and will not affect the VM
bit. The action taken for a Intei386 SX CPU Trap or
Interrupt gate if an interrupt occurs while the task is
executing in virtual 8086 mode is given by the follow-
ing sequence:

1. Save the FLAGS register in a temp to push later.
Turn off the VM, TF, and {F bits.

2. Interrupt and Trap gates must perform a level
switch from 3 (where the Virtual 8086 Mode pro-
gram executes) to level 0 (so IRET can return).

3. Push the 8086 segment register values onto the
new stack, in this order: GS, FS, DS, ES. These
are pushed as 32-bit quantities. Then load these 4
registers with null selectors (0).

4. Push the old 8086 stack pointer onto the new
stack by pushing the SS register (as 32-bits}, then
pushing the 32-bit ESP register saved above.

5. Push the 32-bit EFLAGS register saved in step 1.

6. Push the old 8086 instruction onto the new stack’
by pushing the CS register (as 32-bits), then push-
ing the 32-bit EIP register.

7. Load up the new CS:EIP value from the interrupt
gate, and begin execution of the interrupt routine
in protected mode.

The transition out of V86 mode performs a level
change and stack switch, in addition to changing
back to protected mode. Also all of the 8086 seg-
ment register images are stored on the stack (be-
hind the SS:ESP image), and then loaded with null
{0) selactors before entering the interrupt handier.
This will permit the handler to safely save and re-
store the DS, ES, FS, and GS registers as 286 selec-
tors. This is needed so that interrupt handlers which
don’t care about the mode of the interrupted pro-
gram can use the same prologue and epilogue code
for state saving regardless of whether or not a ‘na-
tive’ mode or Virtual 8086 Mode program was inter-

1-351

B 4826175 0L2L4us 250 WA ITLD

INTEL CORP {UP/PRPHLSZ

Intel386™ SX MICROPROCESSOR

rupted. Restoring null selectors to these registers
before executing the IRET will cause a trap in the
interrupt handler. Interrupt routines which expect or
return values in the segment registers will have to
obtain/return values from the 8086 register images
pushed onto the new stack. They will need to know
the mode of the interrupted program in order to
know where to find/return segment registers, and
also to know how to interpret segment register val-
ues.

The IRET instruction will perform the inverse of the
above sequence. Only the extended IRET instruc-
tion {operand size=32) can be used and must be
executed at level 0 to change the VM bit to 1.

1. If the NT bit in the FLAGS register is on, an inter-
task return is performed. The current state is
stored in the current TSS, and the link field in the
current TSS is used to locate the TSS for the in-
terrupted task which is to be resumed. Otherwise,
continue with the following sequence:

2. Read the FLAGS image from SS:8[ESP] into the
FLAGS register. This will set VM to the value ac-
tive in the interrupted routine.

3. Pop off the instruction pointer CS:EIP. EIP is
popped first, then a 32-bit word is popped which
contains the CS value in the lower 16 bits. If
VM =0, this CS load is done as a protected mode
segment load. If VM= 1, this will be done as an
8086 segment load.

4. Increment the ESP register by 4 to bypass the
FLAGS image which was ‘popped: in step 1.

5. If VYM=1, load segment registers ES, DS, FS, and
GS from memory locations SS:[ESP+8],
SS:{ESP+12], SS:[ESP + 18], and
SS:[ESP = 20], respectively, where the new value
of ESP stored in step 4 is used. Since VM=1,
these are done as 8086 segment register loads.

Else if VM =0, check that the selectors in ES, DS,
FS, and GS are valid in the interrupted routine,
Null out invalid selectors to trap if an attempt is
made to access through them.

6. If RPL(CS)>CPL, pop the stack pointer SS:ESP
from the stack. The ESP register is popped first,
followed by 32-bits containing SS in the lower 16
bits. if VM =0, SS is loaded as a protected mode
segment register load. If VM=1, an 8086 seg-
ment register load is used.

7. Resume execution of the interrupted routine. The
VM bit in the FLAGS register (restored from the
interrupt routing’s stack image in step 1) deter-
mines whether the processor resumes the inter-
rupted routine in Protected mode or Virtual 8086
Mods.

1-352

L?E D

intgl.

5.0 FUNCTIONAL DATA

- The Intel386 SX Microprocessar features a straight-

forward functional interface to the external hard-
ware. The Intet386 SX Microprocessor has separate
parallel buses for data and address. The data bus is
16-bits in width, and bi-directional. The address bus
outputs 24-bit address values using 23 address lines
and two byte enable signals.

The Intel386 SX Microprocessor has two selectable
address bus cycles: address pipelined and non-ad-
dress pipelined. The address pipelining option al-
lows as much time as possible for data access by
starting the pending bus cycle before the present
bus cycle is finished. A non-pipelined bus cycle
gives the highest bus performance by executing ev-
ery bus cycle in two processor CLK cycles. For maxi-
mum design flexibility, the address pipelining option
is selectable on a cycle-by-cycle basis.

The processor's bus cycle is the basic mechanism
for information transfer, either from system to proc-
essor, or from processor to system. Intel386 SX Mi-
croprocessor bus cycles perform data transfer in a
minimum of only two clock periods. The maximum
transfer bandwidth at 16 MHz is therefore 16
Mbytes/sec. However, any bus cycle will be extend-
ed for more than two clock periods if external hard-
ware withholds acknowledgement of the cycle.

The Intel386 SX Microprocessor can relinquish con-
trol of its local buses to allow mastership by other
devices, such as direct memory access (DMA) chan-
nels. When relinquished, HLDA is the only output pin
driven by the Intel386 SX Microprocessor, providing
near-complete isolation of the processor from its
system (all other output pins are in a float condition).

5.1 Signal Description Overview

Ahead is a brief description of the Intel386 SX Micro-
processor input and output signals arranged by func-
tional groups. Note the # symbol at the end of a
signal name indicates the active, or asserted, state
occurs when the signal is at a LOW voltage. When
no # is present after the signal name, the signal is
asserted when at the HIGH voltage level.

Example signal: M/I0# — HIGH voltage indicates
Memory selected

— LOW voltage indicates
1/0 selected

The signal descriptions sometimes refer to AC tim-
ing parameters, such as ‘tp5 Reset Setup Time* and
‘tog Reset Hold Time.* The values of these parame-
ters can be found in Table 7.4,

B 482L175 0l2Luy9 7?27 EE ITLL

INTEL CORP {UP/PRPHLS} G&?7E D W 4826175 012L450 4u9 ER ITLL

intgl.

CLOCK (CLK2)

CLK2 provides the fundamental timing for the
Intel386 SX Microprocessor. It is divided by two in-
ternally to generate the internal processor clock
used for instruction execution. The internal clock is
comprised of two phases, ‘phase ong‘ and ‘phase
two'. Each CLK2 period is a phase of the internal
clock. Figure 5.2 illustrates the relationship. If de-
sired, the phase of the internal processor clock can
be synchronized to a known phase by ensuring the
falling edge of the RESET signal meets the applica-
ble setup and hoid times tz5 and tyg.

intel386™ SX MICROPROCESSOR

DATA BUS (D15-Do)

These three-state bidirectional signals provide the
general purpose data path between the Intel386 SX
Microprocessor and other devices. The data bus
outputs are active HIGH and will float during bus
hold acknowledge. Data bus reads require that read-
data setup and hold times tz1 and ty; be met relative
to CLK2 for correct operation.

’

CLK2
2X CLOCK [-—-—-—-—-——-—-’

ADDRESS BUS >A1—A23
BHE# 24-BIT

e ADDRESS
e s
e
1 0o-p1s { TATABUS)
DATA
: ADS# W/R#
——————— 1386™ sX / A
BUS Na# MICRO~ p/c#
CONTROL READY# PROCESSOR M/10# BUS CYCLE DEFINITION
LOCK #
”
HOLD PEREQ -
Bus [——o 1 -
ARBITRATION {Q—HLEA—-— sy COPROCESSOR SIGNALLING
ERROR#
INTR /
[FRSRSSNSSALLE
INTERRUPTS e Yoo
sl | e
RESET Yss }Powza CONNECTIONS
240187-18
Figure 5.1. Functional Signal Groups
PROCESSOR CLOCK PROCESSOR CLOCK
PERIOD PERIOD
CLK2 PERIOD | CLK2 PERIOD | CLK2 PERIOD | CLK2 PERIOD
)) 1 2
=g A7 AT B
INTERNAL "\
PROCESSOR CLOCK N/ N
62.5 ns MIN,
(16 MHz MAX)

240187-17

Figure 5.2. CLK2 Signal and Internal Processor Clock

1-353

INTEL CORP {UP/PRPHLS?:

Intel386™ SX MICROPROCESSOR

ADDRESS BUS (Az3-A;, BHE #, BLE #)

These three-state outputs provide physical memory
addresses or |70 port addresses. Agz~Aqg are LOW
during 1/0 transfers except for I/Q transfers auto-
matically generated by coprocessor instructions.
During coprocessor 1/0 transfers, Apo—Aqg are driv-
en LOW, and A3 is driven HIGH so that this ad-
dress line can be used by external logic to generate
the coprocessor select signal. Thus, the 1/0 address
driven by the Intel386 SX Microprocessor for co-
processor commands is 8000F8H, the I/O address-
es driven by the Intel386 SX Microprocessor for co-

processor data are 8000FCH or 8000FEH for cycles ~

to the Intel387™ SX,

The address bus is capable of addressing 16 mega-
bytes of physical memory space (000000H through
FFFFFFH), and 64 kilobytes of 170 address space
(00000QH through 00FFFFH) for programmed 1/0.
The address bus is active HIGH and will float during
bus hold acknowledge.

The Byte Enable outputs, BHE # and BLE #, directly
indicate which bytes of the 16-bit data bus are in-
volved with the current transfer. BHE# applies to
D15-Dg and BLE # applies to D7~Dg. If both BHE #
and BLE# are asserted, then 16 bits of data are
being transferred. See Table 5.1 for a complets de-
coding of these signals. The byte enables are active
LOW and will float during bus hold acknowledge.

BUS CYCLE DEFINITION SIGNALS
(W/R#,D/C#, M/IO#, LOCK #)

These three-state outputs define the type of bus cy-
cle being performed: W/R# distinguishes between

L?PE D

intgl.

write and read cycles, D/C# distinguishes between
data and control cycles, M/1O# distinguishes be-
tween memory and 1/Q cycles, and LOCK # distin-
guishes between locked and unlocked bus cycles.
All of these signals are active LOW and will float
during bus acknowledge.

The primary bus cycle definition signals are W/R #,
D/C# and M/IO+#, since these are the signals driv-
en valid as ADS# (Address Status output) becomes
active. The LOCK # is driven valid at the same time
the bus cycle begins, which due to address pipalin-
ing, could be after ADS # becomes active. Exact bus
cycie definitions, as a function of W/R#, D/C#, and
M/IO# are given in Table 5.2,

LOCK # indicates that other system bus masters are
not to gain control of the system bus while it is ac-
tive. LOCK # s activated on the CLK2 edge that be-
gins the first iocked bus cycle (i.e., it is not active at
the same time as the other bus cycle definition pins)
and is deactivated when ready is returned at the end
of the last bus cycle which is to be locked. The be-
ginning of a bus cycle is determined when READY #
is returned in a previous bus cycle and another is
pending (ADS# is active) or by the clock edge in
which ADS # is driven active if the bus was idle. This
means that it follows more closely with the write
data rules when it is valid, but may cause the bus to
be locked longer than desired. The LOCK # signal
may be explicitly activated by the LOCK prefix on
certain instructions. LOCK# is always asserted
when executing the XCHG instruction, during de-
scriptor updates, and during the interrupt acknowl-
edge sequence.

Table 5.1. Byte Enable Definitions

M 4826175 0126451 385 ER ITLL

BHE # BLE # Function
0 0 Word Transfer
0 1 Byte transfer on upper byte of the data bus, D45-Dg
1 0 Byte transfer on lower byte of the data bus, D7-Dg
1 1 Never occurs
Table 5.2. Bus Cycle Definition
M/IO# D/C# W/R# Bus Cycle Type Locked?
0 0 0 Interrupt Acknowledge Yes
0 0 1 does not occur —
0 1 0 1/0 Data Read No
0 1 1 1/Q Data Write No
1 0 0 Memory Code Read No
1 0 1 Halt: Shutdown: No
Arddress = 2 Address = 0
BHE# = 1 BHE# = 1
BLE# =0 BLE# =0
1 1 0 Memory Data Read Some Cycles
1 1 1 Memory Data Write Some Cycles

1-354 l

INTEL CORP {UP/PRPHLSZ

intel.

BUS CONTROL SIGNALS
(ADS#, READY #, NA#)

The following signals allow the processor to indicate
when a bus cycle has begun, and aliow other system
hardware to control address pipelining and bus cycle
termination.

Address Status (ADS#)

This three-state output indicates that a valid bus cy-
cle definition and address (W/R#, D/C#, M/10+#,
BHE #, BLE# and Ap3—A4) are being driven at the
Intel386 SX Microprocessor pins. ADS# is an active
LOW output. Once ADS # is driven active, valid ad-
dress, byte enables, and definition signals will not
change. In addition, ADS # will remain active until its
associated bus cycle begins (when READY # is re-
turned for the previous bus cycle when running pipe-
lined bus cycles). When address pipelining is uti-
lized, maximum throughput is achieved by initiating
bus cycies when ADS# and READY # are active in
the same clock cycle. ADS# will float during bus
hold acknowledge. See sections Non-Pipelined Ad-
dress and Pipelined Address for additional infor-
mation on how ADS# is asserted for different bus
states.

Transfer Acknowledge (READY #)

- This input indicates the current bus cycle is com-
plete, and the active bytes indicated by BHE# and
BLE # are accepted or provided. When READY # is
sampled active during a read cycle or interrupt ac-
knowledge cycle, the Intel386 SX Microprocessor
latches the input data and terminates the cycle.
When READY # is sampled active during a write cy-
cle, the processor terminates the bus cycle.

READY # is ignored on the first bus state of all bus
cycles, and sampled each bus state thereafter until
asserted. READY # must eventually be asserted to
acknowledge every bus cycle, including Halt Indica-
tion and Shutdown Indication bus cycles. When be-
ing sampled, READY # must always meet setup and
hold times tig and tpq for correct operation.

Next Address Request (NA#)

This is used to request address pipelining. This input
indicates the system is prepared to accept new val-
ues of BHE #, BLE#, Aps-Aq, W/R#, D/C# and
M/IO # from the Intel386 SX Microprocessor even if
the end of the current cycle is not being acknowl-
edged on READY #. If this input is active when sam-
pled, the next address is driven onto the bus, provid-
ed the next bus request is already pending internally.
NA# is ignored in CLK cycles in which ADS# or

L?E D

Intel386™ SX MICROPROCESSOR

READY # is activated. This signal is active LOW and
must satisty setup and hold times ty5 and t4¢ for
corract operation. See Pipelined Address and
Read and Write Cycles for additional information.

BUS ARBITRATION SIGNALS (HOLD, HLDA)

This section describes the mechanism by which the
processor relinquishes control of its local buses
when requested by another bus master device. See
Entering and Exiting Hold Acknowledge for addi-
tional information.

Bus Hold Request (HOLD)

This input indicates some device other than the
Intel386 SX Microprocessor requires bus master-
ship. When control is granted, the Intel386 SX Mi-
cropracessor floats Apz~A4q, BHE#, BLE#, Dys-
Do, LOCK#, M/IO#,D/C#, W/R# and ADS#, and
then activates HLDA, thus entering the bus hold ac-
knowledge state. The local bus will remain granted
to the requesting master untit HOLD becomes inac-
tive. When HOLD becomes inactive, the Intel386 SX
Microprocessor will deactivate HLDA and drive the
local bus (at the same time), thus terminating the
hold acknowledge condition.

HOLD must remain asserted as long as any other
device is a local bus master. External pull-up resis-
tors may be required when in the hold acknowledge
state since none of the Intel386 SX Microprocessor
floated outputs have internal pull-up resistors. See
Resistor Recommendations for additional informa-
tion. HOLD is not recognized while RESET is active.
if RESET is asserted while HOLD is asserted, RE-
SET has priority and places the bus into an idle
state, rather than the hold acknowledge (high-im-
pedance) state.

HOLD is a level-sensitive, active HIGH, synchronous
input. HOLD signals must always meet setup and
hold times to3 and to4 for correct operation.

Bus Hold Acknowledge (HLDA)

When active (HIGH), this output indicates the
Intel386 SX Microprocessor has relinquished control
of its local bus in response to an asserted HOLD
signal, and is in the bus Hold Acknowledge state.

The Bus Hold Acknowledge state ofters near-com-
plete signal isolation. In the Hold Acknowledge
state, HLDA is the only signal being driven by the
Intel386 SX Microprocessor. The other output sig-
nals or bidirectional signals (D15-Dg, BHE#, BLE #,
Axz-Ay, W/R#, D/C#, M/IO#, LOCK# and
ADS#) are in a high-impedance state so the re-

1-355

B Y52L175 012L452 211 WE ITLL

INTEL CORP {UP/PRPHLS?

Intei386 ™ SX MICROPROCESSOR

questing bus master may control them. These pins
remain OFF throughout the time that HLDA remains
active (see Table 5.3)). Pull-up resistors may be de-
sired on several signals to avoid spurious activity
when no bus master is driving them. See Resistor
Recommendations for additional information.

When the HOLD signal is made inactive, the
Intel386 SX Microprocessor will deactivate HLDA
and drive the bus. One rising edge on the NMI input
is remembered for processing after the HOLD input
is negated.

Table 5.3. Qutput pin State During HOLD

Pin Value | Pin Names

1 HLDA
Float LOCK#, M/IO#,D/C#, W/R #,
ADS#, Ax3-Aq, BHE#, BLE#, Dy5-Dyg

In addition to the normal usage of Hold Acknowl-
edge with DMA controllers or master peripherals,
the near-complete isolation has particular attractive-
ness during system test when test equipment drives
the system, and in hardware fault-tolerant applica-
tions.

HOLD Latencies

The maximum possible HOLD latency depends on
the software being executed. The actual HOLD la-
tency at any time depends on the current bus activi-
ty, the state of the LOCK# signal (internal to the
CPU) activated by the LOCK # prefix, and interrupts.
The Intel386 SX Microprocessor will not honor a
HOLD request until the cumrent bus operation is
compiete. :

The Intel386 SX Microprocessor breaks 32-bit data
or 1/0 accesses into 2 internally locked 16-bit bus
cycles; the LOCK# signal is not asserted. The
Intel386 SX Microprocessor breaks unaligned 16-bit
or 32-bit data or I/0 accesses into 2 or 3 internally
focked 16-bit bus cycles. Again, the LOCK # signal is
not asserted but a HOLD request will not be recog-
nized until the end of the entire transfer.

Wait states affect HOLD latency. The Intel386 SX
Microprocessor will not honor a HOLD request unitil
the end of the current bus operation, no matter how
many wait states are required. Systems with DMA
where data transfer is critical must insure that
READY # returns sufficiently soon.

1-356

L7E D

L]
intgl.
COPROCESSOR INTERFACE SIGNALS
(PEREQ, BUSY #, ERAOR #)

in the following sections are descriptions of signals
dedicated to the numeric coprocessor interface. In
addition to the data bus, address bus, and bus cycle
definition signals, these following signals control
communication between the Intel386 SX Microproc-
essor and its Intel387™ SX processor extension.

Coprocessor Request (PEREQ)

When asserted (HIGH), this input signal indicates a
coprocessor request for a data operand to be trans-
ferred to/from memory by the Intel386 SX Micro-
processor. In responss, the Intel386 SX Microproc-
essor transfers information between the coproces-
sor and memory. Because the Intel386 SX Micro-
processar has internally stored the coprocessor op-
code being executed, it performs the requested data
transfer with the correct direction and memory ad-
dress.

PEREQ is a level-sensitive active HIGH asynchro-
nous signal. Setup and hoid times, tog and t30, rela-
tive to the CLK2 signal must be met to guarantee
recognition at a particular clock edge. This signal is
provided with a weak internal pull-down resistor of
around 20 K-chms to ground so that it will not float
active when left unconnected. ’

Coprocessor Busy (BUSY #)

When asserted (LOW), this input indicates the co-
processor is still executing an instruction, and is not
yet able to accept another. When the Intel386 SX
Microprocessor encounters any coprocessor in-
struction which operates on the numerics stack (e.g.
load, pop, or arithmetic operation), or the WAIT in-
struction, this input is first automatically sampled un-
til it is seen to be inactive. This sampling of the
BUSY # input prevents overrunning the execution of
a previous coprocessor instruction.

The FNINIT, FNSTENV, FNSAVE, FNSTSW,
FNSTCW and FNCLEX coprocessor instructions are
allowed to execute even if BUSY # is active, since
these instructions are used for coprocessor initializa-
tion and exception-clearing.

BUSY # is an active LOW, level-sensitive asynchro-
nous signal. Setup and hold times, tpg and taq, rela-

B 4426175 012Ly53 155 WM ITLL

INTEL CORP {UP/PRPHLS?

a

intel.

tive to the CLK2 signal must be met to guarantee
recognition at a particular clock edge. This pin is pro-
vided with a weak internal pull-up resistor of around

20 K-ohms to Vcc so that it will not float active when
left unconnected.

BUSY # serves an additional function. if BUSY # is
sampled LOW at the falling edge of RESET, the
Intel386 SX Microprocessor performs an internal
seif-test (see Bus Activity During and Following
Reset. if BUSY # is sampled HIGH, no self-test is
performed.

Coprocessor Error (ERROR #)

When asserted (LOW), this input signal indicates
that the previous coprocessor instruction generated
a coprocessor error of a type not masked by the
coprocessor’s control register. This input is automat-
ically sampled by the Inteld86 SX Microprocessor
when a coprocessor instruction is encountered, and
if active, the Intel386 SX Microprocessor generates
exception 16 to access the error-handling software.

Several coprocessor instructions, generally those
which clear the numeric error flags in the coproces-
SOr or save coprocessor state, do execute without
the Intel386 SX Microprocessor generating excep-
tion 16 even if ERROR# is active. These instruc-
tions are FNINIT, FNCLEX, FNSTSW, FNSTSWAX,
FNSTCW, FNSTENV and FNSAVE.

ERROR+# is an active LOW, level-sensitive asyn-
chronous signal. Setup and hold times, tpg and t3g,
relative to the CLK2 signal must be met to guarantee
recognition at a particular clock edge. This pin is pro-
vided with a weak internal pull-up resistor of around
20 K-ohms to Vece so that it will not float active when
left unconnected.

INTERRUPT SIGNALS (INTR, NMI, RESET)

The foflowing descriptions cover inputs that can in-
terrupt or suspend execution of the processor’s cur-
rent instruction stream.

