intal.
MILITARY Intel386™
HIGH PERFORMANCE 32-BIT MICROPROCESSOR
WITH INTEGRATED MEMORY MANAGEMENT

@ Flexible 32-Bit Microprocessor a Optimized for System Performance
—8, 16, 32-Bit Data Types — Pipelined instruction Execution
— 8 General Purpose 32-Bit Registers —~ On-Chip Address Translation Caches
m Very Large Address Space — 32 Megabytes/Sec Bus Bandwidth
=4 Gigabyte Physical m Complete System Development
— 64 Terabyte Virtual Support
— 4 Gigabyte Maximum Segment Size — Software: C, PL/M, Assembler
m Integrated Memory Management Unit System Generation Tools
— Virtual Memory Support — Debuggers: PSCOPE, ICE™-Intel386
— Optional On-Chip Paging & High Speed CHMOS IV Technology
— 4 Levels of Protection '
m 132-Lead Pin Grid Array Package and
— Fully Compatible with M80286 164-Lead Ceramic Quad Flatpack
B Object Code Compatible with All M8086 Package
Family Microprocessors (See Packaging Specification, Order #231369)
m High Speed Numerics Support via E Avallable in Three Product Grades:
Intel387™™ Coprocessor . — MIL-STD-883, —55°C to + 125°C (T¢)
— Military Temperature Only
® Hardware Debugging Support —55°C to +125°C (Tg) d
m Virtual M8086 Mode Allows Running of — Extended Temperature,
M8086 Software in a Protected and —40°C to +110°C (T¢)

Paged System

The Military Intel386 microprocessor is an advanced 32-bit component designed for applications needing very
high performance and optimized for multitasking operating systems. The 32-bit registers and data paths
support 32-bit addresses and data types. The processor addresses up to four gigabytes of physical memory
and 64 terabytes (2**48) of virtual memory. The integrated memory management and protection architecture
includes address translation registers, advanced muititasking hardware and a protection mechanism to sup-
port operating systems. In addition, the Military Intei386 microprocessor allows the simultaneous running of
multiple operating systems.

Instruction pipelining, on-chip address translation, and high bus bandwidth ensure short average instruction
execution times and high system throughput. The Miiitary Intel386 processor is capable of execution at sus-
tained rates of between 3 and 4 million instructions per second.

The Military intel386 processor offers new testability and debugging features. Testability features include a
self-test and direct access to the page translation cache. Four new breakpoint registers provide breakpoint
traps on code execution or data accesses, for powerful debugging of even ROM-based systems.

Object-code compatibility with all M8086 family members (M8086, M8088, M80186, M80286) means the
Military Intel386 processor offers immediate access to the world’s largest microprocessor software base.

UNIX is a Trademark of AT&T Bell Labs.
MS-DOS is a Trademark of MicroSoft Corporation.
Intel386 is a Trademark of intel Corporation.

October 1993
Order Number: 271052-009 111

M 482L175 0135638 714 EEITLL
R RRREEEBBEEESESESSZEZZEZNSNNNS

Military Intel386™ High Performance 32-Bit
Microprocessor with Integrated Memory Management

CONTENTS , _ PAGE
TLOBASE ARCHITECTURE ...t e 119
1 INrOdUCHON .. e e e 11-9
1.2 RegiSter OVOIVIBWttt ittt 11-9
1.3 Register Descriptionscoiiiiiii i 11-10
1.3.1 General Purpose Registerscooriiiiiiiiiiiiii i 11-10
1.3.21Instruction Pointer i 11-10
1.8 3Flags Register 11-10
134 Segn‘ient RegiSterS ...t e 11-12
1.3.5 Segment Descriptor Registers B 11-13
1.3.6Control Registers 11-13
1.3.7 System Address Registers 11-14
1.3.8Debugand Test Registerscooiiiiiiiiiiiiiiiii it eeiens 11-15
1.3.9 Register Accessibilityccoiiii i 11-15
1.3.10 Compatibility ... e 11-15
1.4 Instruction Set [T 11-16
1.4.1 Instruction Set Overviewoiviiiiiii i i it 11-16
1.4.2 Military Intel386™ Microprocessor Instructionscccovvviiieenn., 11-17
1.5AddressingModes 11-19
1.5.1 Addressing Modes Overviewl 11-19
1.5.2 Register and Immediate Modes il 11-19
1.5.3 32-Bit Memory AddressingModesl 11-19
1.5.4 Differences between 16- and 32-Bit Addressesoll 11-20
18 DAt Ty PO oottt e e e e e e L1121
1.7 Memory Organizationoieivririniiir e tir it eie e etereereeerarnenen 11-23
1.7 IntrodUCtiON .. .o e e e 11-23
1.7.2 AdOreSS SPACES ... c.itiiit ittt e 11-23
1.7.3SegmentRegisterUsage ...t 11-24
B B T T o 11-24
e) = T o 11-25
1.9.1 Interrupts and EXCeplionsooiiiiii i e 11-25
1.9.2 INtermUPt ProCesSiNgcoiviie et e et 11-25
1.9.3Maskable Interrupt e 11-25
1.9.4 Non-Maskable Interrupt i 11-26
} 1.9.5 Software Interrupts it e 11-26
1.9.6 Interrupt and Exception Prioritiescoo il 11-27
1.9.7InstructionRestart ... 11-28
1.98DoubleFaults e .. 11-28
1.10Reset and Initializationco i . 11-28

