8-BIT BUS INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS

D2829, JANUARY 1986-REVISED MARCH 1988

01671)

- Functionally Equivalent to AMD AM29825 and AM29826
- Improved IOH Specifications
- Multiple Output Enables Allow Multiuser Control of the Interface
- **Outputs Have Undershoot Protection** Circuitry
- Power-Up High-Impedance State
- Package Options Include "Small-Outline" Packages, Plastic Chip Carriers, and Standard Plastic 300-mil DIPs
- **Buffered Control Inputs to Reduce DC Loading Effect**
- Dependable Texas Instruments Quality and Reliability

description

These 8-bit flip-flops feature three-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing multiuser registers, I/O ports, bidirectional bus drivers, and working registers.

With the clock enable (CLKEN) low, the eight Dtype edge-triggered flip-flops enter data on the low-to-high transitions of the clock. Taking CLKEN high will disable the clock buffer, thus latching the outputs. The 'ALS29825 has noninverting D inputs and the 'ALS29826 has inverting D inputs. Taking the CLR input low causes the eight Q outputs to go low independently of the clock.

Multiuser buffered output-control inputs (OC1, OC2, and OC3) can be used to place the eight outputs in either a normal logic state (high or low level) or a high-impedance state. The outputs are also in the high-impedance state during powerup and power-down conditions. The outputs remain in the high-impedance state while the device is powered-down. In the high-impedance state the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive the bus lines in a bus-organized system without need

SN74ALS29825 . . . DW OR NT PACKAGE (TOP VIEW)

SN74ALS29825 . . . FN PACKAGE

(TOP VIEW)

SN74ALS29826 . . . DW OR NT PACKAGE

(TOP VIEW)

SN74ALS29826 . . . FN PACKAGE

(TOP VIEW)

NC-No internal connection

INSTRUMENTS

description (continued)

for interface or pull-up components. The output controls do not affect the internal operation of the flipflops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The SN74ALS29825 and SN74ALS29826 are characterized for operation from 0°C to 70°C.

'ALS29825 FUNCTION TABLE

	OUTPUT				
OC*	CLR	CLKEN	CLK	D	Q
L	L	Х	Х	Х	L
L	Н	L	1	н	н
L	Н	L	1	L	L
L	н	Н	X	x	σ_{0}
Н	X	Х	X	x	z

 $\overline{OC}^* = H$ if any of $\overline{OC}1$, $\overline{OC}2$, or OC3 is high.

 $\overline{OC}^* = L$ if all of $\overline{OC}1$, $\overline{OC}2$, and OC3 are low

logic symbol†

'ALS29825

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers are for DW and NT packages.

logic diagram (positive logic)

'ALS29825

Pin numbers are for DW and NT packages.

'ALS29826 FUNCTION TABLE

	OUTPUT				
OC*	CLR	CLKEN	CLK	D	Q
L	L	Х	Х	Х	L
L	Н	L	1	н	L
L	Н	L	t	L	Н
L	Н	Н	X	x	σ_0
Н	Х	Х	Х	х	z

 $\overline{OC}^* = H \text{ if any of } \overline{OC1}, \overline{OC2}, \text{ or } OC3 \text{ is high.}$

 $\overline{OC}^* = L$ if all of $\overline{OC}1$, $\overline{OC}2$, and OC3 are low

logic symbol†

'ALS29826

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers are for DW and NT packages.

logic diagram (positive logic)

'ALS29826

Pin numbers are for DW and NT packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC	. 7	<i>,</i> v
Input voltage	. 7	<i>!</i> V
Voltage applied to a disabled 3-state output		
Operating free-air temperature range	70	°C
Storage temperature range65°C to 1	150	°C

SN74ALS29825, SN74ALS29826 8-BIT BUS INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS

recommended operating conditions

			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage			5		4.75	5	5.25	٧
VIH	High-level input voltage					2			V
VIL	Low-level input voltage							0.8	٧
ЮН	High-level output current							- 24	mA
lOL	Low-level output current							48	mA
t _w Pulse duration		CLR low	5			7			
	Pulse duration	CLK high	5			7			ns
••		CLK low	5			7			
-		CLR inactive	5			7			
t _{su}	Setup time before CLK1	Data	2			4			ns
ou		CLKEN high or low	6			6			
		Data	2			2			ns
th	Hold time, data after CLK1	CLKEN	0			2			
TA	Operating free-air temperature	9		25		0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise

PARAMETER		TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
VIK	$V_{CC} = 4.5 V$	I _I = -18 mA			-1.2	٧
	$V_{CC} = 4.5 \text{ V},$	I _{OH} = -15 mA	2.4	3.3		V
∨он	$V_{CC} = 4.5 \text{ V},$	I _{OH} = -24 mA	2	3.1		
V _{OL}	$V_{CC} = 4.5 \text{ V},$	I _{OL} = 48 mA		0.35	0.5	V
lozh	$V_{CC} = 5.5 \text{ V},$	V _O = 2.4 V			20	μΑ
IOZL	V _{CC} = 5.5 V,	V _O = 0.4 V			- 20	μΑ
1	$V_{CC} = 5.5 \text{ V},$	V _I = 5.5 V			0.1	mA
liн	$V_{CC} = 5.5 V$	V _I = 2.7 V			20	μΑ
III.	$V_{CC} = 5.5 V$	V ₁ = 0.4 V			-0.2	mA
los [‡]	V _{CC} = 5.5 V,	V _O = 0 V	- 75		- 250	mA
lcc	V _{CC} = 5.5 V,	Outputs open		70	100	mA

 $^{^{\}dagger}$ All typical values are at V_{CC} = 5 V, T_A = 25 °C. ‡ Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.

SN74ALS29825, SN74ALS29826 8-BIT BUS INTERFACE FLIP-FLOPS WITH 3-STATE OUTPUTS

switching characteristics

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS		C = 5			N TO MAX, [†] N TO MAX [†]	UNIT	
		(0017017	See Figure 1	MIN	TYP	MAX	MIN	MAX		
tPLH			C _l = 50 pF	2		8.5	2	10		
tPHL	CLK	Any Q	CE = 50 pr	2		8.5	2	10		
tPLH	CLIK		$C_1 = 300 pF$			14		16	ns	
tPHL			CL = 300 pr			14		16		
tPHL	CLR	Any Q	Cլ = 50 pF		6	10		12	ns	
^t PZH			C _L = 50 pF		11.5	12		14		
tPZL	ОC	Any Q	С[= 50 рг		11	12	L	14	D.O.	
^t PZH	OC .	Ally Q	C _L = 300 pF			17		20	ns	
^t PZL			C[= 300 pr			21		23		
^t PHZ			C: - 50 p5			11		14		
tPLZ	oc	Any O	C _L = 50 pF			9		12		
t _{PHZ}	UC .	Any Q	Any Q	C _L = 5 pF		5.2	8		9	ns
tPLZ			CL = 5 pr		5.2	8		9		

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

PARAMETER MEASUREMENT INFORMATION

SWITCH POSITION TABLE

TEST	S1	S2
tpLH	Closed	Closed
tPHL	Closed	Closed
^t PZH	Open	Closed
tPZL	Closed	Open
tPHZ	Closed	Closed
tPLZ	Closed	Closed

LOAD CIRCUIT

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, THREE-STATE OUTPUTS

NOTES: A.CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.

FIGURE 1