Maskable Interrupt Request (INTR)

When asserted, this input indicates a request for in-
terrupt service, which can be masked by the Intel386
SX CPU Flag Register IF bit. When the Intel386 SX
Microprocessor responds to the INTR input, it per-
forms two interrupt acknowledge bus cycles and, at
the end of the second, latches an 8-bit interrupt vec-
tor on D7-Dq to identify the source of the interrupt.

INTR is an active HIGH, level-sensitive asynchro-

nous signal. Setup and hold times, ta7 and tog, rela-
tive to the CLK2 signal must be met to guarantee

L7E D

Intel386™ SX MICROPROCESSOR

recognition at a particular clock edge. To assure rec-
ognition of an INTR request, INTR should remain
active until the first interrupt acknowledge bus cycle
begins. INTR is sampled at the beginning of every
instruction in the Intei386 SX Microprocessor’s Exe-
cution Unit. In order to be recognized at a particular
instruction boundary, INTR must be active at least
eight CLK2 clock periods before the beginning of the
instruction. If recognized, the Intel386 SX Microproc-
essor will begin execution of the interrupt.

Non-Maskable Interrupt Request (NM!))

This input indicates a request for interrupt service
which cannot be masked by software. The non-
maskable interrupt request is always processed ac-
cording to the pointer or gate in slot 2 of the interrupt
table. Because of the fixed NMI slot assignment, no
interrupt acknowledge cycles are performed when
processing NMI.

NM! is an active HIGH, rising edge-sensitive asyn-
chronous signal. Setup and hold times, tp7 and tpg,
relative to the CLK2 signal must be met to guarantee
recognition at a particular clock edge. To assure rec-
ognition of NMI, it must be inactive for at least eight
CLK2 periods, and then be active for at least eight
CLK2 periods before the beginning of the instruction
boundary in the Intel386 SX Microprocessor's Exe-
cution Unit.’

Once NMI processing has begun, no additional
NMI's are processed until after the next IRET in-
struction, which is typically the end of the NMI serv-
ice routine. If NMI is re-asserted prior to that timse,
however, one rising edge on NMI will be remem-
bered for processing after executing the next IRET
instruction.

Interrupt Latency

The time that elapses before an interrupt request is
serviced (interrupt latency) varies according to sev-
eral factors. This delay must be taken into account
by the interrupt source. Any of the following factors
can affect interrupt latency:

1. If interrupts are masked, an INTR request will not
be recognized until interrupts are reenabled.

2. If an NMl is currently being serviced, an incoming
NMI request will not be recognized untit the
Intel386 SX Microprocessor encounters the IRET
instruction.

3. An interrupt request is recognized only on an in-
struction boundary of the intel386 SX Microproc-
essor's Execution Unit except for the following
cases:

— Repeat string instructions can be interrupted
after each iteration.

1-357

M 482L175 0L2bLu54 094 EE ITLL

INTEL CORP {UP/PRPHLS}

Intel386™ SX MICROPROCESSOR

— If the instruction loads the Stack Segment reg-
ister, an interrupt is not pracessed until after
the following instruction, which should be an
ESP. This allows the entire stack pointer to be
loaded without interruption.

— It an instruction sets the interrupt flag {(enabling
interrupts), an interrupt is not processed until
after the next instruction.

- The longest latency occurs when the interrupt re-
quest arrives while the Intel386 SX Microproces-
sor is executing a long instruction such as multipli-
cation, division, or a task-switch in the protected
mode.

4. Saving the Flags register and CS:E(P registers.

5. If interrupt service routine requires a task switch,
time must be allowed for the task switch.

6. If the interrupt service routine saves registers that
are not automatically saved by the Intei386 SX
Microprocessor.

RESET

This input signal suspends any operation in progress
and places the Intel386 SX Microprocessor in a
known reset state. The intel386 SX Microprocessor
is reset by asserting RESET for 15 or more CLK2
periods (80 or more CLK2 periods before requesting
self-test). When RESET is active, all other input pins,
except FLT #, are ignored, and all other bus pins are
driven to an idle bus state as shown in Table 5.5. if
RESET and HOLD are both active at a point in time,
RESET takes priority even if the Intel386 SX Micro-
processor was in a Hold Acknowledge state prior to
RESET active.

RESET is an active HIGH, level-sensitive synchro-
nous signal. Setup and hold times, tos and tzg, must
be met in order to assure proper operation of the
Intel386 SX Microprocessor.

Table 5.5. Pin State (Bus Idie) During Reset

LYE D

intel.

physical address alignment. Any byte boundary may
be used, although two physical bus cycles are per-
formed as required for unaligned operand transfers.

The Intel386 SX Microprocessor address signals are
designed to simplify external system hardware.
Higher-order address bits are provided by Apz~Aq.
BHE # and BLE # provide linear selects for the two
bytes of the 16-bit data bus.

Byte Enabie outputs BHE # and BLE # are asserted
when their associated data bus bytes are involved
with the present bus cycle, as listed in Table 5.6.

Table 5.6. Byte Enables and Assoclated Data

and Operand Bytes
Byte Enable .
Signal Associated Data Bus Signals
BLE# D7-Dg | (byte 0 — least significant)
BHE # D¢5~Dg | (byte 1 — most significant)

Pin Name Signal Leve! During Reset
ADS # 1

D15-Dg Float

BHE#, BLE # 0

Azg-Ay 1

W/R# 0

D/C# 1

M/IO# 0

LOCK # 1

HLDA 0

5.2 Bus Transfer Mechanism

All data transfers occur as a result of one or more
bus cycles. Logical data operands of byte and word
lengths may be transferred without restrictions on

1-358

Each bus cycle is composed of at least two bus
states. Each bus state requires one processor clock
period. Additional bus states added to a single bus
cycle are called wait states. See section 5.4 Bus
Functional Description.

5.3 Memory and 1/0 Spaces

Bus cycles may access physical memory space or
170 space. Peripheral devices in the system may ei-
ther be memory-mapped, or I/O-mapped, or both.
As shown in Figure 5.3, physical memory addresses
range from 000000H to OFFFFFFH (16 megabytes)
and /0O addresses from 000000H to OOFFFFH
(64 kilobytes). Note the 1/0 addresses used by the
automatic 1/0 cycles for coprocessor communica-
tion are BOOOF8H to 8000FFH, beyond the address
range of programmed /0, to allow easy generation
of a coprocessor chip select signal using the Asq
and M/IO# signals.

5.4 Bus Functional Description

The Intel386 SX Microprocessor has separate, par-
allel buses for data and address. The data bus is 16-
bits in width, and bidirectional. The address bus pro-
vides a 24-bit value using 23 signals for the 23 up-
per-order address bits and 2 Byte Enable signals to
directly indicate the active bytes. These buses are
interpreted and controlled by several definition sig-
nals.

The definition of each bus cycle is given by three
signals: M/IO#, W/R# and D/C#. At the same
time, a valid address is present on the byte enable
signals, BHE# and BLE#, and the other address
signals Apg—A4. A status signal, ADS#, indicates

B yf2LL?5 012LY55 T20 MR ITLL

INTEL CORP {UP/PRPHLSZ}

L?PE D

B 4826175

012bky5L 9L7 EE ITLL

Intel386™ SX MICROPROCESSOR

=} corrocessor

ACCESSIBLE
PROGRAMMED
1/0 SPACE

240187-18

FFFFFFH ramamansy
[}]
] L]
L] L]
L] []
H L
s ACCESSIBLE
L] []
4 []
L] []
. 1] (]
PHYSICAL -l !
MEMORY BOOOFFH
8000F8H
Y6=MBYTE (NoTE) » o
] L}
[} [}
L} (]
'oNor
VACCESSIBLEY
[] 1
(] [}
] 1]
L] L]
] L]
OOFFFFH .
64 kBYTE
000000H 000000H
PHYSICAL MEMORY SPACE 1/0 SPACE
NOTE:
Since A23 is HIGH during automatic communication with coprocessor, A23 HIGH and M/1O# LOW can be used to
easily generate a coprocessor select signal.

Figure 5.3. Physical Memory and I/0 Spaces

CLK2 [

(INPUT)

BHEA.BLE#.AT=A23,
M/10#,0/CH, W/R¥
(ouTPUTS)

ADS#
(outPUT)

NA#
(INPUT)

READY#
(INPUT)

LOCK# [
(ouTPUT)

D0-015
{INPUT DURING READ)

CYCLE 1
NON=PIPELINED
(READ)

J

CYCLE 2
NON=PIPELINED
(READ)

CYCLE 3
NON=PIPELINED
(READ)

m
#1]e2

VALID 2

VALID 3

+/

X VALID 1
-

VALID 2

VALID 3

:&-- --

INt

Fastest non-pipelined bus cycles consist of Tt and T2

240187-19

Figure 5.4. Fastest Read Cycles with Non-pipelined Address Timing

1-359

INTEL CORP {UP/PRPHLS?

Intel386™ SX MICROPROCESSOR

when the Intel386 SX Microprocessor issues a new
bus cycle definition and address.

Collectively, the address bus, data bus and all asso-
ciated control signals are referred to simply as ‘the
bus'. When active, the bus performs one of the bus
cycles below:

. Read from memory space

. Locked read from memory space

. Write to memory space

. Locked write to memory space

. Read from 1/0 space (or coprocessor)
. Write to 1/0 space (or coprocessor)

. Interrupt acknowledge (always locked)
. indicate halt, or indicate shutdown

W NO O A WN -

Table 5.2 shows the encoding of the bus cycle defi-
nition signals for each bus cycle. See Bus Cycle
Definition Signals for additional information.

LYE D

.

intel.
When the Intei386 SX Microprocessor bus is not
performing one of the activities listed above, it is ei-
ther Idle or in the Hold Acknowledge state, which
may be detected externally. The idie state can be
identified by the Intel386 SX Microprocessor giving
no further assertions on its address strobe output
(ADS #) since the beginning of its most recent bus
cycle, and the most recent bus cycle having been
terminated. The hold acknowledge state is identified
by the Intel386 SX Microprocessor asserting its hold
acknowledge (HLDA) output.

The shortest time unit of bus activity is a bus state. A
bus state is one processor clock period {(two CLK2
periods} in duration. A complete data transfer occurs
during a bus cycle, composed of two or more bus
states.

The fastest Intel386 SX Microprocessor bus cycle
requires only two bus states. For example, three
consecutive bus read cycles, each consisting of two
bus states, are shown by Figure 5.4. The bus states
in each cycle are named T1 and T2. Any memory or
I/0 address may be accessed by such a two-state
bus cycle, if the external hardware is fast enough.

M 4526275 0L2LU57 6T3 MR ITLY

CYCLE 1 CYCLE 2 CYCLE 3
PIPELINED PIPELINED PIPELINED
(READ) (READ) (READ)

e | 1P | e | 2P | TP | T2
o1]02(61 (02010201]02[41]02]s1]e2

oo L UL

BHE#.BLEF,A1~A23,
M/10#,D/C#, W/R#
(OUTPUTS)

ADS#
(QUTPUT) - \———

VALID 1 VALID 2 VALID 3 VALID 4

NAR T ™
(INPUT)

READY#
(INPUT)

+/

LOCK# VALID 1 VALID 2 VALID 3

(ouTPUT)
IN >-.---. IN1 '-----<IN2>------<IN3>-

Fastest pipelined bus cycles consist of T1P and T2P

Do-D15
(INPUT DURING READ)

240187-20

Figure 5.5. Fastest Read Cycles with Pipelined Address Timing

1-360

INTEL CORP {UP/PRPHLSY}

n

intgl.

Every bus cycle continues until it is acknowledged
by the external system hardware, using the Intel386
SX Microprocessor READY # input. Acknowledging
the bus cycle at the end of the first T2 results in the
shortest bus cycle, requiring only T1 and T2. If
READY # is not immediately asserted however, T2

states are repeated indefinitely until the READY #
input is sampled active.

The address pipelining option provides a choice of
bus cycle timings. Pipelined or non-pipelined ad-
dress timing is selectable on a cycle-by-cycle basis
with the Next Address (NA#) input.

When address pipelining is selected the address
(BHE #, BLE# and Ag3-A1) and definition (W/R#,
D/C#, M/10# and LOCK#) of the next cycle are
available before the end of the current cycle. To sig-
nal their availability, the Intel386 SX Microprocessor

L7PE D

Intel386™ SX MICROPROCESSOR

address status output (ADS#) is asserted. Figure
5.5 illustrates the fastest read cycles with pipelined
address timing.

Note from Figure 5.5 the fastest bus cycles using
pipelined address require only two bus states,
named T1P and T2P. Therefore cycles with pipe-
lined address timing allow the same data bandwidth
as non-pipelined cycles, but address-to-data access
time is increased by one T-state time compared to
that of a non-pipelined cycle.

READ AND WRITE CYCLES

Data transfers occur as a result of bus cycles, classi-
fied as read or write cycles. During read cycles, data
is transferred from an external device to the proces-
sor. During write cycles, data is transferred from the
processor to an external device.

IDLE CYCLE 1 cYeLE 2 cYeLE 3 IDLE CYCLE 4 IDLE
NON=PIPELINED | NON=PIPELINED | NON=PIPELINED NON=PIPELINED
(WRITE) (READ) (WRITE) (READ)
WMo T2 T o T2 | T T2 Ty T 1 |7
cuez [LN
pROCESSOR CLK [_/—V /|
BHE.BLEF, | | . .
Al=A23, VALID 1 VALID 2 VALID 3 VALID 4
M/10 4,0/ #
w/rp [
sos¢ [/ Y __/ /
NA# [

cycle can immediately follow the write cycle.

ReaoY # [I

END CYCLE 1 END CYCLE 2 END CYCLE 3 END CYCLE 4
LOCK # [VALID 1 VALID 2 VALID 3 VALID 4
DO-D15[R p—— -w ouT)-q---< N >. ouT)-....-.-.. IN P=ee

Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus

240187-21

Figure 5.6. Various Bus Cycles with Non-Pipelined Address (zero wait states)

1-361

B 4626175 0126458 737 MR ITLY

INTEL CORP {UP/PRPHLS} L?E D MR 482LL?7S5 012LY59 L7L MR ITLL

Intel386™ SX MICROPROCESSOR

Two choices of address timing are dynamically se-
lectable: non-pipelined or pipslined. After an idle bus
state, the processor always uses non-pipelined ad-
dress timing. However the NA# (Next Address) in-
put may be asserted to select pipelined address tim-
ing for the next bus cycle. When pipelining is select-
ed and the Intel386 SX Microprocessor has a bus
request pending internally, the address and defini-
tion of the next cycle is made available even before
the current bus cycle is acknowledged by READY #.

Terminating a read or write cycle, like any bus cycle,
requires acknowledging the cycle by asserting the
READY # input. Until acknowledged, the processor
inserts wait states into the bus cycle, to allow adjust-
ment for the speed of any external device. External
hardware, which has decoded the address and bus
cycle type, asserts the READY # input at the appro-
priate time.

]

intal.
At the end of the second bus state within the bus
cycle, READY # is sampled. At that time, if external
hardware acknowledges the bus cycle by asserting
READY #, the bus cycle terminates as shown in Fig-
ure 5.6. If READY # is negated as in Figure 5.7, the
Intel386 SX Microprocessor executes another bus
state (a wait state) and READY # is sampled again
at the end of that state. This continues indefinitely
until the cycle is acknowledged by READY # assert-
ed.

When the current cycle is acknowledged, the
Intel386 SX Microprocessor terminates it. When a
read cycle is acknowledged, the Intel386 SX Micro-
processor latches the information present at its data
pins. When a write cycle is acknowledged, the
Intei386 SX CPU’s write data remains valid through-
out phase one of the next bus state, to provide write
data hold time.

T T T2 T

PROCESSOR CLK [4 _/-

BHE#,BLE#,

IDLE CYCLE CYCLE 2 IOLE CYCLE 3 IDLE
NON=PIPELINED NON=PIPELINED NON~-PIPELINED
(READ) (WRITE) (READ)

e [ULy
4

T m T2 T2

nn
N/ NSNS NSNS

At=A23, VALID 1

VALID 2 VALID 3

M/I0#,0/C#

W/R 4 [

sos [Ny / /

Idle states are shown here for diagram variety only. Write
cycle can immediately follow the write cycle.

wors | g
END CYCLE END CYCLE 2 END CYCLE 3
LOCK # [VALID VALID 2 VALID 3
00.915[cdecccalencan .--< N >(ouT).. --.-.---..---< IN >---.
{
240187-22

cycles are not always followed by an idle state. An active bus

Figure 5.7. Various Bus Cycles with Non-Pipelined Address (various number of walit states)

1-362

INTEL CORP {UP/PRPHLSY}

intgl.

Non-Pipelined Address

Any bus cycle may be performed with non-pipelined
address timing. For example, Figure 5.6 shows a
mixture of read and write cycles with non-pipelined
address timing. Figure 5.6 shows that the fastest
possible cycles with non-pipelined address have two
bus states per bus cycle. The states are named T1
and T2. in phase one of T1, the address signals and
bus cycle definition signals are driven valid and, to
signal their availability, address strobe (ADS#) is
simultaneously asserted. ’

During read or write cycles, the data bus behaves as
follows. If the cycle is a read, the Intel386 SX Micro-
processor floats its data signals to allow driving by
the external device being addressed. The Intel386
SX Microprocessor requires that all data bus
pins be at a valid logic state (HIGH or LOW) at
the end of each read cycle, when READY # is
asserted. The system MUST be designed to
meet this requirement. If the cycle is a write, data
signals are driven by the Intel386 SX Microproces-
sor beginning in phase two of T1 until phase one of
the bus state following cycle acknowledgment.

L7E D WA 4826175 012kukLO 398 MR ITL1

Intel386™ SX MICROPROCESSOR

Figure 5.7 illustrates non-pipelined bus cycles with
one wait state added to Cycles 2 and 3. READY # is
sampled inactive at the end of the first T2 in Cycles
2 and 3. Therefore Cycles 2 and 3 have T2 repeated
again. At the end of the second T2, READY # is
sampled active.

When address pipelining is not used, the address
and bus cycle definition remain valid during all wait
states. When wait states are added and it is desir-
able to maintain non-pipelined address timing, it is
necessary to negate NA+# during each T2 state ex-
cept the last one, as shown in Figure 5.7 Cycles 2
and 3. If NA# is sampled active during a T2 other
than the last one, the next state would be T21 or T2P
instead of another T2.

When address pipelining is not used, the bus states
and transitions are completely illustrated by Figure
5.8. The bus transitions between four possible
states, T1, T2, T;, and Ty. Bus cycles consist of T1
and T2, with T2 being repeated for wait states. Oth-
erwise the bus may be idle, T, or in the hold ac-
knowledge state T,

RESET
ASSERTED

HOLD NEGATED »
NO REQUEST

REQUEST PENDING «
HOLD NEGATED

Bus States:

HOLD ASSERTED

HOLD NEGATED ¢
REQUEST PENDING

READY# ASSERTED *
HOLD NEGATED «
REQUEST PENDING

READY# NEGATED »
NA# NEGATED

240187-23

Tt1—first clock of a non-pipelined bus cycle (Intel386™ SX CPU drives new address and asserts ADS #).
T2—subsequent clocks of a bus cycle when NA# has not been sampled asserted in the current bus cycle.
Tiidle state.

Th—hold acknowledge state (Intel386 SX CPU asserts HLDA).

‘The fastest bus cycle consists of two states T1 and T2.

Four basic bus states describe bus operation when not using pipelined address.

Figure 5.8. Bus States (not using pipelined address)

I 1-363

INTEL CORP {UP/PRPHLS}

Intel386™ SX MICROPROCESSOR

Bus cycles always begin with T1. T1 always leads to
T2. if a bus cycle is not acknowledged during T2 and
NA# is inactive, T2 is repeated. When a cycle is
acknowledged during T2, the following state will be
T1 of the next bus cycle if a bus request is pending
internally, or T; if there is no bus request pending, or
Th if the HOLD input is being asserted.

Use of pipelined address allows the Intel386 SX Mi-
croprocessor to enter three additional bus states not
shown in Figure 5.8. Figure 5.12 is the complete bus
state diagram, including pipelined address cycles.

Pipelined Address

Address pipelining is the option of requesting the
address and the bus cycle definition of the next in-

L?E D

intgl.

ternally pending bus cycle before the current bus
cycle is acknowledged with READY# asserted.
ADS # is asserted by the Intel386 SX Microproces-
sor when the next address is issued. The address
pipelining option is controlled on a cycle-by-cycle
basis with the NA# input signal.

Once a bus cycle is in progress and the current ad-
dress has been valid for at least one entire bus
state, the NA# input is sampled at the end of every
phase one until the bus cycle is acknowledged. Dur-
ing non-pipelined bus cycles NA# is sampled at the
end of phase one in every T2. An example is Cycle 2
in Figure 5.9, during which NA# is sampled at the
end of phase one of every T2 (it was asserted once
during the first T2 and has no further effect during
that bus cycle).

IDLE | CYCLE 1 CYCLE 2 CYCLE 3 creLe 4 | IDLE
NON-PIPELINED | NON-PIPELINED PIPELINED PIPELINED
{WRITE) (READ) (WRITE) (READ)
. |
no, T , T2 (T | T2 [TP TP TP | TP, T2 | T

ewa [[T UL

PROCESSOR CLK [_/_ _/-\j-
BHE 4,6LE #,

Af = A23, VALID 1 VALID 2 VALID 3 VALID 4

M/10 §, D/CH

b

W/R?K [X

\/ "X

N\

VALID 1

VALID 2

out

oo-ms[R - »>-

lined cycle with at least one wait state (Cycle 2 above).

e 0

Following any idle bus state (Ti), addresses are non-pipelined. Within non-pipelined bus cycles, NA# is only sampled
during wait states. Therefore, 10 begin address pipelining during a group of non-pipelined bus cycles requires a non-pipe-

out j----@---
| |

240187-24

Figure 5.9. Transitioning to Pipelined Address Ddring Burst of Bus Cycles

1-364

M 4826175 D12L4L) 224 WA ITLY

INTEL CORP {UP/PRPHLS?

intel386™ SX MICROPROCESSOR

The complete bus state transition diagram, including
operation with pipelined address is given by Figure
5.12. Note it is a superset of the diagram for non-
pipelined address only, and the three additional bus
states for pipelined address are drawn in bold.

LPE D

B 442L175 0l2k4bk2 L0 WA ITLL

intal.

The fastest bus cycle with pipelined address con-
sists of just two bus states, T1P and T2P (recall for

non-pipelined

address it is T1 and T2). T1P is the

first bus state of a pipelined cycle.

THAN ONCE DURING
ANY CYCLE HAS NO

BEEN ASSERTED
IN T1P IF DESIRED.

ADDITIONAL EFFECTS ASSERTION NOW IS

THE LATEST TIME
POSSIBLE TO ALLOW
THE CPU TO ENTER T2P
STATE TO MAINTAIN
PIPELINING IN CYCLE 3

CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4
PIPELINED PIPELINED PIPELINED PIPELINED
(WRITE) (READ) (WRITE) (READ)
TP T2P |, T2P TP T2 T2P | TIP 2! T2P TIP
CLK2 [| I | | I | r
PROCESSOR CLK [_/_ _f \
BHE#.BLE#,
Al=A23, VALID 1 VALID 2 VALID 3 VALID 4
M/I0#, D/C# e v > '
|
[~ ADS# IS ASSERTED AS
SOON AS THE CPU HAS ANOTHER
BUS CYCLE TO PERFORM,
WHICH IS NOT ALWAYS
IMMEDIATELY AFTER NA#
IS ASSERTED
wiry [
T
st [/T NV
/
NOTE ADS# IS | AS LONG AS THE CPU ENTERS THE
ASSERTED IN T2P STATE DURING CYCLE 3,
EVERY T2P STATE ADDRESS PIPELINING IS
“_‘ | MAINTAINED IN CYCLE 4
[X KN
NA #
ASSERTING NA# MORE NA# COULD HAVE

reaov 4 [N\ XX N\ R XA
LOCK # [VALID 1 VALID 2 VALID 3 VALID 4
! |
DO-D15[ot X ouT Yoleeeteodn >(out »o--
| 1 [

2401897-26

Figure 5.11. Details of Address Pipelining During Cycles with Wait States

1-366

INTEL CORP {UP/PRPHLS} &L?E D ER 482L17?5 01l2LYL3 OT? MR ITL1

Intel386™ SX MICROPROCESSOR

HOLD ASSERTED

READY# ASSERTED »
HOLD ASSERTED

2,
550
o'

R
1575,
HOLD NEGATED "B:%‘f\:,
EQUEST PENDING e;?b,

RESET
ASSERTED

HOLD NEGATED »
NO REQUEST

€3
RS
‘ ALWAYS
REQUEST PENDING ¢
READY# ASSERTED»
HOLD NEGATED HOID NEGATED
REQUEST PENDING

NA# NEGATED

A TIP

X
READY# ASSERTED« ' @‘f%’ ¢
HOLD NEGATED® z
REQUEST PENDING READY} WEGATED §
NA# NEGATED .
. o] 5]
38f 53l |g
aﬁ»; ﬁ: »
ga3e <7 |%
*
T2l sist 38 |3
READY# ASSERTED + 3228 gl |2
HOLD NEGATED * ® T Zz
NO REQUEST a2 3
BES g
3zZ%
Bus States: £&g
T1—first clock of a non-pipelined bus cycle (Intei386™ SX CPU READY# NEGATED® =5HZ
drives new address and asserts ADS #). (5% n':o"utsr + §§3
T2—subsequent clocks of a bus cycle when NA# has not been HOLD ASSERTED) [& W=
sampled asserted in the current bus cycle.
T2l—subsequent clocks of a bus cycle when NA# has been
sampled asserted in the current bus cycle but there is not yet
an internal bus request pending (Intel386 SX CPU will not drive
new address or assert ADS #).
T2P—subsequent clocks of a bus cycle when NA# has been
sampled asserted in the current bus cycle and there is an inter-
nal bus request pending (Intel386 SX CPU drives new address
and asserts ADS #).)
T1P—first clock of a pipelined bus cycle. READY# NEGATED
Ti—idle state. 240197-27

Th—hold acknowledge state (Intel386 SX CPU asserts HLDA).
Asserting NA# for pipelined address gives access to three
more bus states: T2l, T2P and T1P.

Using pipelined address, the fastest bus cycle consists of T1P
and T2P,

Figure 5.12. Complete Bus States (including pipelined address)

1-367

INTEL CORP {UP/PRPHLS}

Intel386™ SX MICROPROCESSOR

Initiating and Maintaining Pipelined Address

Using the state diagram Figure 5.12, observe the
transitions from an idle state, Tj, to the beginning of
a pipelined bus cycle T1P. From an idle state, T;, the
first bus cycle must begin with T1, and is therefore a
non-pipelined bus cycle. The next bus cycle will be
pipelined, however, provided NA# is asserted and
the first bus cycle ends in a T2P state (the address
for the next bus cycle is driven during T2P). The fast-
est path from an idle state to a bus cycle with pipe-
lined address is shown in bold below:

T T T, T1-T2-T2P, TIP- T2P,
idle non-pipelined pipelined
states cycle cycle

T1-T2-T2P are the states of the bus cycle that es-
tablish address pipelining for the next bus cycle,
which begins with T1P. The same is true after a bus
hold state, shown below:
Thy Thy Thy T1-T2-T2P, T1P - T2P,
hold acknowledge non-pipelined pipelined
states cycle cycle

The transition to pipelined address is shown func-
tionally by Figure 5.10 Cycle 1. Note that Cycle 1 is
used to transition into pipelined address timing for
the subsequent Cycles 2, 3 and 4, which are pipe-
lined. The NA# input is asserted at the appropriate
time to select address pipelining for Cycles 2, 3 and
4.

Once a bus cycle is in pragrass and the current ad-
dress has been valid for one entire bus state, the
NA# input is sampled at the end of every phase one
until the bus cycle is acknowledged. Sampling be-
gins in T2 during Cycle 1 in Figure 5.10. Once NA#
is sampled active during the current cycle, the
Intel386 SX Microprocessor is free to drive a new
address and bus cycle definition on the bus as early
as the next bus state. In Figure 5.10 Cycle 1 for
example, the next address is driven during stats
T2P. Thus Cycle 1 makes the transition to pipelined
address timing, since it begins with T1 but ends with
T2P. Because the address for Cycle 2 is available
before Cycle 2 begins, Cycle 2 is called a pipelined

1-368

L7E D

]

intgl.
bus cycle, and it begins with T1P. Cycle 2 begins as
soon as READY # asserted terminates Cycle 1.

Examples of transition bus cycles are Figure 5.10
Cycle 1 and Figure 5.9 Cycle 2. Figure 5.10 shows
transition during the very first cycle after an idle bus
state, which is the fastest possible transition into ad-
dress pipelining. Figure 5.9 Cycle 2 shows a tran-
sition cycle occurring during a burst of bus cycles. In
any case, a transition cycle is the same whenever it
occurs: it consists at least of T1, T2 (NA# is assert-
ed at that time), and T2P (provided the Intel386 SX
Microprocessor has an internal bus request already
pending, which it aimost always has). T2P states are
repeated if wait states are added to the cycle.

Note that only three states (T1, T2 and T2P) are
required in a bus cycle performing a transition from
non-pipelined address into pipelined address timing,
for example Figure 5.10 Cycle 1. Figure 5.10 Cycles
2, 3 and 4 show that address pipelining can be main-
tained with two-state bus cycles consisting only of
T1P and T2P.

Once a pipelined bus cycls is in progress, pipelined
timing is maintained for the next cycle by asserting
NA+# and detecting that the Intel386 SX Microproc-
essor enters T2P during the current bus cycle. The
current bus cycle must end in state T2P for pipslin-
ing to be maintained in the next cycle. T2P is identi-
fied by the assertion of ADS#. Figures 5.9 and 5.10
however, each show pipelining ending after Cycle 4
because Cycle 4 ends in T2l. This indicates the
Intel386 SX Microprocessor didn’t have an internal
bus request prior to the acknowledgement of Cycle
4. If a cycle ends with a T2 or T2I, the next cycle will
not be pipelined.

Realistically, address pipelining is almost always
maintained as long as NA+# is sampled asserted.
This is so because in the absence of any other re-
quest, a code prefetch request is always internally
pending until the instruction decoder and code pre-
fetch queue are completely full. Therefore, address
pipelining is maintained for long bursts of bus cycles,
if the bus is available (i.e., HOLD inactive) and NA #
is sampled active in each of the bus cycles.

B 452L175 0l2hubY T33 WA ITLY

INTEL CORP {UP/PRPHLS} &L7E D W 4825175 012bubLS5S 977 ER ITLL

u
|n'|'6| o : Intel386™ SX MICROPROCESSOR

INTERRUPT ACKNOWLEDGE (INTA) CYCLES The LOCK # output is asserted from the beginning

of the first interrupt acknowledge cycte untii the end
In response to an interrupt request on the INTR in- of the second interrupt acknowledge cycle. Four idle
put when interrupts are enabled, the Intei386 SX Mi- bus states, T;, are inserted by the Intel386 $X Micro-

croprocessor performs two interrupt acknowledge processor between the two interrupt acknowledge

cycles. These bus cycles are similar to read cycles cycles for compatibility with spec TRHRL of the

in that bus definition signals define the type of bus B259A Interrupt Controller.

activity taking place, and each cycle continues until

acknowledged by READY # sampled active. During both interrupt acknowledge cycles, Dy 5-Do
float. No data is read at the end of the first interrupt

The state of Az distinguishes the first and second acknowledge cycle. At the end of the second inter-

interrupt acknowledge cycles. The byte address rupt acknowledge cycle, the Intel386 SX Microproc-

driven during the first interrupt acknowledge cycle is essor will read an external interrupt vector from Dy-

4 (Agz~Ag, Ay, BLE# LOW, A and BHE# HIGH). Dy of the data bus. The vector indicates the specific §

The byte address driven during the second interrupt interrupt number (from 0-255) requiring service.
acknowledge cycle is 0 (Agz~A4, BLE# LOW, and
BHE # HIGH),
' PREVIOUS INTERRUPT 10LE INTERRUPT IDLE
CYCLE ACKMOWLEDGE (4 BUS STATES) ACKNOWLEDGE
CYCLE 1 CYCLE 2

T2 | T2 T2 m A m n T2 T21 T

ool _nnnnhnfinhnhnhnhn
processor cuk [—\/—_/-_/_\f_/—_/-\f\/-_f
snes[

, o -
BLE#,A1,A3-A23, (] d
M/I0#, D/CH, W/R¥
A2
I: L

LOCK# [

avsy [/ /
e[|
reanvs[\ N\

IGNORED VECTOR
Dg-g7[cdeccmdunccnscnca oo cSedececmdmccceloencaltannamenes koo .ee
IGNORED IGNORED
Da-m_r,E cfemmeqecceclancan - --..---.1 b-- cee
24018728

Interrupt Vector (0-255) is read on DO-D7 at end of second interrupt Acknowledge bus cycle.
Because each Interrupt Acknowledge bus cycle is followed by idle bus states. asserting NA# has no practical effect.
Choose the approach which is simplest for your system hardware design.

Figure 5.13. Interrupt Acknowledge Cycles

I 1-369

INTEL CORP {UP/PRPHLS} L?E D WB 4825175 012bukLL 80L WE ITLL

Intel386™ SX MICROPROCESSOR) Int9| »

HALT INDICATION CYCLE definition signals shown on page 40, Bus Cycle
Definition Signals, and an address of 2. The halt

The execution unit halts as a result of executing a indication cycle must be acknowledged by READY #
HLT instruction. Signaling its entrance into the halt asserted. A halted Intel386 SX Microprocessor re-
state, a halt indication cycle is performed. The halt sumes execution when INTR (if interrupts are en-
indication cycle is identified by the state of the bus abled), NMI or RESET is asserted.

CYCLE 1 CYCLE 2 IDLE
NON-PIPELINED | NON-PIPELINED
{WRITE) (HALT)
T1 T2, T1 T2 T T k(] T

wal it
PROCESSOR CLK [= _/-_/-

BHE®, A1, + b Inte1386™ SX CPU REMAINS
M/IO#, W/R# [VALID 1 | HALTED UNTIL INTR, NMI OR
| RESET IS ASSERTED.
A2-A23, -
VALID 1
BLE®, D/Ce = Inte1386™ SX CPU RESPONDS
TO HOLD INPUT WHILE IN
Ansal: N / N\ / THE HALT STATE.

NA# [

READY# [

NOTE: HALT CYCLE MUST BE
ACKNOWLEDGED BY READY#
ASSERTED. WAIT STATES MAY
BE ADDED TO THE CYCLE IF
DESIRED.

Locxa[VALID 1 VALiD 2 m

D0-D I: ouT X | ouT 1| X UNDEFINED == (FLOATING) == == pm ===
] o]

240187-29

Figure 5.14. Example Halt Indication Cycle from Non-Pipelined Cycle

1-370 I

INTEL CORP {UP/PRPHLS}

.
intgl.
SHUTDOWN INDICATION CYCLE

The Intel386 SX Microprocessor shuts down as a
result of a protection fault while attempting to pro-
cess a double fault. Signaling its entrance into the
shutdown state, a shutdown indication cycle is per-
formed. The shutdown indication cycle is identified
by the state of the bus definition signals shown in
Bus Cycle Definition Signals and an address of 0.
The shutdown indication cycle must be acknow!-
edged by READY # asserted. A shutdown Intel386
X Microprocessor resumes execution when NMI or
RESET is asserted.

LYE D

intel386™ SX MICROPROCESSOR

ENTERING AND EXITING HOLD
ACKNOWLEDGE

The bus hold acknowledge state, T}, is entered in
response to the HOLD input being asserted. In the
bus hold acknowledge state, the Intel386 SX Micro-
processor floats all outputs or bidirectional signals,
except for HLDA. HLDA is asserted as long as the
Intel386 SX Microprocessor remains in the bus hold
acknowledge state. In the bus hold acknowledge
state, all inputs except HOLD, FLT# and RESET are
ignored.

BB 4826175 01264L? 742 MR ITLL

CYCLE 1 CYCLE 2 IDLE
PIPELINED PIPELINED
(READ) {SHUTDOWN)
TtP T2P TIP T21 Ti Ti Ti Ti

wel UMY
PROCESSOR CLK [—v

Intel386™ SX CPU REMAINS

BHE®,
M/i10%, W/R# VALID 1 | SHUTDOWN UNTIL N::!I
BLE® IS LOW FOR OR RESET IS ASSERTED.
BLE#,A1-A23 VALID 1 \SHUTDOWN CYCLE B
p/c# b~ Inte!388™™ SX CPU RESPONDIS

TO HOLD INPUT WHILE IN
THE SHUTDOWN STATE.

ADS# I: /
wl X

READY# [

NOTE: SHUTDOWN CYCLE MUST BE
ACKNOWLEDGED BY READY#
ASSERTED. WAIT STATES MAY
BE ADDED TO THE CYCLE IF
DESIRED.

VALID 1 VALID 2

LOCK‘[
DO-D15E< N }------ IN 1 -(_UNDEF!NED ’---(FLDATING)-----------

Figure 5.15. Example Shutdown Indication Cycie from Non-Pipelined Cycle

240187-30

l : 1-371

INTEL CORP {UP/PRPHLS?

Intel386™ SX MICROPROCESSOR

Tn may be entered from a bus idle state as in Figure
5.16 or after the acknowledgement of the current
physical bus cycle if the LOCK # signal is not assert-
ed, as in Figures 5.17 and 5.18.

Th is exited in response to the HOLD input being
negated. The following state will be T; as in Figure
5.16 if no bus request is pending. The following bus
state will be T1 if a bus request is internally pending,
as in Figures 5.17 and 5.18. Ty, is exited in response
to RESET being asserted.

if a rising edge occurs on the edge-triggered NMI
input while in T, the event is remembered as a non-
maskable interrupt 2 and is serviced when Ty, is exit-
ed unless the Intel386 SX Microprocessor is reset
before T}, is exited.

L7E D

intgl.

RESET DURING HOLD ACKNOWLEDGE

RESET being asserted takes priority over HOLD be-
ing asserted. If RESET is asserted while HOLD re-
mains asserted, the Intel386 SX Microprocessor
drives its pins to defined states during reset, as in
Table 5.5 Pin State During Reset, and performs
internal reset activity as usual.

If HOLD remains asserted when RESET is inactive,
the Intel386 SX Microprocessor enters the hoid ac-
knowledge state before performing its first bus cy-
cle, provided HOLD is still asserted when the
Intel386 SX Microprocessor would otherwise per-
form its first bus cycle.

IDLE

T

PROCESSOR CLK [

f—

wal MMM
V2 Ve VaVaVa

HOLD IDLE
ACKNOWLEDGE

Th Th Th

wowo[Y. 4

HLDA [

BHE#,BLE#,
A1=A23, M/I0§

N

= === (FLOATING) so == m

D/C#, W/R¥
ADS#[

%o a-l(FLOATING) coeat ‘

NOTE:

Do-ms[edeccadaacas

For maximum design flexibility the Intel386™ $X CPU has no internal pullup resistors on its outputs. Your design may
require an external pullup on ADS# and other outputs to keep them negated during float periods.

(FLOATING) e ==~

((FLOATING)
cccapsaneponaal

240187-31

Figure 5.16. Requesting Hold from idle Bus

1-372

B 482L175 0l2b4GEA LAY WA ITLL

INTEL CORP {UP/PRPHLS}

intgl.

FLOAT

Activating the FLT # input floats all Intel386 SX bidi-
rectional and output signals, including HLDA. Assert-
ing FLT# isolates the Intel386 SX from the sur-
rounding circuitry.

As the Intei386 SX is packaged in a surface mount
PQFP, it cannot be removed from the motherboard
when In-Circuit Emulation (ICE) is needed. The
FLT # input allows the Intei386 SX to be electrically
isolated from the surrounding circuitry. This allows
connection of an emulator to the Intel386 SX PQFP
without removing it from the PCB. This method of
emulation is referred to as ON-Circuit Emulation
(ONCE). :

ENTERING AND EXITING FLOAT

FLT # is an asynchronous, active-low input. It is rec-
ognized on the rising edge of CLK2. When recog-
nized, it aborts the current bus cycle and floats the
outputs of the Intei386 SX (Figure 5.20). FLT# must
be held low for a minimum of 16 CLK2 cycles. Reset
should be asserted and held asserted until after
FLT# is deasserted. This will ensure that the
Intel386 SX will exit float in a valid state.

LPE D

Intel386™ SX MICROPROCESSOR

Asserting the FLT# input unconditionally aborts the
current bus cycle and forces the Intel386 SX into the
FLOAT mode. Since activating FLT # unconditional-
ly forces the Intel386 SX into FLOAT mode, the
Intei386 SX is not guaranteed to enter FLOAT in a
valid state. After deactivating FLT #, the Intel386 SX
is not guaranteed to exit FLOAT mode in a valid
state. This is not a problem as the FLT# pin is
meant to be used only during ONCE. After exiting
FLOAT, the Intel386 SX must be reset to return it to
a valid state. Reset should be asserted before FLT #
is deasserted. This will ensure that the {ntel386 SX
will exit float in a valid state.

FLT # has an internal pull-up resistor, and if it is not
used it should be unconnected.

BUS ACTIVITY DURING AND FOLLOWING
RESET

RESET is the highest priority input signal, capable of
interrupting any processor activity when it is assert-
ed. A bus cycle in progress can be aborted at any
stage, or idle states or bus hold acknowledge states
discontinued so that the reset state is established.

(READ)

ot [

CYCLE 1
NON=PIPELINED

e[LALLM
erocessor ol “N_/ N/ |

HOLD CYCLE 2
ACKNOWLEDGE | NON=-PIPELINED
(WRITE)
] 7

moa [

HOLD ASSERTED |
NO LATER THAN READY# ASSERTED

BHEJ BLEFAL=A23, [:K VALD 1

W/104,0/C4, W/Rp

_(_FI_.O_ATIL«i)_. (VALID 2

(FLOATING)

wssl Ny

wae [

roors [

(NEGATED, OR LAST LockED cvete) T -
vocxs [VAL 1 s JTOATNG) L Vawn z

(FLOATING)

e o

NOTE:

(...GlD.-S?g‘.“.NE). -.-(ouT

HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (tag and to4) require-
ments are met. This waveform is useful for determining Hold Acknowledge latency.

240187-32

Figure 5.17. Requesting Hold from Active Bus (NA # inactive)

1-373

B 4526175 0L2buL9 515 WA ITLL

INTEL CORP {UP/PRPHLS}

Intel386™ SX MICROPROCESSOR

RESET should remain asserted for at least 15 CLK2
periods to ensure it is recognized throughout the
Intel386 SX Microprocessor, and at least 80 CLK2
periods if self-test is going to be requested at the
falling edge. RESET asserted pulses less than 15
CLK2 periods may not be recognized. RESET puls-
es less than 80 CLK2 periods followed by a self-test
may cause the self-test to report a failure when no
true failure exists.

Provided the RESET falling edge mesets setup and
hold times tos and tog, the internal processor clock
phase is defined at that time as illustrated by Figure
5.19 and Figure 7.7.

L7PE D

intgl.

A self-test may be requested at the time RESET
goes inactive by having the BUSY # input at a LOW
level as shown in Figure 5.19. The self-test requires
approximately (220 + 60) CLK2 periods to com-
plete. The self-test duration is not affected by the
test results. Even if the self-test indicates a problem,
the Intel386 SX Microprocessor attempts to procesd
with the reset sequence afterwards.

After the RESET falling edge (and after the self-test
if it was requested) the Intel386 SX Microprocessor
performs an internal initialization sequence for ap-
proximately 350 to 450 CLK2 periods.

CYCLE 1

(WRITE)

e T2

e[|

-
PROCESSOR CLKE

PIPELINED

HOLD CYCLE 2
ACKNOWLEDGE | NON=-PIPELINED
(READ)

Th

E
=L

HOLD[w >

I
HOLD ASSERTED IN SAME BUS \

NOTE:

STATE AS NA# ASSERTED
HLOA [- \
FLOATING)
BHE#,BLE#A1-A23, _(FLOATING) N
IRy A [VALID |1 VALID 2
(FLOATING) |
ADS# [dialbie/ BN amm
NA# [
READY# [
(NEGATED, OR LAST LOCKED CYCLE)
(FLOATING)
LOCK# [VALID 1 esenpeeaad VALD 2
" (FLOATING
DO-D15[our X ouT)-(T----.I).--.....G
T i

HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (23 and t24) require-
ments are met. This waveform is useful for determining Hold Acknowledge latency.

240187-33

Figure 5.18. Requesting Hold from Idle Bus (NA # active)

1-374

B 442L175 012Lu?0 237 M ITLL

INTEL CORP {UP/PRPHLS} GL7E D EE u482L1?5 0L2b471 173 WM ITLY

-
'ntGI ® Intel386™ SX MICROPROCESSOR

INTERNAL
RESET }
215 CLK2 DURATION IF INTIALIZATION
ING T
2?:;5?;’;?_ O REQUEST NON=PIPELINED

(IF SELF-TEST IS PERFORMED, (READ)
1

—_— i CYCLE t

280 CLK2 DURATION

ADD (2°20)+60°* TO THESE
BEFORE REQUESTING

NUMBERS nom

SELF-TEST. 2 3|17 18] 19||s98|398 397|308
CLK2[HI”I“”
*APPROXIMATELY
reser [/ \,

{6216 1(62/161(02(¢1) 02/ ¢1(82

cuxwrernaL) [:)CXDOOC
mson s XY\ IS\]

NO SELF=TEST

N N\
N NS

S

susy [(HoTE 1)
—ss LOW TO BEGIN SELF-TEST(NOTE 2)
ervots [XXX XXX XXXKH
BHERBLES UP TQ 30 CLKZ
W/R#, M/10f, [LOW || DURING RESET m VALID 1
i A
UP 7O 30 CLK2-+1 {
AV=A23,
D/C#,LOCK# HIGH || DURING RESET m VALID 1
UP TO 30 CLK2 -]
ADS# [HIGH || DURING RESET \ /-

VT 7707070707070 07070 TOTOTOTOTO OO TN
reaovs [OO0 KX XXX
DO-D15#|: m------(rmmnc) ------------ beemdealfedaeaadea.

240187-34

NOTES:

1. BUSY # should be held stable for 8 CLK2 periods before and after the CLK2 period in which RESET falling edge
occurs.

2. It self-test is requested the outputs remain in their reset state as shown here.

Figure 5.19. Bus Activity from Reset Until First Code Fetch

a2 NANNANNANNANNANANANANANANNANNANANNND

T\ J
CTRL ecmeesvemmsessaneamaarenanan PR « X
2 Y e T a1 s SESRELRSSRSESERSRRIRE Y X
ADOR) VALD) R L L L LD P LR PR SRR cumm® ¢
RESET y 4
240187-51
Figure 5.20. Entering and Exiting, FLT #
1-375

INTEL CORP {UP/PRPHLS}

Intel386™ SX MICROPROCESSOR

5.5 Self-test Signature

Upon completion of self-test (if self-test was re-
quested by driving BUSY # LOW at the falling edge
of RESET) the EAX register will contain a signature
of 00000000H indicating the Intel386 SX Microproc-
essor passed its self-test of microcode and major
PLA contents with no problems detected. The pass-
ing signature in EAX, 00000000H, applies to all revi-
sion levels. Any non-zero signature indicates the unit
is faulty.

5.6 Component and Revision
Identifiers

To assist users, the Intei386 SX Microprocessor af-
ter reset holds a component identifier and revision
identifier in its DX register. The upper 8 bits of DX
hold 23H as identification of the Intel386 SX Micro-
processor (the lower nibble, 03H, refers to the
Intel386 DX Architecture. The upper nibble, 02H, re-
fers to the second member of the Intel386 DX Fami-
ly). The lower 8 bits of DX hold an 8-bit unsigned
binary number related to the component revision
level. The revision identifier will, in general, chrono-
logically track those component steppings which are
intended to have certain improvements or distinction
from previous steppings. Tha Intel386 SX Microproc-
essor revision identifier will track that of the Intel386
DX CPU whers possibie.

The revision identifier is intended to assist users to a
practical extent. However, the revision identifier val-
ue is not guaranteed to change with every stepping
revision, or to follow a completely uniform numerical
sequence, depending on the type or intention of re-
vision, or manufacturing materials required to be
changed. Intel has sole discretion over these char-
acteristics of the component.

Table 5.7. Component and

Revision Identifier History

- ‘primitives’.

Stepping Revision |dentifier
A0 04H
B 05H
Cc 08H
D 08H
E 08H

5.7 Coprocessor Interfacing

The Intel386 SX Microprocessor provides an auto-
matic interface for the Intel Intel387 SX numeric
floating-point coprocessor. The Intsl387 SX coproc-
essor uses an /0O mapped interface driven automat-
ically by the Intel386 SX Microprocessor and assist-
ed by three dedicated signals: BUSY #, ERROR #
and PEREQ.

As the Intel386 SX Microprocessor begins support-
ing a coprocessor instruction, it tests the BUSY #
and ERROR # signals to determine if the coproces-

1-376

L?E D

-

l ntel ®
sor can accept its next instruction. Thus, the
BUSY # and ERROR # inputs eliminate the need for
any ‘preamble’ bus cycles for communication be-
tween processor and coprocessor. The Intel387 SX
can be given its command opcode immediately. The
dedicated signals provide instruction synchroniza-
tion, and eliminate the need of using the WAIT op-
code (9BH) for Intel387 SX instruction synchroniza-
tion (the WAIT opcode was required when the 8086
or 8088 was used with the 8087 coprocessor).

Custom coprocessors can be included in Intel386
SX Microprocessor based systems by memory-
mapped or I/0-mapped interfaces. Such coproces-
sor interfaces allow a completely custom protocol,
and are not limited to a set of coprocessor protocol
Instead, memory-mapped or {/0-
mapped interfaces may use all applicable instruc-
tions for high-speed coprocessor communication.
The BUSY# and ERROR# inputs of the Intel386
SX Microprocessor may also be used for the custom
coprocessor interface, if such hardware assist is de-
sired. These signals can be tested by the WAIT op-
code (9BH). The WAIT instruction will wait until the
BUSY # input is inactive (interruptable by an NMI or
enabled INTR input), but generates an exception 16
fault it the ERROR # pin is active when the BUSY #
goes (or is) inactive. If the custom coprocessor inter-
face is memory-mapped, protection of the address-
es used for the interface can be provided with the
Intel386 SX CPU’s on-chip paging or segmentation
mechanisms. If the custom interface is 1/O-mapped,
protection of the interface can be provided with the
IOPL (1/0 Privilege Level) mechanism.

The Intel387 SX numeric coprocessor interface is
/0 mapped as shown in Table 5.8. Note that the
Intel387 SX coprocessor interface addresses are
beyond the OH-OFFFFH range for programmed /0.
When the Intel386 SX Microprocessor supports the
Intel387 SX coprocessor, the Intel386 SX Micro-
processor automatically generates bus cycles to the
coprocessor interface addresses.

Table 5.8. Numeric Coprocessor Port Addresses

Address in Intel386 SX Intel387 SX

CPU 1/0 Space Coprocessor Register
8000F8H Opcode Register
8000FCH/B000FEH* Operand Register

*Generated as 2nd bus cycle during Dword transter.

To correctly map the Intel387 SX registers to the
appropriate 1/0 addresses, connect the CMDO and
CMD1 lines of the Intel387 SX as listed in Table 5.9.
Table 5.9. Connections for CMDO
and CMD1 Inputs for the Intei387 SX

Signal Connection
CMDO Connect directly

to Intel386 SX CPU A2 signal
CMD1 Connect to ground.

B 4826175 0leku?2 00T WA ITLL

INTEL CORP {UP/PRPHLS}

intgl.

Software Testing for Coprocessor Presence

When software is used to test for coprocessor
(intel387 SX) presence, it should use only the follow-
ing coprocessor opcodes: FINIT, FNINIT, FSTCW
mem, FSTSW mem and FSTSW AX. To use other
coprocessor opcodes when a coprocessor is known
to be not present, first set EM = 1 in the Intel386 SX
CPU's CRO register.

6.0 PACKAGE THERMAL
SPECIFICATIONS

The Intel386 SX Microprocessor is specified for op-
eration when case temperature (T¢) is within the
range of 0°C-100°C. The case temperature may be
measured in any environment, to determine whether
the Intel386 SX Microprocessor is within specified
operating range. The case temperature should be
measured at the center of the top surface opposite
the pins.

The ambient temperature (Ty) is related to T and
the thermal conductivity parameters 8;5 and 8jc from
the following equations (eqn. 3 is derived by elimi-
nating the junction temperature (T;) between eqns.
1 and 2):

1) Tj=Te + P8
2) Ta = T.| - P.oiﬂ
3) Te = Ta + P*[6ja — 6]

" Values for 8j3 and 8¢ are given in Table 6.1 for the
100 lead fine pitch. 8j5 is given at various airflows.
The power (P) dissipated by the chip as heat is
Vec*lee. A guaranteed maximum safe T4 can be cal-
culated from eqn. 3 by using the maximum safe T of
100°C, along with the maximum power drawn by the
chip in the given design, and 6;c and 0;, values from
Table 6.1. (The 8;4 value depends on the airflow,
measured at the top of the chip, provided by the
systermn ventilation.)

L?E D

Intel386™ SX MICROPROCESSOR

7.0 ELECTRICAL SPECIFICATIONS

The following sections describe recommended elec-
trical connections for the Intel386 SX Microproces-
sor, and its electrical specifications.

7.1 Power and Grounding

The Intel386 SX Microprocessor is implemented in
CHMOS 1V technology and has modest power re-
guirements. However, its high clock frequency and
47 output buffers (address, data, control, and HLDA) B
can cause power surges as multiple output buffers §
drive new signal levels simultaneously. For clean on-
chip power distribution at high frequency, 14 Vcc
and 18 Vss pins separately feed functional units ot
the Intel386 SX Microprocessor.

Power and ground connections must be made to all
external Vec and Vss pins of the Intel386 SX Micro-
processor. On the circuit board, all Vce pins should
be connected on a Vcc plane and all Vss pins
should be connected on a GND plane.

POWER DECOUPLING RECOMMENDATIONS

Liberal decoupling capacitors should be placed near
the Intel386 SX Microprocessor. The Intel386 SX Mi-
croprocessor driving its 24-bit address bus and
16-bit data bus at high frequencies can cause tran-
sient power surges, particularly when driving large
capacitive loads. Low inductance capacitors and in-
terconnects are recommended for best high fre-
quency electrical performance. Inductance can be
reduced by shortening circuit board traces between
the Intel386 SX Microprocessor and decoupling ca-
pacitors as much as possible.

Table 6.1. Thermal Resistances ("C/Watt) 6;c and 8j,.

0}a versus Airfiow - ft/min (m/sec)
Package 81 0 200 400 600 800 1000
()} (1.01) (2.03) (3.04) (4.06) (5.07)
100 Lead
Fine Pitch 7.5 345 29.5 255 225 21.5 21
1-377

M 4326175 0124?73 TukL WM ITLL

INTEL CORP {UP/PRPHLS}

Intel386™ SX MICROPROCESSOR

LPE D

intgl.

Table 7.1. Recommended Resistor Pull-ups to Vcc

Pin Signal Pull-up Value Purpose

16 ADS # 20 KQ +10% Lightly pull ADS # inactive during
Intel386™ SX CPU hold acknowledge
states

26 LOCK # 20 K1 +10% Lightly pull LOCK # inactive during
Intel3867™ SX CPU hold acknowledge
states

RESISTOR RECOMMENDATIONS

The ERROR#, FLT # and BUSY # inputs have inter-
nal pull-up resistors of approximately 20 KQ and the
PEREQ input has an internal pull-down resistor of
approximately 20 Kf1 built into the Intel386 SX Mi-
croprocessor to keep these signals inactive when
the Intel387 SX is not present in the system (or tem-
porarily removed from its socket).

In typical designs, the external pull-up resistors
shown in Table 7.1 are recommended. However, a
particular design may have reason to adjust the re-
sistor values recommended here, or alter the use of
pull-up resistors in other ways.

OTHER CONNECTION RECOMMENDATIONS

For reliable operation, always connect unused in-
puts to an appropriate signal level. N/C pins should
always remain unconnected. Connection of N/C
pins to Vcc or Vss will result in component mal-
function or incompatibility with future steppings
of the Intel386 SX Microprocessor.

Particularly when not using interrupts or bus hold (as
when first prototyping), prevent any chance of spuri-
ous activity by connecting these associated inputs to
GND:

Pin) Signal
40 INTR
38 NMI

4 HOLD

1-378

It not using address pipelining, connect pin 6, NA#,
through a pull-up in the range of 20 KQ to Vce.

7.2 Maximum Ratings
Table 7.2. Maximum Ratings

Parameter Maximum Rating
Storage temperature —65°Cto 150°C
Case temperature under bias | —65°C to 110°C
Supply voltage with respect

to Vss —-.5Vto6.5v
Voltage on other pins —.5Vto (Vee+ .5V

Table 7.2 gives stress ratings only, and functional
operation at the maximums is not guaranteed. Func-
tionai operating conditions are given in section 7.3,
D.C. Specifications, and section 7.4, A.C. Specifi-
cations.

Extended exposure to the Maximum Ratings may af-

. fect device reliability. Furthermore, aithough the

Intel386 SX Microprocessor contains protective cir-
cuitry to resist damage from static electric discharge,
always take precautions to avoid high static voltages
or slectric fislds.

B 4826175 0126474 982 ER ITLL

INTEL CORP {UP/PRPHLS} &L7E D EH 482L127?75 012k4?5 819 W ITLL

- _
|n‘te| o Intei386™ SX MICROPROCESSOR

7.3 D.C. Specifications
Functional operating range: Voc = 5V +10%; Tcase = 0°C to 100°C

Table 7.3. Intel386 ™ SX Microprocessor D.C. Characteristics—33 MHz, 25 MHz, 20 MHz and 16 MHz

Symbol Parameter Min Max Unit| Test Condition
ViL Input LOW Voltage -0.3 +0.8 A
ViH Input HIGH Voltage . 2.0 Vect+03| V
ViLe CLK2 Input LOW Voltage -0.3 +0.8 v
ViHe CLK2 Input HIGH Voltage Vog—08 Ve +03(| V
Vou Output LOW Voltage
loL=4 mA: A23-A4,D15-Dg 0.45 v
loL=5 mA: BHE # BLE# W/R#,D/C#, 0.45 \
M/1O #,LOCK # ADS # ,HLDA
VoH Output HiIGH Voltage
lon=—1mA: Aa3-A1,D15-Dg 24 A
loH= —0.2 mA: Aa3~A4,D15-Dg | Vcc—0.5 v
lop= —0.9 mA: BHE# BLE# W/R#, 2.4 v
D/C# M/IO#,LOCK#,
ADS# HLDA
loH= —0.18 mA: BHE # BLE# W/R#, | Vgc—0.5 Vv
D/C# M/IO# LOCK #,
. ADS# HLDA
I Input Leakage Current 15 RA [OVSVINSVo
(for all pins except PEREQ, BUSY #, FLT #
and ERROR #)
hH Input Leakage Current 200 pA | ViH=2.4V, Note 1
(PEREQ pin)
i Input Leakage Current —400 pA | V|L=0.45V, Note 2
(BUSY #, ERROR # and FLT # pins)
o Output Leakage Current +15 pA | 0.45V<VoyT<Vee
lec Supply Current (See Note 3)
CLK2 =32 MHz: with 16 MHz Intei386 SX CPU 220 mA | Igctyp=150 mA
CLK2 =40 MHz: with 20 MHz Intel386 SX CPU 250 mA | Icctyp=180 mA
CLK2 =50 MHz: with 25 MHz Intel386 SX CPU 280. mA | lgc typ=210 mA
CLK2 =66 MHz: with 33 MHz Intel386 SX CPU 380 mA | lgc typ=290 mA
CIN Input Capacitance 10 pF | Foc=1MHz, Note 4
Cout Qutput or 170 Capacitance 12 pF | Fc=1 MHz, Note 4
CcLk CLK2 Capacitance 20 pF | Fc=1MHz, Note 4
All values except I tested at the minimum operating frequency of the part (CLK2 = 8 MHz).

NOTES: .

1. PEHEQ input has an internal pull-down resistor.

2. BUSY #, FLT# and ERROR # inputs each have an internal pull-up resistor.

3. Ilcc max measurement at worst case frequency, Voc and temperature, with 50 pF output load.
4. Not 100% tested.

I 1-379

INTEL CORP {UP/PRPHLS}

intel386™ SX MICROPROCESSOR

L?E D

Functional operating range: Voc = 5V +10%; Tcase = 0°C to 100°C

B u482L1?5 012LU?L 755

intgl.

Table 7.4. Low Power (LP) intel386™ SX Microprocessor
D.C. Characteristics—33 MHz, 25 MHz, 20 MMz, 16 MHz, and 12 MHz

Symbol Parameter Min Max Unit| Test Condition
ViL Input LOW Voltage -0.3 +0.8 v
ViH Input HIGH Voltage 20 Veg+03| V
Vit CLK2 Input LOW Voltage -03 +0.8 Vv
ViHe CLK2 Input HIGH Voltage Vec—08 | Voc+03| V
VoL Output LOW Volitage
loL=4 mA: Ag3~A4,D45-Dg 0.45 v
loL=5 mA: BHE #,BLE#,W/R#,0/C#, 0.45 v
M/IO#,LOCK #,ADS # HLDA
Vor Output HIGH Voltage
loH=—1mA: Az3-Aq,D45-Dg 24 Vv
lon=—0.2 mA: Az3-A1,D15-Dg | Ve - 0.5 v
loH=—0.9 mA; BHE # BLE# W/R#, 24 v
D/C# M/IO# LOCK#,
ADS# HLDA . '
lon=—0.18 mA: BHE#,BLE#W/R#, | Voc—0.5 v
D/C# M/IO#,LOCK#,
ADS # HLDA
I Input Leakage Current } +15 rA | OVSViNS Vo
(for all pins except PEREQ, BUSY #, FLT #
and ERROR #)
i1 Input Leakage Current 200 pA | V=24V, Note 1
(PEREQ pin)
I Input Leakage Current —400 KA | VL =0.45V, Note 2
(BUSY #, ERROR # and FLT # pins)
Lo Output Leakage Current 15 wA | 0.45V<Voyur<Veoo
lcc Supply Current (See Note 3)
CLK2=4 MHz _ 100 mA | loc typ=50 mA
CLK2 =24 MHz: with 12 MHz Intel386 SX CPU 190 mA | lcc typ=120 mA
CLK2=32 MHz: with 16 MHz Intel386 SX CPU 220 mA | lcc typ=150 mA
CLK2 =40 MHz: with 20 MHz Intel386 SX CPU 250 mA | lcctyp=180mA
CLK2 =50 MHz: with 25 MHz Intel386 SX CPU 280 mA |lcctyp=210mA
CLK2 =66 MHz: with 33 MHz Intel386 SX CPU 380 mA | lcc typ=290 mA
CiN Input Capacitance 10 pF | Fc=1MHz, Note 4
Cout | Output or I/0 Capacitance 12 pF | Fc=1MHz, Note 4
CoLk CLK2 Capacitance 20 pF | Fo=1MHz, Note 4

All values except lcc tested at the minimum operating fraquency of the part (CLK2 = 4 MHz).

NOTES:

1. PEREQ input has an internal pull-down resistor,
2. BUSY+#, FLT# and ERROR # inputs each have an internal pull-up resistor.
3. Icc max measurement at worst case fraquency, Voo and temperature, with 50 pF output load.
4. Not 100% tested.

1-380

mmITLL

INTEL CORP {UP/PRPHLS} L7E D HE 482L17?5 012k4?7 91 EB ITLL

- .
|n‘te! . Intel386™ SX MICROPROCESSOR

7.4 A.C.Specifications as minimums, defining the smallest acceptable sam-
pling window. Within the sampling window, a syn-
The A.C. specifications given in Tables 7.5 through chronous input signal must be stable for correct op-
7.8 consist of output delays, input setup require- eration.
ments and input hold requirements. All A.C. specifi-
cations are relative to the CLK2 rising edge crossing Outputs ADS#, W/R#, D/C#, M/I0#, LOCK#,
the 2.0V level. BHE#, BLE#, Ay3-Ay and HLDA only change at
the beginning of phase one. Dy5-Dg (write cycles)
A.C. spec measurement is defined by Figure 7.1. In- only change at the beginning of phase two. The
puts must be driven to the voltage levels indicated =~ READY#, HOLD, BUSY#, ERROR#, PEREQ,
by Figure 7.1 when A.C. specifications are mea- FLT# and Dy5-Dy (read cycles) inputs are sampled
sured. Output delays are specified with minimum at the beginning of phase ons. The NA#, INTR and
and maximum limits measured as shown. The mini- NMI inputs are sampled at the beginning of phase
mum delay times are hold times provided to external two.
circuitry. Input setup and hold times are specified

x
* L /]

CLK2 [2v _
,
OUTPUTS MAX

MIN -
(A1=A23,8HEH,BLEF, VALID N VALID
ADS[.M/!O#.D/C#.[outpuTA 1% % \? 13V oUTRUT ne1
W/R#.LOCK#.HLDA)

Iy
&)

OUTPUTS VALID \ VALID
(00-015) OUTPUTA ""’Vk\ 15V ouTPUT ne

30V
INPUTS VALID
(N/AFINTR.NMI) / g SV Nput "5"N

L ov
INPUTS I
- . 3.0v
(READY4.HOLD, v, Ley VALD
FLT#.ERROR,BUSYZ, Y wpur v
PEREQ,D0-015) L= ov

240187-35
LEGEND

A — Maximui Qutput Delay Spec
B — Minimum Output Delay Spsec
C — Minimum Input Setup Spec
D — Minimum [nput Hold Spec

Figure 7.1. Drive Levels and Measurement Points for A.C. Specifications

I 1-381

Intel386™ SX MICROPROCESSOR

INTEL CORP {UP/PRPHLSZ

A.C. SPECIFICATIONS
Functional operating range: Voc = 5V £10%; Tcasg = 0°C to 100°C

L?PE D

B 4325175 012L4?8 528

intgl.

Table 7.5. Intel386™™ SX Microprocessor A.C. Characteristics—33 MHz and 25 MHz

33 MHz 25 MHz
Symbol Parameter Intel386 SX | Intel386 SX | ynit | Figure Notes
Min | Max | Min | Max
Operating Frequency 4 33 4 25 | MHz Haif CLK2 Frequency
t4 CLK2 Period 15 125 20 125 ns 7.3
toa CLK2 HIGH Time 6.25 7 ns 73 |[at2v@®
t2p CLK2 HIGH Time 4.0 4 ns 73 |at(Vgc—0.8)V(E3); Note 3
t3a CLK2 LOW Time 6.25 7 ns 7.3 |at2v@)
tap CLK2 LOW Time 45 5 ns 7.3 }at0.8vd)
t4 CLK2 Fall Time 4 ns | -7.3 | (Voc—0.8)Vto 0.8V@)
ts CLK2 Rise Time 4 ns 7.3 | 0.8Vto (Vgc—0.8)VER)
ts Ag3-Aq Valid Delay 15 4 17 ns 75 |CL = 50pF4)
ty Ag3-Aq Float Delay 20 30 ns 76 | (Note1)
tg BHE#, BLE#, LOCK # 15 17 ns 75 | CL= 50pF4
Valid Delay
tg BHE #, BLE #, LOCK # 4 20 4 30 ns 76 | (Note 1)
Float Delay
tio . | W/R#,M/IO#,D/C#,| 4 15 4 17 | ns | 75 |C_=50pF@4
ADS # Valid Delay .
t14 W/R# M/IO#,D/C#,| 4 20 4 30 ns 76 |[(Notet)
ADS # Float Delay
t12 D45-Dg Write Data 7 23 7 23 ns 75 | Cp = 50pF4.5)
Valid Delay
ti2a | D15-Dg Write Data 2 2 ns CL = 50 pF4
Hold Time
ti3 D45-Dq Write Data 4 17 4 22 ns 76 | (Note1)
Float Delay
t14 HLDA Valid Delay 4 20 4 22 ns 76 |CL = 75pF@4
t1s NA# Setup Time 5 5 ns 7.4
t18 NA# Hold Time 2 3 ns 74
tio READY # Setup Time 7 9 ns 7.4
to0 READY # Hold Time 4 4 ns 74
taq D45~Dg Read Data 5 7 ns 74
Setup Time
too Dy5-Dg Read Data 3 5 ns 7.4
Hold Time
1-382

mITLY

INTEL CORP {UP/PRPHLS} &L7E D EB 482bL175 012kY4?79 4by

|nte| . Intel386™ SX MICROPROCESSOR

Functional operating range: Vgc = 5V £10%; Tcase = 0°C to 100°C

Table 7.5. Intel386™ SX Microprocessor A.C. Characteristics—33 MHz and 25 MHz (Continued)

33 MHz 25 MHz
Symbol Parameter Intel386 SX Intel386 SX | uUnit | Figure | Notes
Min Max Min Max
tas HOLD Setup Time ns 74
tog HOLD Hold Time ns 7.4
tos RESET Setup Time ns 7.7
tog RESET Hold Time ns 7.7

ta7 NMI, INTR Setup Time
tzg | NMI, INTR Hold Time

ta9 PEREQ, ERROR #, BUSY #,
FLT # Setup Time

t30 -PEREQ, ERROR #, BUSY #, 4 5 ns 74 (Note 2)
FLT # Hold Time '

ns 74 (Note 2)
ns 7.4 (Note 2)
ns 7.4 (Note 2)

Gl |djoa (N |©
O |N|W |0 |W |

NOTES:

1. Float condition occurs when maximum output current becomes less than I o in magnitude. Float delay is not 100%
tested.

2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes
to assure recognition within a specific CLK2 period.

3. These are not tested. They are guaranteed by design characterization.

4. Tested with CL set at 50 pF. See Figures 7 and 8 for load capacitance derating curve.

5. Minimum time not 100% tested.

Table 7.6. Low Power (LP) Intel386™ SX Microprocessor A.C. Characteristics—33 MHz and 25 MHz

33 MHz 25 MHz
Symbol Parameter Intel386 SX | Intei386 SX | unit | Figure Notes
Min | Max | Min | Max

Operating Frequency 2 33 2 25 | MHz Half CLK2 Frequency
t CLK2 Period 15 250 20 250 | ns 7.3
t2a CLK2 HIGH Time 6.25 7 ns 7.3 |atavi®
tp | CLK2 HIGH Time 40 4 ns | 7.3 |at(Voc—0.8)VI3); Note 3
t3a CLK2 LOW Time 6.25 7 ns 73 |ata2vid
tap CLK2 LOW Time 45 5 ns 73 |at0.8v®
ty CLK2 Fall Time 4 7 ns 7.3 | (Voc—0.8)V to 0.8v(3)
ts CLK2 Rise Time 4 7. ns 7.3 | 0.8Vto (Voc—0.8)V)
tg Ag3-A Valid Delay 4 15 4 17 ns 75 |C_ = 50pF@4
t7 A23—A¢ Float Delay 4 20 4 30 ns 7.6 | (Note 1)
ts BHE+#,BLE#,LOCK# | 4 15 4 17 ns 7.5 | CL = 50pF4)

Valid Delay

—_tg BHE #, BLE#, LOCK # 4 20 4 30 ns 7.6 | (Note1)
Float Delay

I 1-383

M ITL)Y

Intel386 ™™ SX MICROPROCESSOR

INTEL CORP {UP/PRPHLS}

L?E D

Functional operating range: Vog = 5V £ 10%; Tcase = 0°C to 100°C

M 4326175 012Lu4s0 18k

Table 7.6. Low Power (LP) Intel386T SX Microprocessor

A.C. Characteristics—33 MHz and 25 MHz (Continued)

intal.

33 MHz 25 MHz
Symbot Parameter Intel386 SX | Intel386 SX | unit | Figure Notes
Min | Max | Min | Max

tio W/R#, M/IO#,D/C#, 4 15 4 17 ns 7.5 | C_ = 50pF(4)
ADS # Valid Dslay

t14 W/R#, M/IO#,D/C#, 4 20 4 30 ns 76 | (Notet)
ADS # Float Delay

tz D45-Dg Write Data 7 23 7 23 ns 75 | C_ = 50pF45)
Valid Delay : .

t12a D45-Dg Write Data 2 2 ns Cp = 50 pF(4)
Hold Time

tia Dy5-Dg Write Data 4 17 4 | 22 ns 7.6 (Note 1)
Float Delay .

t14 HLDA Valid Detay 4 20 4 22 ns 7.6 | CL= 50pF4)

ti5 NA # Setup Time 5 5 ns 7.4

tie NA# Hold Time 2 3 ns 7.4

tig READY # Setup Time 7 9 ns 74

too READY # Hold Time 4 4 ns 74

t21 Dy5-Dg Read Data 5 7 ns 7.4
Setup Time

tao D15~-Dg Read Data 3 5 ns 7.4
Hold Time

ta3 HOLD Setup Time 9 9 ns 7.4

to4 HOLD Hold Time 2 3 ns 74

tas RESET Setup Time 5 8 ns 7.7

tos RESET Hold Time 2 3 ns 7.7

to7 NMI, INTR Setup Time 5 6 ns 7.4 (Note 2)

trs NMI, INTR Hold Time 5 6 ns 7.4 (Note 2)

tag PEREQ, ERROR #, BUSY #, 5 6 ns 7.4 | (Note 2)

~ | FLT# Setup Time

t30 PEREQ, ERROR #, BUSY #, 4 5 ns 74 | (Note 2)

FLT# Hold Time .
NOTES:

1. Float condition occurs when maximum output current becomes less than ILo in magnitude. Float delay is not 100%

tested.

2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes
to assure recognition within a specific CLK2 period.

3. These are not tested. They are guaranteed by design characterization.

4. Tested with CL set at 50 pF. See Figures 7 and 8 for load capacitance derating curve.
5. Minimum time not 100% tested.

1-384

Ml ITLL

INTEL CORP {UP/PRPHLS} L?YE D ®B 482kL1?S5 01l2b481 0lc W ITL)

-
Intel o Intel386™ SX MICROPROCESSOR

Functional operating range: Vo = 5V +£10%; Tcage = 0°C to 100°C

Table 7.7. intel386™ SX A.C. Characteristics—20 MHz and 16 MHz

20 MHz 16 MHz
Symbol Parameter Intel386 SX | Intel386 SX | ynit | Figure Notes
Min | Max [Min | Max
Operating Frequency 4 20 4 16 | MHz Half CLK2 Frequency
ty CLK2 Period 25 125 K] 125 | ns 73
t2a CLK2 HIGH Time 8 9 ns 7.3 |ata2v®
tzn CLK2 HIGH Time 5 5 ns 7.3 |at(Voc—0.8)v®
t3a CLK2 LOW Time 8 9 ns 7.3 |ata2v®
t3p CLK2 LOW Time 6 7 ns 7.3 |at0.8v®
ta CLK2 Fall Time 8 8 ns 7.3 | (Voc—0.8)V to 0.8V(3)
ts CLK2 Rise Time 8 8 ns 7.3 [0.8Vio (Voc—0.8)V)
ts Aoz-Ay Valid Delay 4 30 4 36 ns 75 | CL = 120pF4)
ty A23~A, Float Delay 4 32 4 40 ns 7.6 | (Note 1)
1g BHE #, BLE#, LOCK# 4 30 4 36 ns 75 |CL=75pF@4
Valid Delay
tg BHE#,BLE#,LOCK# | 4 32 4 40 ns 76 |[(Notet)
Float Delay
t10a | M/IO# D/C# ValidDelay | 6 28 6 33 ns 75 |CL = 75pF4
tiop | W/R#, ADS# Valid Delay 26
ty4 W/R#, M/IO#,D/C#, 6 30 6 35 ns 7.6 | (Note 1)
ADS # Float Delay
t12 D15-Dg Write Data 4 38 4 40 ns 7.5 | CL= 120 pF4)
Valid Delay
ti3 D45-Dg Write Data 4 27 4 35 ns 7.6 | (Note 1)
Float Delay
t14 HLDA Valid Delay 4 28 4 33 ns 75 |C_ = 75pF@#
145 NA# Setup Time 5 5 ns 74
tig NA# Hold Time 12 21 ns 7.4
to READY # Setup Time 12 19 ns 74
t20 READY # Hold Time 4 4 ns 7.4
t21 Dy5-Dp Read Data 9 9 ns 7.4
Setup Time
too D15-Dg Read Cata 6 6 ns 7.4
Hoid Time
t2a HOLD Setup Time 17 26 ns 7.4
toa HOLD Hold Time 5 5 ns 7.4
tog RESET Setup Time 12 13 ns 7.7
tog RESET Hold Time 4 4 ns 7.7

I 1-385

INTEL CORP {UP/PRPHLS} L?7E D W 482L275 0l2k482 T59 ERITLL

-
Intel386™ SX MICROPROCESSOR |n‘te| »

Functional operating range: Voc = 5V +10%; Tcase = 0°C to 100°C

Table 7.7. Intel386 ™ SX A.C. Characteristics—20 MHz and 16 MHz (Continued)

20 MHz 16 MH2
Symbol Parameter Intel386 SX | Intel386 SX | unit | Figure | Notes
Min | Max | Min | Max
tay NMI, INTR Setup Time 16 16 ns 7.4 (Note 2)
tos NMI, INTR Hold Time 16 16 ns 74 | (Note2)
tog PEREQ, ERROR#, BUSY #, | 14 16 ns 74 | (Note2)
FLT # Setup Time
t30 PEREQ, ERROR #, BUSY #, 5 5 ns 7.4 (Note 2)
FLT# Hold Time

Table 7.8. Low Power (LP) Intei386™ SX A.C. Characteristics—20 MHz, 16 MHz and 12 MH2
20 MHz 16 MHz 12 MHz

Symbol Parameter Intel386 SX | Intei386 SX | Intel386 SX [ynit Figure| Notes
Min | Max | Min | Max | Min | Max

Operating Frequency 2 26 2 16 2 {125 |MHz Half CLK2 Frequency
ty |CLK2 Period) 26 | 250 | 31 | 250 | 40 | 250 | ns| 7.3
tza |CLK2 HIGH Time 8 9 11 ns | 7.3 |at2V (Note 3)
top |CLK2 HIGH Time 5 5 7 ns | 7.3 [at(Vge — 0.8V)(3)
tsa |CLK2 LOW Time 8 9 11 ns| 7.3 lat2v(®)
tap |CLK2 LOW Time 6 7 9 ns{ 7.3 lat0.8vQ)
ty [CLK2Fall Time 8 8 8 |ns| 7.3 |(Voo — 0.8V)to 0.8V3)
ts |CLK2 Rise Time 8 ns | 7.3 10.8Vto (Voo - 0.8V)(3)
t6 1A23-A, Valid Delay 4 30 4 36 4 42 {ns| 7.5 [C_ =120 pF(4i
t7 |A23-A, Float Delay 4 32 4 40 4 | 45 | ns| 7.6 |(Note1)
ts [BHE# BLE# LOCK#| 4 | 30 | 4 | 36 | 4 | 36 [ns| 75 |C = 75pF

Valid Delay
to |BHE# BLE#,LOCK#| 4 | 32 | 4 | 40 | 4 | 40 | ns| 76 |Notw 1)

Float Delay

tio |M/IO#,D/C# W/R#,| 6 28 6 33 4 33 |ns| 75 |C_=75pF
ADS # Valid Delay

t411 [M/IO#,D/C#,W/R#,| 6 30 6 35 4 35 | ns| 7.6 |(Note1)
ADS # Float Delay

tyg ID15-00 Write 4 1 381 4 | 4| 4 |50 {ns| 7.5 |CL=120pF@®
Data Valid Delay
t13 [D15-D0 Write 4 27 4 35 4 40 | ns| 76 |(Note1)
Data Float Dealay |
tis |HLDA Vald Delay 4 [28] 6 [33| 4 |33 |ns| 75 |CL = 75 pF@
tis |NA# Setup Time 5 5 7 nsi 7.4
tig {NA# Hoid Time 12 21 21 ns | 7.4

1-386 I

INTEL CORP {UP/PRPHLS} LYE D WR 4826175 01l2ku4a3 995 WA ITLL

[
lnté ® Intel386™ SX MICROPROCESSOR

Functional operating range: Voc = 5V +10%; Tcasg = 0°C to 100°C

Table 7.8. Low Power (LP) Intei386™ SX
A.C. Characteristics—20 MHz, 16 MHz and 12 MHz (Continued)

20 MHz 16 MHz 12 MHz
Symbol Parameter Intel386 SX | Intel336 SX | Intel386 SX | unit Figure| Notes
Min | Max | Min | Max | Min | Max
tig | READY # Setup Time 12 19 19 ns 7.4
t2o READY # Hold Time 4 4 4 ns 7.4
t24 D15-D0 Read Data 9 9 9 ns 74
Setup Time
to2 D15-D0 Read Data 6 6 6 ns 74
Hold Time .
tog | HOLD Setup Time 17 26 26 ns 7.4
t24 | HOLD Hold Time 5 5 7 ns | 74
tos | RESET Setup Time 12 13 15 ns 7.7
tzg | RESET Hold Time 4 4 6 ns 7.7
to7 | NMI, INTR Setup Time 16 16 16 ns 7.4 |(Note2)
tog NMI, INTR Hold Time 16 16 16 ns 7.4 | (Note 2)
tog | PEREQ, ERROR#,BUSY#,| 14 16 16 ns 7.4 | (Note 2)
FLT # Setup Time)
t30 |PEREQ,ERROR#,BUSY#,| 5 5 5 ns 7.4 | (Note 2)
FLT # Hold Time

NOTES:

1. Float condition occurs when maximum output current becomes lass than | o in magnitude. Float delay is not 100%
tested.

2: These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes,
to assure recognition within a specific CLK2 period.

3: These are not tested. They are guaranteed by design characterization.

4: Tested with C_ set at 50 pf and derated to support the indicated distributed capacitive load. See Figures 7.8 though 7.10
for the capacitive derating curve.

A.C. TEST LOADS A.C. TIMING WAVEFORMS

Intel386™ sX CPU

OUTPUT I

a

240187-36

240187-37

Figure 7.2. A.C. Test Loads Figure 7.3. CLK2 Waveform

1-387

INTEL CORP {UP/PRPHLS} L?E D ®R 482L175 012L48Y 821 WE ITLL

|]
Intel386 ™™ SX MICROPROCESSOR | ntel o

Tx Tx ™
. 92 ()] 2 L3
cLKk2 |: __ 4

READY [AN §

N
eon | WK N

S0

C

HOLD [AN

el

BUSYS,

“rerce [N

N
FLT#

Wl TR
" ﬁ

Figure 7.4. A.C. Timing Waveforms—Input Setup and Hold Timing

2
CLK2 [+ \ 3
0

I

240187-38

MIN | max

BHE#[g%;E& vALID n XA\ £ _vALD ne1
W/R#, M/I0 O MAX

(Y vauo n XANNWK VALD ne1
J WIN "l uax

at-azs [VALID n VALID n+1

V
& MIN_ | MAX
(03?;3;)5 vaLD n NN VALD net
Hioa [

240187-39

Figure 7.5. A.C. Timing Waveforms—Output Valid Delay Timing

1.388 '

INTEL CORP {UP/PRPHLS} LYE D EHE 48265175 01l2LY85 ?LS MR ITLL

a
Intd - intel386™ SX MICROPROCESSOR

Th TIOR T4
2 Y 2 ot 2
Guk2 [_* A S \ 1‘ \ 1! \
@ MIN wax 8 MIN MAX
BHE#,BLE}, 11 _ _ -1
LOCKS (WICH Z) -
3 MIN MAX @ MIN MAX
w/R§. MO8, 1L - - —1I]
D/C#.ADSS (HIGH Z)
Y MIN MAX (‘} MIN MAX
A‘-Azs [— T~ (;'G—‘z)_ — g — = = —
@ MIN wax 13 MIN MAX
DO=-D1S [—_— (T{IG;Z)— — et = = — 4
@ALSO APPLIES TO DATA FLOAT WHEN WRITE
CYCLE IS FOLLOWED BY READ OR IDLE
@' j!III— wax U MIN MAX
moa [| s 3 \X

240187-40
Figure 7.8. A.C. Timing Waveforme—Output Float Delay and HLDA Valid Delay Timing

RESET INITIALIZATION SEQUENCE ——————
$2 OR ¢1 #2 OR §1 ¥y #
cLx2 [\ ,f

RESET [

240187-41

. Figure 7.7. A.C. Timing Waveforms—RESET Setup and Hold Timing and internal Phase

I 1-389

INTEL CORP {UP/PRPHLS} &L?VE D

Intei386™ SX MICROPROCESSOR

B 4426175 012L48L LTH

nom+6 T] nom+9 |] -~
by >
3 3
8 f s
E ~ 3
< ¢ >
> " -
5 ' g
& ' 2
2 ' o
=] ’
)
'
nom-9 l — rom-8 [~ s 100 125 150
50 75 100 125 150
€, (picofarads) G (picofarads)
24018742 , 24018743 !
Figure 7.8. Typical Output Valid Delay versus FlEun:’zQ. Tyll:vtical Ou:;;:ut \ialld D;lay v:rsus
Load Capacitance at Maximum Operating oa anac ancte a cax_m;"s" perating
Temperature (C_ = 120 pF) emperature (C, = 75 pF)
8
3
~N
1)
3
[-]
g
M
[20— .
i
x
8 | | |
SO 75 100 125 150
€, (picotarads)
240187-50
Figure 7.10. Typical Output Rise Time versus
Load Capacitance at Maximum Operating
Temperature
Typical Lo
300
250
200
8 CHMOS IV
150
100 oo s
sa T T T T T T T T T 1
2 4 11 8 10 12 14 16 18 20
Clock Speed (MHz) 24016745

Figure 7.11. Typical I vs Frequency

1-390

M ITL1

INTEL CORP {UP/PRPHLS?}

L?E D

Intel386™ SX MICROPROCESSOR

17.5" -
3.0
N
FLEXIBLE % T T RExBLE 4.0 Ly
g PIN 1
26.75" |
= < I] I
| = 7 " et
I =S—-——
.28
! 240187-48

Figure 7.12. Preliminary ICE™-Intet386™ SX Emulator User Cable with PQFP Adapter

12.75"

35"
fe—— 3.0" —=f

FLEX=
IBLE

. FLEXBLE .
-/ PiN 1
[22'0..]
. T [D
175" E o ‘—1
240187-49

Figure 7.13. Preliminary ICE™-Intel386™ SX Emulator User Cable with Oi{B and PQFP Adapter

7.5 Designing for the
ICETM-Intel386™ SX Emulator

ICE-Intel386 SX is the in-circuit esmulator for the In-
tei386™ SX CPU. The ICE-386 SX emulator pro-
vides a 100-pin fine pitch flat-pack probe for connec-
tion to a socket located on the target system.

Sockets that accept this probe are available from
3M (part #2-0100-07243-000) or from AMP {part
#821959-1 and part #821949-4). The ICE-386 SX
emulator probe attaches to the target system via an
adapter that replaces the Intei386 SX component in
the target system.

1-391

M 42265175 0l2LuB? 530 WA ITLL

INTEL CORP {UP/PRPHLS?

Intel386™ SX MICROPROCESSOR

Due to the high operating frequency of Intel386 SX
CPU based systems, there is no buffering between
the Intel386 SX emulation processor (on the emula-
tor probe) and the target system. A direct result of
the non-buffered interconnect is that the ICE-
Intel386 SX emulator shares the address and data
busses with the target system.

In order to avoid problems with the shared bus and
maintain signat integrity, the system designer must
adhere to the following guidelines:

1. The bus controlier must only enable data trans-
ceivers onto the data bus during valid read cycles
(initiated by assertion of ADS#) of the Intel386
SX CPU, other local devices or other bus mas-
ters.

2. Before another bus master drives the local proc-
essor address bus, the other master must gain
control of the address bus by asserting HOLD
and receiving the HLDA response.

3. The emulation processor receives the RESET
signal 2 or 4 CLK2 cycles later than an Intel386
SX CPU would, and responds to RESET later.
Correct phase of the response is guaranteed.

In order to avoid problems that might arise due to
the shared busses, an Optional use Isolation Board
(018) is included with the emulator hardware. The
OIB may be used to provide butfering between the
emulation processor and the target system, but in-
serts a delay of approximately 10 ns in signal path.

In addition to the above considerations, the
ICE-386 SX emulator processor module has several
electrical and mechanical characteristics that shoutd
be taken into consideration when designing the
Intel386 SX CPU system.

Capacitive Loading: ICE-Intel386 SX adds up to 27
PF to each Intel386 SX CPU signal.

Drive Requirements: ICE-Intel386 SX adds one
FAST TTL load on the CLK2, control, address, and
data lines. These loads are within the processor
module and are driven by the Intei386 SX CPU emu-
lation processor, which has standard drive and load-
ing capability listed in Tables 7.3 and 7.4.

Power Requirements: For noise immunity and
CMOS latch-up protection the ICE-Intei386 SX emu-
lator processor module is powered by the user sys-
tem,

The circuitry on the processor module draws up to

1.4A including the maximum Intel386 SX CPU Icg
from the user Intel386 SX CPU socket.

1-392

L?E D

]

intel.
Intel386 SX CPU Location and Orientation: The
ICE-Intel386 SX emulator processor module may re-
quire lateral clearance. Figure 7.12 shows the clear-
ance requirements of the iMP adapter. The optional
isolation board (OIB}), which provides extra electrical
buffering and has the same lateral clearance re-
quirements as Figure 7.12, adds an additional 0.5
inches to the vertical clearance requirement. This is
illustrated in Figure 7.13.

Optiona! !solation Board (OIB) and the CLK2
speed reduction: Due to the unbuffered probe de-
sign, the ICE-Intel386 SX emulator is susceptible to
errors on the user's bus. The OIB allows the ICE-
Intel386 SX emulator to function in user systems
with faults (shorted signals, etc.). After electrical ver-
ification the OIB may be removed. When the OIB is
installed, the user system must have a maximum
CLK2 frequency of 20 MHz.

8.0 DIFFERENCES BETWEEN THE
Intel386™ SX CPU AND THE
Intei386™ DX CPU

The following are the major differences between the
Intel386 SX CPU and the Intel386 DX CPU:

1. The Intel386 SX CPU generates byte selects on
BHE# and BLE# (like the 8086 and 80286) to
distinguish the upper and lower bytes on its 16-bit
data bus. The Intel386 DX CPU uses four byte
selects, BEO#-BE3 #, to distinguish between the
different bytes on its 32-bit bus.

2. The Intel386 SX CPU has no bus sizing option.
The Intei386 DX CPU can select between either
a 32-bit bus or a 16-bit bus by use of the BS16#
input. The Inte!386 SX CPU has a 16-bit bus size.

3. The NA# pin operation in the Intel386 SX CPU is
identical to that of the NA+# pin on the Intel386
DX CPU with one excaption: the intel386 DX CPU
NA# pin cannot be activated on 16-bit bus cy-
cles (where BS16# is LOW in the Intel386 DX
CPU case), whereas NA# can be activated on
any Intel386 SX CPU bus cycle.

4. The contents of all Intel386 SX CPU registers at
reset are identical to the contents of the Intel386
DX CPU registers at reset, except the DX regis-
ter. The DX register contains a component-step-
ping identifier at reset, i.e.’

in Intel386 DX CPU, DH = 3 indicates Intel386
DX CPU after reset

DL = revision number;
in Intei386 SX CPU, DM = 23H indicates
Intel386 SX CPU after reset

DL = revision number.

B 4426175 0l2Lu483 47?7 MR ITLL

INTEL CORP {UP/PRPHLS}

intgl.

5. The Intel386 DX CPU uses Ag; and M/IO# as
selects for the numerics coprocessor. The
Intel386 SX CPU uses A3 and M/IQ # as selects.

6. The Intel386 DX CPU prefetch unit fetches code
in four-byte units. The Inte!386 SX CPU prefetch
unit reads two bytes as one unit (like the 80286).
In BS16 mode, the Inteld86 DX CPU takes two
consecutive bus cycles to complete a prefetch re-
quest. If there is a data read or write request after
the prefetch starts, the Intel386 DX CPU will fetch
all four bytes before addressing the new request.

7. Both Intei386 DX CPU and Intel386 SX CPU have
the same logical address space. The only differ-
ence is that the Intel386 DX CPU has a 32-bit
physical address space and the Intel386 SX CPU
has a 24-bit physical address space. The Intel386
SX CPU has a physical memory address space of
up to 16 megabytes instead of the 4 gigabytes
available to the Intel386 DX CPU. Therefore, in
Intel386 SX CPU systems, the operating system
must be aware of this physical memory limit and
should allocate memory for applications programs
within this limit. If a Intel386 DX CPU system uses
only the lower 16 megabytes of physical address,
then there will be no extra effort required to mi-
grate Intel386 DX CPU software to the Intal386
SX CPU. Any application which uses more than
16 megabytes of memory can run on the Intel386
SX CPU it the operating system utilizes the
Intel386 SX CPU's paging mechanism. In spite of
this difference in physical address space, the
Intel386 SX CPU and Intel386 DX CPU can run
the same operating systems and applications
within their respective physical memory con-
straints.

8. The Intel386 SX has an input cailed FLT # which
tri-states all bidirectional and output pins, includ-
ing HLDA #, when asserted. It is used with ON
Circuit Emulation (ONCE). In the Intel386 DX
CPU, FLT # is found only on the plastic quad fat
package version and not on the ceramic pin grid
array version. For a more detailed explanation of
FLT # and testability, please refer to section 5.4.

9.0 INSTRUCTION SET

This section describes the instruction set. Table 9.1
lists all instructions along with instruction encoding
diagrams and clock counts. Further details of the
instruction encoding ars then provided in the follow-
ing sections, which completely describe the encod-
ing structure and the definition of all fields occurring
within instructions.

9.1 Intel386™ SX CPU Instruction
Encoding and Clock Count
Summary

To calculate elapsed time for an instruction, multiply
the instruction clock count, as listed in Table 9.1 be-

LYE D

Intel386™ SX MICROPROCESSOR

low, by the processor clock period (e.g. 62.5 ns
for an Intel386 SX Microprocessor operating at
16 MHz). The actual clock count of an Intel386 SX
Microprocessor program will average 5% more than
the calculated clock count due to instruction se-
quences which execute faster than they can be
fetched from memory.

Instruction Clock Count Assumptions

1. The instruction has been prefetched, decoded,
and is ready for execution.

2. Bus cycles do not require wait states.

3. There are no local bus HOLD requests delaying
processor access to the bus.

4. No exceptions are detected during instruction ex-
ecution.

5. It an effective address is calculated, it doas not
use two general register components. One regis-
ter, scaling and displacement can be used within
the clock counts shown. However, if the effective
address calculation uses two general register
components, add 1 clock to the clock count
shown.

Instruction Clock Count Notation

1. If two clock counts are given, the smaller refers to
a ragister operand and the larger refers to a mem-
ory operand.

2. n = number of times repeated.

3. m = number of components in the next instruc-
tion executed, where the entire displacement (if
any) counts as one component, the entire imme-
diate data (if any) counts as cne component, and
all other bytes of the instruction and prefix(es)
each count as one component.

Misaligned or 32-Bit Operand Accesses

— It instructions accesses a misaligned 16-bit oper-
and or 32-bit operand on even address add:
2' clocks for read or write
4** clocks for read and write

— If instructions accesses a 32-bit operand on odd
address add:
4* clocks for read or write
8** clocks for read and write

Wait States

Wait states add 1 clock per wait state to instruction
oxecution for each data access.

1-393

M 432L175 0l2kL489 303 M ITLL

INTEL CORP {UP/PRPHLS}

Intei386™ SX MICROPROCESSOR

L?E D

M 452L17?5 012L490 025 MM ITL]

Table 9-1. instruction Set Clock Count Summary

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | Protected | Address | Protected
Mode or Virtual Mode or Virtual
Virtual Address Virtuat Addresa
8088 Mode 8088 Mode
Mode Mode
GENERAL DATA TRANSFER
MOV = Move:
Register to Register/Memory L 1000100w l mod reg rlm] 2/2 /2 b h
Register/Memory to Register I 1000101w [maod reg r/;] 2/4 2140 b h
Immediate to Ragister/Memory b 100011w I mod 000 rlml immediate data 2/2 2/2¢ b h
immediate to Register {(shor form) 1011w reg| immediate data 2 2
Memory to Accumulator (short form) 1010000w | ful displacement 4* 4° ’ b h
Accumulator to Memory (short form) | 1010001w IMI‘ 2* 2 b h
Register Mamory to Segment Register b 0001110 [mod sreg3 v/m] 2/8 22/ b M
Segment Register to Register/Memory L1 0001100 I mod ve§3 r/mI 2/2 2/2 b h
MOVSX = Move With Sign Extension
Register From Register/Memory l 000011114 I 101111tw Imodvsg l/m] /6 3/8° i b h
MOVZX = Move With Zero Extension
Register From Register/Memory [00001111 [1011011w lmod rag r/m_' 3/8* 3/6* b h
PUSH = Push:
Ragister/Memory | 11111111 [mod1 10 r/ml 5/7* 7/9* b h
Raegister {short form) 91010 reg 2 4 b h
Segment Register (ES, CS, 58 or DS)

(hort form) 000sreg2110 2 4 b h
Segment Register (ES, CS, SS, DS,

FS o GS) [000011171 l 108reg3000 2 4 ‘b h
Immediate 01101080 immadiate data 2 4 b h
PUSHA = Push Alt 01100000 18 34 b h
POP = Pop
Register/ Memory L 10001111] mod 000 r/m—l 517 7/9 b h
Register (short form) 01011 reg] 6 b h
SO ogister (E5.CS, 8SorDS) (000 weg2 111 7 25 b nil

ment Register (ES, CS, 5SS or DS),
S°§SO{GS°9 { Looooun]10$reg3001J 7 25 b hij
POPA ~ Pop Alt 01100001 24 40 b h
XCHG = Exchange
Register/Memory With Register l t000011w [mod og r/m a/5°** 3/5%* b.f t.h
Register With Accumulator {short form) 10010 rog Cik Count 3 3

Virtual

IN = Input from: 8086 Mode
Fixed Port I 1110010w [port number 126 12¢ 8/28" - s/Am
Variable Port t27 13¢ 7e/27 s/tm
OUT = Output ta:
Fixeg Port 1110011w [port number 124 10" 47724 s/tm
Variable Port 125 7" 5*/25° s/tm
LEA = Load EA to Register Lv 0001101 imod rag ’;l 2 2

1-394

INTEL CORP {UP/PRPHLS} L?E D ®R 4826175 01249l ThLL MR ITLL

L]
In o Intel386™ SX MICROPROCESSOR
Table 9-1. Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | Protected Address Protected
Mode or Virtual Mode or Virtual
Virtust Addrens Virtuat Address
8088 Mode 8086 Mode
Mode Mode
SEGMENT CONTROL
LDS = Load Pointer to DS umoo‘m Imodreg r/m] 7 26°/28° b | hij
LES = Load Pointer to ES L1 1000100 [modreg rIrnJ 7 26%/28° b hij
LFS = Load Pointer to FS | 00001111 [10110100 Imodreq r/ml 7 29*/31° b hij
LGS = Load Pointer to GS I 000017111 [10110101]modreg r/m] 7 26%/28° b h,ij
LSS = Load Pointer to SS L000011I1 I 10110010 lmodrsg r/mI 7™ 26¢/28° b hi.j
FLAG CONTROL
CLC = Clear Carry Flag 2 2
CLD = Clear Directlon Flag 2 2
CLJ = Clear Interrupt Enable Flag 8 8 m
CLTS = Clear Task Switched Flag 00001111 l 00000110 5 5 c]

CMC = Complement Carry Flag
LANHF = Load AH Into Flag
POPF = Pop Flags

PUSHF = Push Flags 10011100 4 4 b h
SAHF = Store AHinto Flags
STC = SetCarry Flag

STD = Set Direction Flag

w
w

STl = Setinterrupt Enable Flag 8 8 m
ARITHMETIC

ADD = Add

Register to Register I 000000dw lmodreg rlml 2 2

Register to Memory I 0000000w Imodrag r/rnl 7 7 b h
Memory to Register l 00000Q1w [mod reg r/rvTI 6" 6* b h
Immediate to Register/Memory L1 00000sw leOd 0oo '/ﬂ immediate data 2/7** 217" b h
Immediate to Accumutator (short form) immediate data 2 2

ADC = Add With Carry

Register to Register [000100dw l mod reg r/nT] 2 2

Register to Memory Ii001000w lmodrag r/m 7 ™" b h
Memory to Register [0001001 w Lmod req v/m] 6* 6" ' b h
Immediate to Register/Memory b 00000sw] mod0 10 ';I immediate data 27" 217 b h
Immediate to Accumulator (short form) immediate data 2 2

INC = Increment

Register/Memory I 11111 11w [modooo r/m] 2/6°* 2/6°" b h
Register (short form) 2 2

SUB = Subtract

Register trom Register LO 01010dw [mod reg r/:l 2 2

1-395

INTEL CORP {UP/PRPHLS} &L?7E D MR 4825175 0l2k4d92 978 ®R ITL)

Intel386™ SX MICROPROCESSOR In
@
Table 9-1. Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES
Reat Res!
INSTRUCTION N FORMAT Address Protacted Address | Protected
Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode o
RITHMETIC (Continued)
Register from Memory I 0010100w]mod reg rlrr4 7°* 7 b h
Memory from Registar [Q010101 wImod rog r/nq [6*) b h
Immediate from Register/Memory ho 0000sw [mod 101 r/mI immediate data 2/7* 217 b h
meedla\e from Accumuiator {short form) 0010110w ’ i iate data 2 2
BB = Subtract with Borrow

Register from Register [000110dw Imod reg I/rrJ 2 2
Register from Memory [0001 100w Imod rog r/rvq 7** 7" b h
Memory from Register I0001101whnodreg '/NJ e 6* b h

from Register/Memory I 100000sw [mod 011 r/nJ immediate data /7 -T2 b h
Jmmediate from Accumulator (short form) Q001110w immediate data 2 2
DEC = Decrement
Register/Memory b 111111 w lreg 001 r/nl 2/6 2/8 b h
Regitor (snort fom) 2 2
CMP = Compare
Rogistor with Register {00t 110dwlmodreg rm] 2 2
Momory with Register ILO 11100w lmod reg ’/"1 5° 5* b h
Register with Memory [0011101w Imod reg rqu 6* 6* b h
fmmediate with Register/Memory I 100000sw]Tnod 111 r/rrl immediate data 2/5* 2/5* b h
Jmmediate with Accumulator (short form) immediate data 2 2
NEG = Change Sign | 1111011w ImodO 11 r/n‘J 2/6* 2/8* b h
IAAA = ASCII Adjust for Add 4 a
IAAS = ASCII Adjust for Subtract | 00111111 4 4
DAA = Decimal Adjust for Add | 00100111 4] 4
IDAS = Decimai Adjust tor Subtract 4 4
hUL = Multiply (unsigned)
IAccumulator with Register/Memory l 1111011w lmod 100 ran

Multiplier-Byte 12-17/15-20"| 12-17/15-20* b,d dh
-Word 12-25/15-28*{ 12-25/15-28"° b.d d,h
-Ooubleword 12-41/17-46"[12-41/17-48" b,d d.h

MUL = Integer Multiply (signed)
Accumulator with Register/Memory b 11101 1w lmod 101 I/ITJ '

Multiplier-Byte 12-17/15-20% | 12-17/15~-20°* b.d d.h
-Word 12-25/15-28"| 12~-25/15-28* b,d dh
-Doubleword 12-41/17-46*| 12-41/17-48" b,d dh

Register with Register/Memory | 00001111 L 10101111 lmod reg r/q

Multiplier-Byte 12-17/15-20" | 12-17/15-20* b, d dh
-Word 12-25/15-28"} 12-25/15-28* b,d d.h
-Doubleword . 12-41/17-46"[12-41/17-46° b.d dh

Register/Memaory with Immediate to Register| 01101081 [mod reg r/ﬂ immediate data
-Word 13-26 13-28/14-27 b,d d,h
-Doubleword 13-42 13-42/16-45 b, d d,h

1-396

INTEL CORP {UP/PRPHLS} &Ek7E D WR 4582L17?5 0l2L493 834 W@ ITL1

|n » Intel386™ SX MICROPROCESSOR
Table 9-1. Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT) . Add P d| Address | P o

Mode or | Virtual | Modeor | Virtual
Virtual | Address | Virtual | Address
8088 Mode 8088 Mode

Mode Mode
IARITHMETIC (Continued)
DIV = Divide (Unsigned)
Accumulator by Register/Msmory Ll 11101 1w lmodI 10 t/r;l
Divisor—Byte . 14/17 14/17 be e.h
—Word 22/25 22/25 be eh
—Doubleword 38/43 38/43 be eh
[IDIV = Integer Divide (Signed)
IAccumulator By Register/Memory h! 11011w [mod1 11 r/n—||
Divisor—Byte i 19/22 19/22 be eh
~-Word 27/30 27/30 be eh
—Doubleword 43/48 | 43/48 be eh
JAAD = ASCII Adjust for Divide l 1101010t [ooomowl ‘ 19 19
JAAM = ASCH Adjust for Multiply [11010100[00001010] 17 17

[CBW = Convert Byte to Word 3 3
ICWD = Convert Word to Double Word 2 2

LOGIC

|Shift Rotate Instructions
Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR)

Register/Memory by 1 {1101000w [mod T 1/m) Y AN Y I b h
Register/Memory by CL 1101001 w [mod T r/m] I kIfad b h
Register/Memory by Immediate Count L‘ 100000w FnodTTI' r/nﬂimmed 8-bit data 3/7 yr | b h
[Through Carry (RCL and RCR)
Register/Memory by 1 I 1101000w ImodTTT r/nJ 9/10° 9/10° b h
Register/Memory by CL I 1101001 w [mod‘ITr r/r:| 9/10° 9/10° b h
Register/Memory by immediate Count b100000w [modTTT r/mlirmneds-bitdlul 9/10* 9/10* b h
TTT Instruction
000 ROL
001 ROA
010 RCL
011 RCR
100 SHUSAL
101 SHR
111 SAR
|SHLD = Shitt Left Double
Register/Memory by Immediate I 00001111 | 10100100 [modrog r/m]immeds-bi‘ldata a7 3/7*
Register/Memory by CL | 00001111 [10100101 [modrnq rlml 3/7°° 3/7°°
SHAD = Shift Right Double
Register/Memory by Immediate 00001111 10101100 [modreg r/mlimmedstitaata | arree | as7ee
Register/Memory by CL I 00001111 l 10101101 rmwreg r/mI /7 3/7°°
JAND = And
Register to Register [001000dw [modreg /] 2 2

1-397

INTEL CORP {UP/PRPHLSY}

L7E

Intel386™ SX MICROPROCESSOR

D

Table 8-1. Instruction Set Clock Count Summary (Continued)

M 4426175 012k49y 770 mE ITLY

intgl.

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT N Address | Protected | Address | Protected
Modeor [Virtual | Modeor | Virtual
Virtual | Address-! Virtual | Address
8088 Mode 8088 Mode
Mode Mode
LOGIC (Continued)
Register to Memory uo 10000w [mod reg v/ml 7 7 b h
Memory to Register Ilo‘ 0001w lmod reg r/m] -3 6° b h
Immediate to Register/Memory b 000000w lmod 100 r/m] immediata data 27 217 b h
Immediate to Accumulator (Short Form) 0010010w | immediate data 2 2
TEST = And Function to Flags, No Resuit
Register/Memory and Register l 1000010w lmod reg r/ml 2/5* 2/5° b h
Immediate Data and Register/Memory ljl 11011w Lmod 000 r/m] immediate data 2/5* 2/5° b h
immediata Data and Accumutator
(Short Form) 1010100w | immediate data 2 2
OR = Or
Register to Register LD 00010dw lmod reg r/m] 2 2
Register to Memory l£0 00100w Lmod reg r/ml 7 7% b h
Memory to Register bo 00101w Imod reg v/ml 6* g b h
Immediate to Register/Memory l 1000000w rmod 001 r/m] immediate data 2/7** 27 b h
immediate to Accumulator (Short Farm} 00001 10w | immediate data 2 2
XOR = Exclusive Or
Register to Register [001100dw lmod reg r/m] 2 2
Register to Memory |i0 11000w lmod reg r/mJ 7 7% b h
Memory to Register 0011001w [mod reg r/m] 8* & b h
Immediate to Register/Memory b 000000w Imod 110 r/m] immadiate data 2/ 2/7% b h
Immediate to Accumulator {Short Form) 0011010w | immadiate data 2 2
NOT = Invert Register/Memory |i1 1101w [modo 10 r/m] o 2/8°* 2/8*° b h
STRING MANIPULATION Count
ANIPULATIO Virtual
CMPS = Compare Byte Word Mode 10° 10° b h
iNS = input Byte/Word from DX Port 129 | 15 9¢/29°* b s/t h,m
LODS = Load Byte/Word to AL/AX/EAX| 1010110w S 5 b h
MOVS = Move Byte Word 1010010w 7 7 b h
OUTS = Output Byte/Word ta DX Port t28 14 8*/28* b s/t h,m
SCAS = Scan Byte Word 7 7* b h
STOS = Store Byte/Word from
AL/AX/EX 4° 4 b h
XLAT = Transiate String 5¢ 5¢ h
REPEATED STRING MANIPULATION
Aepaated by Countin CX or ECX
REPE CMPS = Compare String
{Find Non-Match) 111100141 10100117' 5+ 9n°"} 5+ 9n°** b h

1-398

INTEL CORP {UP/PRPHLSY}

INtal.

LPE D

Intel386™ SX MICROPROCESSOR

Table 9-1. Instruction Set Clock Count Summary (Continued)

B 4426175 012Lk495 LO?

CLOCK COUNT NOTES
Real Reat
INSTRUCTION FORMAT Address Protected| Address | Protected
Mode or Virtuat | Modeor | Virtual
Virtual Address | Virtual | Address
8088 Mode 8086 Mode
Mode Mode
REPEATED STRING MANIPULATION (Continued)
REPNE CMPS = Compare String Cik Count
{Find Match) | ‘11100'0[1010011ﬂ 8088 Mode 5+0n** 5+9n** b h
REP INS = Input String [11110010[011011Dw| | T 13+6n* 7+8n*/ b
27+6n*
REP LODS = Load String 11110010[1010110wl §+6n* 5+6n* b
REP MOVS = Move String 11110010]1010010w] 7+4n° 7+4n** b
REP OUTS = Output String LH110010[01‘0111VT| I t 12+5n° 6+5n*/ b
26+5n"
REPE SCAS = Scan String
(Find Non-AL/AX/EAX) b1110011 |1010111w] 5+8n* 5+8n* b h
REPNE SCAS = Scan String
(Find AL/AX/EAX) I11110010[1010111;I 5+8n* 5+8n" b h
REP STOS = Store String l11110010[10|0101w] 5+5n* 5+5n° b h
BIT MANIPULATION
BSF = Scan Bit Forward |00001111l101111001modrag r/nl 10+3n* 10+3n** b h
BSR = Scan Bit Reverse L0000111|[10‘11101[modreg m 10+3n" 10+3n°** b h
BT = Test 81t
. . p I § . o
Register/Memory, Immediate booonn [!onwmlmod‘oo r/my B-bit dal 3/8 3/8 b h
Register/Memory, Flegister Loooo1 111 Foa 00011 lmodrag r/ﬂ a2e anee b h
BTC = Test Bit and Complement
Rogister/Memory, Immediate m001111 I 10111010lmod11‘ /i immods-bitdad 6/8° 6/8° b h
Register/Memory, Register M)oonn [10111011 [modreg r/nJ 8/13* a/13* b h
BTR = Test Bit and Reset
Register/Memory, Immediate | 00001111 [10111010 Imod 110w immed -bit data] 8/8* 6/8* b h
Register/Memory, Register I 00001111 [10110011 Imodreg r/ﬂ 8/13° 8/13* b h
BTS = Test Bit and Set
Register/Memory, immediate | 00001111 10111010 |mod 101 _r/mimmed8bitdatd| 6/8* 6/6° b B
Register/Memory, Register |looo1 111 I 10101011 [modrag rﬂ 6/13* 6/13° b h
CONTROL TRANSFER
CALL = Call
Direct Within Segment 11101000|M 7+m* 9+m* b r
Register/Memory
indicoct Within Segment m1 1111 lmodo 10 r/n-J 7+m*/10+m*| 9+m/ b hr
12+m*
Direct Intersegmant 10011010 lunsigned full offset, selector 17+m* 42+m* b bk

NOTE: .

t Clock count shown applies if 170 permission allows 1/0 to the port in virtual 8086 mode. If |70 bit map denies permission

exception 13 fault occurs; refer to clock counts for INT 3 instruction.

1-399

M ITL]

INTEL CORP {UP/PRPHLS} L?E D ®B 482L275 01.2kL49L 543 WA ITL)

[]
Intel386™™ SX MICROPROCESSOR |nte| o

Table 9-1. Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES
Real Resl
INSTRUCTION FORMAT Address Protected | Address | Protected
Mode or Virtual Modeor | Virtual
Virtual Address | Virtual | Address
3088 Mode 8086 Mode
Mode Mode
ICONTROL TRANSFER (Continued)
Protected Made Only (Direct Intersegment)
Via Calt Gate to Same Privilege Level 64+m hjk,r
Via Call Gate to Different Privilege Level,

{No Parameters) 98+m hjk,r
Via Call Gate to Ditferent Privilage Level,

{x Parameters) 106+8x+m hjk,r
From 286 Task to 286 TSS 285 hjk.r
From 286 Task to Intel386Tv SX CPU TSS 310 hjkr
From 286 Task to Virtual 8086 Task (Intel386 SX CPU TSS) 229 hjkr
From intai386 SX CPU Task to 286 TSS 285 hjkrs
From Intal386 SX GPU Task 1o Intel386 SX CPU TSS 392 hjks
From Intaid88 SX CPU Task to Virtual 8086 Task (Intel386 SX CPU TSS) 309 njkr

Indirect Intersegment 111111191 /mod011 r/n‘ 30+m 48+m b hjkr
Protected Mode Onty (Indirect intersegmant)
Via Call Gate to Same Privilege Laval 68+m hjk,r
Via Call Gate to Different Privilege Level,

(No Parameters) 102+m hjkr
Via Call Gate to Different Privilege Level,

(x Parameters) 110+8x+m hijkr
From 288 Task to 286 TSS h,jikr
From 286 Task ta Intel386 SX CPU TSS : hjkr
From 286 Task to Virtual B086 Task (Intel386 SX CPU TSS) hjk.r
From Intel386 SX CPU Task to 286 TSS : hijke
From Intel386 SX CPU Task 1o Intei386 SX CPU TSS 398 hjks
From Intel386 SX CPU Task to Virtual 8086 Task (Intel386 SX CPU TSS) Bk

UMP = Unconditional Jump
[Short Mo1o11ﬁ-mr" I :,I 7+m 7+m 4

Direct within Segment full displacement 7+m 7+m '

Register/Mamory indirect
S +m/14+ + .
ithin ment L111111|1 [mod100 r/rr] 9+m/14+m [9+m/14+my b hr

Direct intersagment 11101010 |unsigned full offset, selectar 16+m 31+m jkr

Protected Mode Only (Direct Intersegment)

Via Call Gate to Same Privilege Lavel 53+m hjkr
From 286 Task to 286 TSS . hjk.r
From 286 Task to intei386 SX CPU TSS hjk.r
From 286 Task to Virtual 8086 Task (Intel386 SX CPU TSS) hik.r
From intel386 SX CPU Task to 286 TSS hikr
From intel386 SX CPU Task to intel386 SX CPU TSS hjk.r
From Intel388 SX CPU Task 1o Virtual 8086 Task (Intel386 SX CPU TSS) 395 h,jk.r
Indirect Intersegment 11111111 |[mod101 r/ﬂ 17+m 3t+m b hjkr
Protected Mode Only (Indirect Intersegmant)
Via Call Gate to Sama Privilege Level 49+ m h,jkr
From 286 Task to 286 TSS hjkr
From 2B6 Task to Intei386 SX CPU TSS LFLY
From 288 Task to Virtual 8086 Task (Intel386 SX CPU TSS) hijkr
From Intei386 SX CPU Task to 286 TSS hjkr
From Intet386 SX CPU Task to Intel386 SX CPU TSS 328 hjkr

From intei386 SX CPU Task to Virtual 8086 Task (intel386 SX CPU TSS)

hjkr

1-400

INTEL CORP {UP/PRPHLS} &L?7E D ®R 4326175 012b497 44T MR ITL1

a2
In ® Intel386™ SX MICROPROCESSOR
Table 3-1. Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES
Real Resl
INSTRUCYION FORMAT Address | Protected Addresa Protected

Mode or Virtual Mode or Virtuat
Virtual Address Virtuat Address

8086 Mode 8086 Mode
Mode Mode

CONTROL TRANSFER (Continued)
RET = Return from CALL:

Within Segment - 11000011 12+m b g.hr

Within Segment Adding Immediate to SP Li 000010 l 18-bit displ ' 12+m b g.hr
Intersegment 6B+m b g hikr
Intersegment Adding Immediate to SP b1 Q01010 L 16-bit displ I 36+m b ahikr
Protacted Mode Only (RET):
1o Different Privitege Level
Intersegment 12 hikr
I gment Adding Immediate to SP 72 b ke
CONDITIONAL JUMPS

NOTE: Times Are Jump ““Taken or Not Taken"
JO = Jump on Overflow

8-8it Displacement [01110000 [abitasm | 7T+mor3| 7+mord '

Full Displacement b0001111 [10000000 Ifulldisplacsment 7+mor3| 7+mor3 r -
JNO = Jump on Not Overfiow

8-8it Displacement { 01110001 [abitaisal | 7+mor3| 7+mora ‘

Full Displacement I 00001111 [10000001 Ifulldisplacament 7+mor3| 7+mor3d r
JB/JNAE = Jump on Below/Not Above or Equal

8-Bit Displacement [01110010 8-bit displ I 7+mor3]| 7+mor3 4

Fuil Displacement 'JDD(H 111 10000010]full displacement 7+mor3| 7T+mor3 r
JNB/JAE = Jump on Not Below/Above or Equal

8-Bit Displacement [ort10011 [abasp | 7+mora| 7+mor3 r

Full Displacement li0001111 I 10000011 | fulldispiacement 7+mor3] 7+mor3 r
JE/JZ = Jump on Equal/Zero

8-Bit Displacement I 01110100 I S-bitdispl—l 7+mor3| 7+mor3 r

Full Dispiacemant I 000011114] 10000100 Ifull", nent T+mor3| 7+mor3 r
JNE/JNZ = Jump on Not Equal/Not Zero

B-Bit Displacement I 01110101 I 8-bit displ —l 7+mor3| 7+mor3 r

Full Displacemant l 0000111'T10000101 Ifull“ pl T+mor3| 7+mor3 r
JBE/INA = Jump on Below or Equal/Not Abave

8-Bit Disptacement I 01110110 [S-bhdisplj 7+mor3| 7+mord T

Full Displacement [00001111 I 13000110 lfull"'r it 7+mor3| 7+mor3 r
JNBE/JA = Jump on Not Below or Equal/Above

8-8it Displacement [01110111 | 8-bit displ _l 7+mor3| 7+mord r

Full Displacement 00001111 L10000111 full disptacement 7+mor3} 7+mor3 r
JS = Jump on Sign

8-Bit Displacement I 01111000 I 8-bit displ I 7+mord| 7+mor3d r

Full Dispiacement |J0001111 l 10001000 | full displacement 7+mor3] 7+mor3 r

1-401

INTEL CORP {UP/PRPHLS} &L?7E D ®R 482L17?5 0126498 31t MR ITLL

[]
Intel386™ SX MICROPROCESSOR . "‘“‘el .

Tabile 9-1. Instructlbn Set Clock Count Summary {Continued)

CLOCK COUNT NOTES
Reat Res!
INSTRUCTION FORMAT Address | Protected | Address | Protected
Mode or Virtual Mode or Virtual
Virtual Address Virtusi Address
8086 Mode 8088 Mode
Mode Mode
CONDITIONAL JUMPS (Continued)
JNS = Jump on Not Sign
8-8it Displacement DHHOOI [8-bit dispt I T+mor3f 7+mord r
Full Displacement L00001 111 [10001001 I(ulldisptacamem 7+mor3| 7+mor3 r
JP/JPE = Jump on Parity/Parity Even
8-8it Displacement l 01111010 I 8-bit displ I 7+mor3| 7+mor3 r
Fuit Displacement [00001111 [10001010 l!uldisplacement 7+mor3)] 7+mor3 r
JNP/JPO = Jump on Not Parity/Parity Odd
8-8it Displacement | 01111011 r 8-bit displ] 7+mor3| 7+mor3 r
Full Displacement ITJOOOHH r10001011]fulldisplacement 7+mord | 7+mor3 4
JL/INGE = Jump on Less/Not Greater or Equal
8-Bit Displacement 51111100 I muispl—l ’ T+mor3| 7+mor3 r
Full Displacement l 00001111 [10001100 lfulldisplacement T+mor3| 7+mord T
JNL/JGE = Jump on Not Less/Greater or Equal
8-Bit Displacement I 01111101 l 8-bit displ] 7+mor3| 7+mord r
Full Displacement I 00001111 L10001101 lfulldisplaoemenl 7+mord| 7+mord r
JLE/JNG = Jump on Less or Equai/Not Greater
8-Bit Displacement l 01111110 I 8-bit displ I T+mord | 7+mor3 r
Full Digplacement I 00001111 l 10001110JMIdisplacemem 7+mord| 7+mord r
JNLE/JG = Jump on Not Less or Equal/Greater
8-Bit Displacement [o1111111 | ebitasp | ' 7+mor3| 7+mor3 '
Full Displacement [00001111 l 10001111 lfulldisp(aoemem. 7+mor3| 7+mor3 4
JCXZ = Jump on CX Zero l 11100011 [8-bit disp!] 9+mor5| 9+mors r
JECXZ = Jump on ECX Zero | 11100011 l 8-bit displ] 9+morS| 9+morS 4
(Address Size Prefix Differentiates JCXZ from JECXZ)
LOOP = Loop CX Times Lntooo‘o [8-bit displ l 11+m 11+m r
LOOPZ/LOOPE = Loop with
Zero/Equal I 11100001 [8-bit displ] 1+m M+m r
LOOPNZ/LOOPNE = Loop While
Not Zero I 11100000 I 8-bit displ | 11+m 1+m v
CONDITIONAL BYTE SET
NOTE: Times Ara Register/Memory
SETO = Set Byte on Overflow
Ta Register/Memory [00001111 rmowooo Imodooo r/m] 4/5° a5 B
SETNO = Set Byte on Not Overfiow
To Register/Memory 1700001111 r10010001 [modOOO rlml A4/5° 4/5* h
SETB/SETNAE = Set Byts on Below/Not Above or Equai
To Register/Memory | 00001111 l 10010010 Imoaooo r/ml 4/5° 4/5° h

1-402

INTEL CORP {UP/PRPHLS} &7E

D MM 4326175 0126499 252 B ITLL

[]
ln . intel386™ SX MICROPROCESSOR
Table 9-1. Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | Protected Address Protected
Mode or Virtuai Mode or Virtusd
Virtusl Addrass Virtual Address
8088 Mode 8088 Mode
Mode Mode
COMDITIONAL BYTE SET (Continued)
SETNB = Set Byte on Not Below/Above or Equal
To Register/Mamory [00001111 | 10010011 [modcoo r/:l 4/5° ars* h
) SETE/SEYZ = Set 8yte on Equal/Zero
To Register/Memory | 00001111 l 10010100 [modOOO r/ml 4/5° 4/5° h
SETNE/SETNZ = Set Byte on Not Equal/Not Zero
To Register/Memory L00001|11 [10010101 lmodOOO r/m] 4/5°* 4/5* h
SETBE/SETNA = Set Byte on Below or Equal/Not Above .
To Register/Memory LOOOOHH [10010110 Imodooo r/nTl 4/5* 4/5° h
SETNBE/SETA = Set Byte on Not Below or Equal/Above
ToRegis(ar/MemoryI 040001111 I 10010111 lmodOOO rlm—l 4/5* 4/5° h
éE‘I'S = Set Byte on Sign
To Register/Mamory | 00001111 [10011000 [modOOO r/rn] 4/5* 4/5° h
SETMS = Set Byte on Not Sign
To Register/Memory LOOOOHH I 10011001]modooo r/m] /5" 4/5* h
SETP/SETPE = Set Byte on Parity/Parity Even
To Register/Memory L00001111 I 10011010 ImodOOO r/rﬂ 4/5* 4/5° h
SETNP/SETPO = Set Byts on Not Parity/Parity Odd
To Register/Memory [00001113 1 10011011 JmodOOO r/m—l 45 4r5° h
SETL/SETNGE = Set Byte on Less/Not Greater or Equal
To Register/Memory [JOOOHH [10011100 ImodOOO r/ml 4/5° 4/5* h
SETNL/SETGE = Set Byte on Not Less/Greater or Equal
To Register/Memory LOOOOHH l 01111101 ImodOOO r/;l 4/5* 4/5* h
SETLE/SETNG = Set Byte on Less or Equal/Not Greater
To Ragister/Mamory [00001111 L1oo1111o [modooo r/nTI a/5° ass° h
SETNLE/SETG = Set Byte on Not Less or Equal/Greater
To Register/Memory booonn [10011111 Tmodooo r/m] a/5° a/5° h
ENTER = Enter Procedure [11001000 I 16-bit displacement, 8-bit level —l
L=0 10 10 b h
L=1 14 14 b h
L>1 17 + 17 + b h
8(n—1) B(n—1)
LEAVE = Leave Procedure 4 4 b h
1-403

INTEL CORP {UP/PRPHLS} L7E D W 482L17?5 0.2bL500 ATY ER ITLIL

]
Intel386™ SX MICROPROCESSOR iNn .
Table 9-1. Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | Protectsd Address Protected
. Mode or Virtual Mode or Virtual
Virtual Address Yirtual Address
8008 Mode 5088 Mode
Mods Mode
INTERAUPT INSTRUCTIONS
INT = Interrupt:
Type Specified [11001101 [type I 37 [3
Tre2 = b
INTO = Interrupt 4 f Overfiow Flag Set
HOF = 1 kL3 be
WOF = 0 3 3 be
Bound = Interrupt 5 if Detect Value W1 100010 [mod reg r/;]
Out of Range
It Out ot Range 44 b,e aghikr
If In Range 10 10 ‘be [XN NN N
Protected Mode Only (INT)
INT: Type Specified
Via intorrupt or Trap Gate
Via Interrupt or Trap Gate
1o Same Privilege Levet n g hkr
to Different Privilege Level 111 [¥R 9]
From 266 Task to 286 TSS via Task Gate 438 hkr
From 288 Task to Intel388™ SX CPU TSS via Task Gate 488 ghkr
From 286 Task to virt 8088 md via Task Gate 382 Shkr
From Intei388™ SX CPU Task 10 286 TSS via Task Gate 440 okt
From Inteid88™ SX CPU Task to Intei386™ SX CPU TSS via Tesk Gate 487 ohke
From intel386™ SX CPU Task to virt 8086 md via Task Gate 384 ohkr
From virt 8086 md to 288 TSS via Task Gate 445 ghkr
From virt 8086 md to intel386™ SX CPU TSS via Task Gate 472 gLkr
From virt 8088 md to priv levet 0 via Trap Gate or Interrupt Gate 278
INT: TYPE 3
Via interrupt or Trap Gate
to Same Privilega Level " [1984
Via interrupt or Trap Gate
to Differsnt Priviiege Level 111 olkr
From 286 Task to 288 TSS via Task Gate 382 (1Y
From 286 Task to Intel386™ SX CPU TSS via Task Gate 409 Shkr
Fram 286 Task to Vist 8086 md via Task Gate 28 ['¥% 4
“From Inteld88™ SX CPU Task to 288 TSS via Task Gate 384 Ly
From intel3B6™ SX CPU Task to Intel388™ SX CPU TSS via Task Gate L1531 ahke
From intel388™ SX CPU Task to Virt 8086 md via Task Gate 320 elkr
From virt 8086 md to 286 TSS via Task Gate 300 ehkr
From virt 8086 md to Intel388™ SX CPU TSS via Task Gate 410 shkr
From virt 8088 md to priv level 0 via Trap Gate or interrupt Gate 2
INTO:
Via Interrupt or Trap Grate s
1o Same Privilege Level Al Shir
" Via interrupt or Trap Gate
to Ditterent Privilege Level m bk
From 288 Task to 286 TSS via Tesk Gate 384 Ghir
From 288 Task 10 Intei388™ SX CPU TSS via Task Gate a1 Shke
From 288 Task 10 virt 8086 md via Task Gate e S hkr
From intei386™ SX CPU Task to 288 TSS via Task Gate intel388 DX bk
From Intel388™ SX CPU Task 10 Intei386™ SX CPU TSS via Task Gate 413 [XY 85
From Intei386™ SX CPU Task to virt 8086 md via Task Gate 28 elkr
From virt 8086 md to 288 TSS via Task Gate 301 obkr
From virt 8086 md to intei386™ SX CPU TSS via Task Gate 418 Shkr
From virt 8086 md to priv level O via Trap Gate or Interrupt Gate 223
1-404

INTEL CORP {UP/PRPHLS} L7E D ®R 4825175 012LS501 7?30 ER ITL)

-
|n R Intel386™ SX MICROPROCESSOR
! Table 9-1. Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES
Real Resl
INSTRUCTION FORMAT Address | Protected | Address | Protected

Mode or Virtus! Mode or Virtual
\ Virtusl Address Virtusl Address

8088 Mode s08s Mode
Mode Mode
INTERRUPT INSTRUCTIONS (Continued)
BOUND:
Via Interrupt or Trap Gate
to Same Privilege Level n Shkr
Via Interrupt or Trap Gate
to Different Privilege Lavel : 111 ¢ikr
From 288 Task to 284 TSS via Task Gate 358 gikr
From 288 Task to intei386™ SX CPU) TSS via Task Gate 388 gikr
From 268 Task to virt 8088 Mode via Task Gate 35 Shkr
From Intel288 SX CPU Task to 288 TSS via Task Gate 388 gk
From Intei388 SX CPU Task to Intei386 SX CPU TSS via Task Gats 398 g kr
From Intei388 SX CPU Task 10 virt 8086 Mode via Task Gate 47 gk
From virt 8088 Mode to 286 TSS via Task Gate 388 o.hkr
From virt 8088 Mode to Intel388 SX CPU TSS via Task Gate 398 gikr
From virt 8086 md to priv level 0 via Trap Gate or Interrupt Gate 223
INTERRUPT RETURN

IRET = Interrupt Return 24) ahikr

Protacted Mode Onty (IRET)

To the Same Privilage Level (within task) 42 ghikr
To Different Privilege Level (within task)] ehikr
From 256 Task to 286 TSS) 285 hikr
From 288 Task 1o Intel388 SX CPU TSS 318 hjkr
From 286 Task 1o Virtual 8088 Task 267 (AN
From 286 Task 1o Virtual B0S8 Mode (within task) 113

From Intei388 SX GPU Task to 286 TSS 324 | nmixr
From Intei386 SX GPU Task to Intel386 SX CPU TSS azs nike
From Intei386 SX CPU Task to Virtual 8086 Task ar7 nike
From intet388 SX CPU Task to Virtual 8086 Mode (within task) : 13

PROCESSOR CONTROL

T - e s | s !

MOV = Move to and From Control/Debug/Teat Registers

CRO/CR2/CRA from register [00001111] 00100010 | 110eereg | | 107ar5 | 10715 '
Register From CRO0-3 | 00001111 | 00100000 | 110eersg | o 8 '
DRO-3 From Register [00001111 J 00100011 [110eareg | 22 22 '
DRS-7 From Register [00001111] 00100011] 110e6reg | 18 18 '
Register trom DRE-7 [00001111 [00100001] t1esereg | 14 14 i
Register from DRO-3 [00001111 [00100001 | 110eareg | 22 2 '
TRE-7 from Pegister [0o0g1111 [0a100110 [11eeereg | 12 12 i
Register from TR8-7 { 00001111 | 00100100 | 110e00reg | 12 12 1

NOP = No Operation 10010000 a3 3
WAIT = Walt untt BUSY # pin is negated 8 8

1-405

INTEL CORP {UP/PRPHLS?}

L?PE D

MR 4826175 0l2k502 L?7? MM ITLL

]
Intel386™™ SX MICROPROCESSOR |n .
Table 9-1. Instruction Set Clock Count Summary (Continued)
CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address Protected Address | Protected
Mode or Yirtual Mode or Virtusl
Virtusl Address Virtual Address
8088 Mode 2088 Mode
Mode Mode
PROCESSOR EXTENSION INSTRUCTIONS
Processor Extension Escape LHOHTTT ImodLLL r/m] See h
TTT and LLL bits are opcode Inteidd7SX
information for coprocessor. data sheet for
clock counts
PREFIX BYTES
Address Size Prefix 0 [}
LOCK = Bus Lock Prefix 11110000 0 0 m
Operand Size Prefix 011001190 0 0
Segment Override Prefix
o 0 0
os: 0 0
ES: 00100110 0 o
e 0 0
as: 0 0
s 0 0
PROTECTION CONTROL
ARPL = Adjust Requested Privilege Leve!
From Register/Memory ui 100011 lmodrog r/m! N/A 20/21°° a h
LAR = Load Access Rights
From Register/Memory |J0001111 l 40000010 [modreg r/ml N/A 15/16* a ghip
LGDT = Load Global Descriptor
Table Register [00001111 [ec0c0001 [mogoto rm] 1" 11 b.c h
LIDT = Load Interrupt Descriptor
Table Register I 00001111 [00000001 Imod011 '/’;l 11 1 b¢ h
LLDT = Load Locai Descriptor
Table Register to
Register/ Memory [00001111 Loooooooo modo 10 r/r;] N/A 20/24" a a.hil
LMSW = Load Machine Status Word
From Register/Memary r00001111 [00000001 lmodHD rlm] 10/13 10/13¢ b,c h |
LSL = Load Segment Limit
From Register/Memory [000011111 0000001 Imodreg r/ml
Byte-Granular Limit N/A 20/21* a ahlp
Page-Granutar Limit N/A 25/26* a ghjp
LTR = Load Task Register
From Register/Memory LOOOOHH I 00000000 ImOdOOI r/'rq N/A 23727 a g hjl
SGDT = Store Global Descriptor
Tabie Regiater l 00001111 [00000001 lmodOOO r/;l 9 9* b,¢ h
SIOT = Store Interrupt Descriptor
Table Register l 0000t111 l 00000001 [mod001 rI;] 9 9* b.c h
SLDT = Store Locai Descriptor Table Register
ToRagister/Memory | 00001111 | 00000000 | med0go r/m| N/A 220 a h
1-406

INTEL CORP {UP/PRPHLS} GL?E D ®R 482L17?5 01l2kL503 503 EE ITLL

In@ o 4 Intel386™ SX MICROPROCESSOR

Table 9-1. Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | Protected | Address | Protected
Mode or Yirtual Mode or Virtuat
Virtusl Address Virtual Address
8086 Mode 8088 Mode
Mode Mode
PROTECTION CONTROL (Continued)
SMSW =Stors Machine
Status Word LOOOOHHlOOOOOODi lmod100 r/m] 2/2* 272* b,c h
STR = Store Task Register
To Register/Memory DOODHH l 00000000 1rnod001 r/mI N/A 272* a h
VERR = Verify Read Access
Register/Memory |J000111! l 00000000 [mod100 r/m] N/A 10/11* a g.hijp
VERW = Verity Write Access I 00001111 [oooooooo [mod1o1 r/mI N/A 15/16* a a.hip

INSTRUCTION NOTES FOR TABLE 9-1

Notes a through ¢ apply to Real Address Mode only:

a. This is a Protected Mode instruction, Attempted execution in Real Made will result in exception 6 (invalid opcode).

b. Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully
extends beyond the maximum CS, DS, ES, FS or GS limit, FFFFH. Exception 12 fault (stack segment limit violation or not
present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maximum SS limit.
¢. This instruction may be executed in Real Mode. In Real Modes, its purpose is primarily to initiatize the CPU for Protected
Mode. .

Notes d through g apply to Real Address Mode and Protected Virtual Address Mode:
d. The Intel386 SX CPU uses an early-out muitiply algorithm. The actual number of clocks depends on the position of the
most significant bit in the operand {multiplier).
Clock counts given are minimum to maximum. To caiculate actual clocks use the following formuta:
Actual Clock = if m < > 0 than max ([logy Iml}, 3) + b clocks:
if m = 0 then 3+Db clocks
In this formula, m is the multiplier, and
= 9 for register to register,
= 12 for memory to register,
= 10 for register with immediate to register,
= 11 for memory with immediate to register.
@. An exception may occur, depending on the value of the operand.
f. LOCK # is automatically asserted, regardless of the presence or absence of the LOCK# prefix.
g. LOCK # is asserted during descriptor table accesses.

b
b
b
b

Notes h through s/t apply to Protected Virtual Address Mode only:

h. Exception 13 fault (general protection violation) will occur if the memory operand in CS, DS, ES, FS or GS cannot be used
due to either a segment limit violation or access rights violation. If a stack limit is violated, an exception 12 (stack segment
limit violation or not present) occurs.

i. For segment load operations, the CPL, RPL, and DPL must agree with the privilege rules to avoid an exception 13 fault
(general protection violation). The segment’s descriptor must indicate “present” or exception 11 (CS, DS, ES, FS, GS not
present). If the S3 register is loaded and a stack segment not present is detected, an exception 12 (stack segment limit
violation or not present) occurs.

j- All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert LOCK# to maintain
descriptor integrity in multiprocessor systems.

k. JMP, CALL, INT, RET and IRET instructions referring to another code segment will cause an exception 13 (general
protection violation) if an applicable privilege rule is violated.

l. An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level).

m. An exception 13 fault occurs if CPL is greater than IOPL.

n. The IF bit of the flag register is not updated if CPL is greater than IOPL. The IQPL and VM fields of the flag register are
updated only if CPL = 0.

o. The PE bit of the MSW (CRO0) cannot be reset by this instruction. Use MOV into CRO if desiring to reset the PE bit.

p. Any violation of privilege rules as applied to the selector operand does not cause a protection exception; rather, the zero
flag is cleared.

g. If the coprocessor's memory operand violates a segment limit or segment access rights, an exception 13 fault (general
protection exception) will occur before the ESC instruction is executed. An exception 12 tault (stack segment limit violation
or not present) will occur if the stack limit is violated by the operand's starting address.

r. The destination of a JMP, CALL, INT, RET or RET must be in the defined limit of a code segment or an exception 13 fault
(general protection violation) will occur

$/t. The instruction will execute in s clocks if GPL < IOPL. It CPL > I0PL, the instruction will take t clocks.

I 1-407

INTEL CORP {UP/PRPHLSZ

Intel386™ SX MICROPROCESSOR

9.2 INSTRUCTION ENCODING

9.2.1 Overview

All instruction encodings are subsets of the generat
instruction format shown in Figure 8-1. Instructions
consist of one or two primary opcode bytes, possibly
an address specifier consisting of the “mod r/m”
byte and “scaled index” byte, a displacement if re-
quired, and an immediate data field if required.

Within the primary opcode or opcodes, smaller en-
coding fields may be defined. These fields vary ac-
cording to the class of operation. The fields define
such information as direction of the operation, size
of the displacements, register encoding, or sign ex-
tension.

Almost all instructions referring to an operand in
memory have an addressing mode byte following
the primary opcode byte(s). This byte, the mod r/m
byte, specifies the address mode to be used. Certain

LPE D WE 4826175 01.2LSOY 44T NME ITL)

intgl.

encodings of the mod r/m byte indicate a second

addressing byte, the scale-index-base byte, follows
the mod r/m byte to fully specify the addressing
mode.

Addressing modes can include a displacement im-
mediately following the mod r/m byte, or scaled in-
dex byte. If a displacement is present, the possible
sizes are 8, 16 or 32 bits.

If the instruction specifies an immediate operand,
the immediate operand follows any displacement
bytes. The immediate operand, if specified, is always
the last field of the instruction.

Figure 9-1 illustrates several of the fields that can
appear in an instruction, such as the mod field and
the r/m field, but the Figure does not show all fields.
Several smaller fields also appear in certain instruc-
tions, sometimes within the opcode bytes them-
selves. Table 9-2 is a complete list of all fields ap-
pearing in the instruction set. Further ahead, follow-
ing Table 9-2, are detailed tables for each field.

ITTTTTTTT[TTTTTTT7]mod TTTr/m] ssindex base |d32| 16| 8| none data32 | 16| 8 | none
(077 9J65v3201J65v3201\ o)
opcode “mod r/m" “s-i-b” address immediate
(one or two bytes) w byte byte displacement data
(T represents an ¥ (4, 2, 1 bytes (4,2, 1 bytes
opcode bit.) register and address or none) or none)
mode specifier
Figure 9-1. General Instruction Format
Table 9-2. Fields within Instructions
Fleld Name Description Number of Bits
w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 Bits 1
d Specifies Direction of Data Operation _ 1
s Specifies if an Immediate Data Field Must be Sign-Extended 1
reg General Register Specifier 3
mod r/m Address Mode Specifier (Etfective Address can be a General Register) 2 for mod;
3forr/m
S8 Scale Factor for Scaled Index Address Mode 2
index General Register to be used as Index Register 3
base General Register to be used as Base Register 3
sreg2 Segment Register Specifier for CS, SS, DS, ES 2
sreg3 Segment Register Specifier for CS, SS, DS, ES, FS, GS 3
tttn For Conditional Instructions, Specifies a Condition Asserted
or a Condition Negated 4

Note: Table 9-1 shows encoding of individual instructions.

1-408

INTEL CORP {UP/PRPHLS}

intgl.
9.2.2 32-Bit Extensions of the
instruction Set

With the Intel386 SX CPU, the 8086/80186/80286
instruction set is extended in two orthogonal direc-
tions: 32-bit forms of all 16-bit instructions are added
to support the 32-bit data types, and 32-bit address-
ing modes are made available for all instructions ref-
grencing memory. This orthogonal instruction set ex-
tension is accomplished having a Default (D) bit in
the code segment descriptor, and by having 2 prefix-
as to the instruction set.

Whether the instruction defaults to operations of
16 bits or 32 bits depends on the setting of the D bit
in the code segment descriptor, which gives the de-
fault length (either 32 bits or 16 bits) for both oper-

ands and effective addresses when exacuting that -

code segment, In the Real Address Mode or Virtual
8086 Mode, no code segment descriptors are used,
but a D value of 0 is assumed internally by the
Intel386 SX CPU when operating in those modes
(for 16-bit default sizes compatible with the 8086/
80186/80286). .

Two prefixes, the Operand Size Prefix and the Effec-
tive Address Size Prefix, allow overriding individually
the Default selection of operand size and effective
address size. These prefixes may precede any op-
code bytes and affect only the instruction they pre-
cede. If necessary, one or both of the prefixes may
be placed before the opcode bytes. The presence of
the Operand Size Prefix and the Effective Address
Prefix will toggle the operand size or the effective
address size, respectively, to the valus “opposite”
trom the Default setting. For example, if the default
operand size is for 32-bit data operations, then pres-
ence of the Operand Size Prefix toggles the instruc-
tion to 16-bit data operation. As another exampls, if
the defauit effective address size is 16 bits, pres-
ence of the Effective Address Size prefix toggles the
instruction to use 32-bit effective address computa-
tions.

These 32-bit extensions are available in all modes,
including the Real Address Mode or the Virtual 8086
Mode. In these modes the default is always 186 bits,
so prefixes are needed to specify 32-bit operands or
addresses. For instructions with more than one pre-
fix, the order of prefixes is unimportant.

Unless specified otherwise, instructions with 8-bit
and 16-bit operands do not affect the contents of
the high-order bits of the extended registers.

9.2.3 Encoding of Instruction Fields

Within the instruction are several fields indicating
register selection, addressing mode and so on. The
exact encodings of these fields are defined immedi-
ately ahead.

L?E D

B 4825175 012L505 38k

Intel386™ SX MICROPROCESSOR

9.2.3.1 ENCODING OF OPERAND LENGTH (w)
FIELD

For any given instruction performing a data opera-
tion, the instruction is executing as a 32-bit operation
or a 16-bit operation. Within the constraints of the
operation size, the w field encodes the operand size
as either one byte or the full operation size, as

shown in the table below.
Operand Size Operand Size
w Field During 16-Bit During 32-Bit
Data Operations | Data Operations
0 8 Bits 8 Bits
1 16 Bits 32 Bits

9.2.3.2 ENCODING OF THE GENERAL
REGISTER (reg) FIELD

The general register is specified by the reg fisld,
which may appear in the primary opcode bytes, or as
the reg field of the “mod r/m' byte, or as the r/m
field of the “mod r/m” byte.

Encoding of reg Field When w Field
is not Present in Instruction

Register Selected | Register Selected
reg Field During 16-Bit During 32-Bit
Data Operations | Data Operations
000 AX ' EAX
001 CcX ECX
010 DX EDX
011 BX EBX
100 SP ESP
101 BP EBP
101 Sl ESI
101 DI EDI

Encoding of reg Field When w Fleld
Is Present in Instruction

Register Specified by reg Field
During 16-Bit Data Operations:

reg Function of w Field
(whenw = 0) (whenw = 1)

000 AL ~AX
001 CL CX
010 DL DX
011 BL BX
100 AH SP
101 CH BP
110 DH Sl
111 BH DI

1-409

W ITL)

INTEL CORP {UP/PRPHLS}

Intel386™ SX MICROPROCESSOR

Register Specified by reg Field
During 32-Bit Data Operations

reg Function of w Field
{whenw = 0) (whenw = 1)

000 AL EAX
001 CL ECX
010 DL EDX
011 BL EBX
100 AH ESP
101 CH EBP
110 . D4 ESI
111 BH EDI

9.2.3.3 ENCODING OF THE SEGMENT
REGISTER (sreg) FIELD

The sreg field in certain instructions is a 2-bit field
allowing one of the four 80286 segment registers to

be specified. The sreg field in other instructions is a_

3-bit field, allowing the Intel386 SX CPU FS and GS
segment registers to be specified.

2-Bit sreg2 Fleld

Segment
2-Bit
sreg2 Fleld s“;g';‘::;
00 ES
01 cs
10 ss
1 DS

3-Bit sreg3 Fleld

Segment

3-Bit

sreg3 Fleld :::I:::;
000 ES
001 cs
010 Ss
ot DS
100 FS
101 GS
110 do not use
111 do not use

1-410

LYE D

intal.

9.2.3.4 ENCODING OF ADDRESS MODE

Except for special instructions, such as PUSH or
POP, where the addressing mode is pre-determined,
the addressing mode for the current instruction is
specified by addressing bytes following the primary
opcode. The primary addressing byte is the “mod
r/m" byte, and a second byte of addressing informa-
tion, the “s-i-b” (scale-index-base) byte, can be
specified.

The s-i-b byte (scale-index-base byte) is specified
when using 32-bit addressing mode and the “mod
r/m"” byte has r/m = 100 and mod = 00, 01 or 10.
When the sib byte is present, the 32-bit addressing
mode is a function of the mod, ss, index, and base
fields.

The primary addressing byte, the “mod r/m" byte,
also contains three bits (shown as TTT in Figure 8-1)
sometimes used as an extension of the primary op-
code. The three bits, however, may also be used as
a register field (reg).

When calculating an effective address, either 16-bit
addressing or 32-bit addressing is used. 16-bit ad-
dressing uses 16-bit address components to calcu-
late the effective address while 32-bit addressing
uses 32-bit address components to calculate the ef-
fective address. When 16-bit addressing is used, the
“mod r/m"” byte is interpreted as a 16-bit addressing
mode specifier. When 32-bit addressing is used, the
“mod r/m" byte is interpreted as a 32-bit addressing
mode specifier.

Tables on the following three pages define all en-
codings of all 16-bit addressing modes and 32-bit
addressing modss.

M 4826175 012L50L 212 HE ITLY

INTEL CORP {UP/PRPHLS}? L?E D B 482175 0126507 159 M@ ITLL

bl ® intel386™ SX MICROPROCESSOR

Encoding of 16-bit Address Mode with “mod r/m"” Byte

mod r/m Effective Address mod r/m Etfective Address
00 000 DS:[BX+Sl] 10 000 DS:[BX+ SI+d186]
00 001 DS:(BX+ DI} 10 001 DS:[BX+DlI+d18]
00010 SS:[BP+ Sl 10010 $S:[BP+SI+d16)
00011 SS:[BP+ D] 10011 SS:[BP +Di+d16]
00100 DS:(s1) - 10100 DS:[Si+d16]
00101 Ds:{D1] 10 101 DS:[Di+d16]
00110 DS:dt6 10 110 SS:[BP +d16]
00111 Ds:{8X] 10111 DS:[BX +d16]}

" 01000 DS:[BX+ Sl +d8]) 11 000 register—see below
01001 DS:[BX+ Di +d8) 11 001 register—see below
01010 SS:[BP + SI+d8] 11010 register—see below
01011 §S:[BP + Di +d8] 11011 register—see below
01100 DS:[SI+ds8] 11100 register—see below
011014 DS:[Di+d8] 11101 register—see below
01110 SS:(BP+d8) 11110 register—see below
01111 DS:(BX +ds] 11111 register—see below

Register Specified by r/m
During 16-Bit Data Operations
Function of w Field
mod r/m
{(when w=0) (whenw =1)
11 000 AL AX
11 001 CL CX
11010 DL DX
11011 BL BX
17100 AH Sp
11101 CH BP
11110 DH Sl
1111 - BH DI
Register Specified by r/m
During 32-Bit Data Operations
Function of w Field
mod r/m
(when w=0) (whenw =1)

11 000 AL EAX
11001 CL ECX
11010 DL EDX
11011 BL EBX
11100 AH ESP
11101 CH EBP
11 110 DH ESI
11111 BH EDI

1-411

INTEL CORP {UP/PRPHLS} &L?E D ®R 482L17?5 012L508 095 WM ITLL

2
Intel386™ SX MICROPROCESSOR "‘ﬂ‘é .

Encoding of 32-bit Address Mode with “mod r/m” byte (no “s-I-b” byte present):

modr/m Effective Address modr/m Effective Address
00 000 DS:[EAX] 10 000 DS:[EAX +d32]

00 001 Ds:[ECX] 10 001 DS:[ECX+d32]
00010 OsS:{EDX] 10010 DS:[EDX + d32]
00011 DS:[EBX] 10011 Ds:[EBX + d32]

00 100 s-i-b is present 10100 s-i-b is present

00 101 DS:d32 10101 SS:[EBP +d32}
00110 DS:[ESI) 10 110 DS:[ESI+d32]

00 111 Ds:[EDI] 10111 DS:[EDI+d32]
01000 DS:[EAX +d8] 11 000 register—see below
01001 Ds:[ECX +d8] 11 001 register—see below
01010 DS:[EDX + d8] 11010 register—seea below
01014 DS:[EBX + d8) 11011 register—see below
01100 s-i-b is present 11 100) register—see below
01 101 SS:[EBP + d8) 1110t . register—see below
01110 DS:[ESI+ d8}] 11110 register—see below
01111 DS:(EDI + d8] 11111 register—see below

Register Specified by reg orr/m
during 16-Bit Data Operations:

mod r/m function of w field
(when w=0) (whenw=1)

11000 AL AX
11 001 CL CX
11010 DL DX
11011 BL BX
11100 AH SP
11101 CH BP
11 110 DH Si
1111 BH DI

Register Specified by reg or r/m
during 32-Bit Data Operatlons:

mod r/m function of w field
(when w=0) {(whenw=1)

11 000 AL EAX
11001 CL ECX
11010 DL EDX
11011 BL EBX
11100 AH ESP
11101 CH EBP
11110 OH ESI
11111 BH EDI

1-412 I

INTEL CORP {UP/PRPHLS} &7E D WR 4825175 012L509 T2l MR ITL)

[]
|nte| . Intel386™ SX MICROPROCESSOR

Encoding of 32-bit Address Mode (“mod r/m"” byte and “s-I-b” byte present):

mod base Effective Address ss Scale Factor
00 000 DS:[EAX + (scaled index)] 00 x1
00 001 DS:[ECX+ (scaled index)] 0t x2
00010 | DS:[EDX+ (scaled index)] 10 x4
00 011 DS:[EBX + (scaled index)} 11 x8
00 100 SS:[ESP + (scaled index)]
00 101 DS:{d32+ (scaled index)}
00 110 DS:[ESI+ (scaled index)] index Index Register
00111 DS:[EDI+ (scaled index)] 000 EAX
001 ECX
01000 DS:[EAX + (scaled index) + d8} 010 EDX
01 001 DS:[ECX + (scaled index) + d8} 011 EBX
01010 DS: [EDX + (scaled index) + d8) 100 no index reg‘ .
01011 DS:[EBX + (scaled index) + d8} 101 EBP
01100 SS:[ESP + (scaled index) + d8} 110 ESI
01101 SS:[EBP + (scaled index) + d8] 111 ED!
01110 DS:{ESt + (scaled index) + d8]
01 111 DS:[EDI + (scaled index)+ d8] **IMPORTANT NOTE:
| T Py e e

10 000 DS:[EAX + (scaled index) + d32) ss fi - It inde
10001 DS-[ECX+ (scaled index) + d32] equal 00, the effective address is undefined. » .
10010 DS:[EDX + (scaled index) + d32]
10011 DS:[EBX + (scaled index) + d32]
10 100 SS:[ESP + (scaled index) + d32)
10 101 SS:[EBP + (scaled index) + d32]
10110 DS:[ESI+ (scaled index) + d32]
10 111 DS:[EDI + (scaled index) + d32}

NOTE:

Mod field in “mod r/m” byte; ss, index, base fields in

“s-i-b” byte.

I ‘ . ¢ 1-413

INTEL CORP {UP/PRPHLS}

Intel386™ SX MICROPROCESSOR

9.2.3.5 ENCODING OF OPERATION DIRECTION
(d) FIELD

In many two-operand instructions the d field is pres-
ent to indicate which operand is considered the
source and which is the destination.

d Direction of Operation

0 | Register/Memory <- - Register

“reg" Field Indicates Source Operand;

“mod r/m” or “‘mod ss index base” Indicates
Destination Operand

1 | Register <-- Register/Memory
“reg” Field Indicates Destination Operand;
“mod r/m” or “mod ss index base” Indicates

Source Operand

9.2.3.6 ENCODING OF SIGN-EXTEND (s) FIELD

The s field occurs primarily to instructions with im-
mediate data fields. The s field has an effect only if
the size of the immediate data is 8 bits and is being
placed in a 16-bit or 32-bit destination.

s Effecton Effect on
Immediate Data8 | Immediate Data 16/32
0 | None None
1 | Sign-Extend Data8 None
to Fill 16-Bit or 32-Bit
Destination

9.2.3.7 ENCODING OF CONDITIONAL TEST
(tttn) FIELD

For the conditional instructions (conditional jumps
and set on condition), titn is encoded with n indicat-
ing to use the condition (n=0) or its negation {(n=1),
and ttt giving the condition to test.

1-414

L?E D

-

intal.
Mnemonic Condition tttn
O Overflow 0000,
NO No Overflow 0001
B/NAE Below/Not Above or Equal 0010
NB/AE Not Below/Above or Equal 0011
E/Z Equal/Zero 0100
NE/NZ Not Equal/Not Zero 0101
BE/NA Below or Equal/Not Above 0110
NBE/A Not Below or Equal/Above 0111
S Sign 1000
NS Not Sign 1001
P/PE Parity/Parity Even 1010
NP/PO Not Parity/Parity Odd 1011
L/NGE Less Than/Not Greater or Equal 1100
NL/GE Not Less Than/Greater or Equal (1101
LE/NG Less Than or Equal/Greater Than|[1110
NLE/G Not Less or Equal/Greater Than [1111

9.2.3.8 ENCODING OF CONTROL OR DEBUG
OR TEST REGISTER (eee) FIELD

For the loading and storing of the Control, Debug
and Test registers.

When Interpreted as Control Register Field

eee Code Reg Name
000 CRO
010 CR2
011 CR3

Do not use any other encoding

When Interpreted as Debug Register Field

eee Code Reg Name
000 DRO
001 DR1
010 DR2
011 DR3
110 DR6
111 DR7

Do not use any other encoding

When Interpreted as Test Register Field

eee Code Reg Name
110 TRé
111 TR7

Do not use any other encoding

M 4826175 0126510 743 HE ITLY

INTEL CORP {UP/PRPHLS} &L?E D W 482L17?5 0125511 LAT EE ITLI

[]
|nte| . : Intel386™ SX MICROPROCESSOR

DATA SHEET REVISION REVIEW

The following list represents key differences between this data sheet and the -007 version of the Intel386™
SX microprocessor data sheet. Please raview the summary carefully.

1. Table 5.7, E-Step revision identifier is added.

2. Table 7.3, lgc supply current for CLK2 = 40 MHz with 20 MHz Intel386 SX has a typical Icc of 180 mA.

3. Table 7.5, t4 CLK2 fall time and t5 CLK2 rise time have no minimum time for all speeds but maximum time
for all speeds is 8 ns.

4. Figure 7.11, CHMOS Il characteristics for typical Icc has been taken out.

| _ 1415