11-2 |
M 4825175 0135639 b50 EITLIL I

CONTENTS PAGE

1.0 BASE ARCHITECTURE (Continued)
1At Testability ... 11-29
1111 8el-Test ... 11-29
1A 2 TLB TestiNg . ..ot 11-29
1.12 Debugging SUPPOrt 11-29
1.12.1 Breakpoint Instructionot e 11-30
1122 8iINgle-Step Trapoiiii i 11-30
1.123Debug Registers 11-30
1.12.3.1 Linear Address Breakpoint Registers (DRO-DR3) 11-30
1.12.3.2 Debug Control Register (DR7)coooiiiiiiieiin i,
1.12.3.3 Debug Status Register (DR6)cocoviiiiiiiie i
1.12.3.4 Use of Resume Flag (RF) in Flag Register

20 REALMODE ARCHITECTUREot e e
21 Real Mode InStructionco...iiiiiiiiii i e
22MemOory AdAresSiNgovvrite ittt s
2.3 Reserved LoCationsottt
2 IOITUDES .. i e
258hutdownand Haltoo i e

3.0 PROTECTED MODE ARCHITECTUREcooiiiiiiiie i,
3.1 Introduction: e e e e e e
3.2 Addressing Mechanism ittt i s
3.3 Segmentation e e i

3.3.1 Segmentation Introduction i
3.2 TermMINOIOGY ...ttt e
3.3.3Descriptor Tableso e
3.8.3.1 Descriptor Tables Introductioncccoiiiiiiiiiiiii i)
3.3.3.2 Global Descriptor Tableccoviiiiiiiiiiiiii i
3.3.3.3 Local DescriptorTable e
3.3.3.4 Interrupt Descriptor Table ..ot
3.3.4 DESCIIPIONS ...t e
3.3.4.1 Descriptor Attribute Bits e,
3.3.4.2 Intel386™ Code, Data Descriptors (S = 1)
3.3.4.3 System Descriptor Formats R
3.3.4.4 LDT Descriptors (S = 0, TYPE = 2)cooviiiniiiiiie e,
3.3.4.5 TSS Descriptors (S =0, TYPE = 1,3,9,B)ooiiiiiiiiiiiiin... 11-41
3.3.4.6 Gate Descriptors (S = 0, TYPE = 4-7,C,F)ooiiiiiiiiinn... 11-41

3.3.4.7 Differences between Military Intel386™ Microprocessor and 286
B T o) (o - 11-42

3.3.4.8 SelactorFieldscooovriiiiiiiii i e 11-42
3.3.4.9 SegmentDescriptorCacheociiiiiiiiiiii i i, 11-42
3.3.4.10 Segment Descriptor RegisterSettingscovveie.. .. 11-44

| 11-3

M 4826175 0135640 372 ERITLY ,
e —

CONTENTS } PAGE
3.0 PROTECTED MODE ARCHITECTURE (Continued)

B PrOtBCHON ..ot 11-47
3.4.1 Protection Concepts i 11-47
3.4.2RUlBS Of Privilegeoooiiiit e 11-47
343Privilege Levels e 11-47

34,31 TaSK PrVIIOgE\ ooeietitt ettt e 11-47
3.4.3.2 Selector Privilege (RPL) e 11-47
3.4.3.3 1/0 Privilege Level and I/0 Permission Bitmap0. 11-47
3.4.3.4 Privilege Validationc.co.ooii 11-48
3.4.3.5 DeSCriptOr ACCOSScv i ittt i e ey 11-48
3.4.4 Privilege Level Transferscooeiviiiiiiii i 11-48
B4 5 Call GAES ..o\ vtttet it e e 11-51
346 TaskSWItchingiiieiiiiiii i i i e e 11-51
3.4.7 Initialization and Transition to ProtectedModecoooiiill 11-52
3.4.8 Tools for Building Protected Systems ... 11-53

BB PaGING ..o e e e e e .. 11-53
351 Paging ConCePtsot e 11-53
3.5.2Paging Organization e 11-54

3.5.21 PageMechanism oot 11-54
3.5.2.2 Page DescriptorBase Register oinnnn 11-54
3.6.2.3 Page Directoryooniiniiiiii i e 11-54
3.5.24 PageTables e e 11-55
3.5.2.5 Page Directory/TableEntries ... 11-55
3.5.3 Page Level Protection (R/W,U/SBits) ..., 1155
3.5.4 Translation Lookaside Buffer i 11.56
3.5.5Paging Operationoouniiiniiiiiiiiii i i 11-56
3.5.6 Operating System Responsibilities 11-57

3.6 Virtual MB086 Environment ..., e 11-57
3.6.1 Executing MB086 Programscovvvviniiiiiniiiniininiiiineieiainnn, 11-57
3.6.2 Virtual M8086 Mode Addressing Mechanisml 11-57
3.6.3PaginginVirtualModecoiiiiiiii e 11-57
3.6.4 Protection and I/0 Permission Bitmapcccoiiiiiiiiiiiiiiiiieeaie.., 11-58
36.5InterruptHandling TR . 11-58
3.6.6 Entering and Leaving Virtual M8086 Mode e 11-59

3.6.6.1 Task Switches to/from VitualM8086Mode0l 11-60
3.6.6.2 Transitions through Trap and Interrupt Gates, and IRET 11-60
11-4

B 4826175 0135641 209 EEITLY

CONTENTS PAGE

AOFUNCTIONAL DATA . e 11-62
A1 IntrodUCtion ... o 11-62
4.2 Signal Description ...t 11-62

4.2.110ntroduction 11-62

4.22CI0CK (CLK2)\eieeie e e 11-62

4.23 DataBus (DO through D31)oovueeer e e, 11-63

4.2.4 Address Bus (BEO through BE3, A2through A31) ..., 11-63

4.2.5 Bus Cycle Definition Signals (W/R, D/C, M/TO,TOCK)coovvvviivinnn.. 11-64

4.26Bus Control Signalsttt
4.2.6.1 Introduction N
4.26.2 Address Status (ADS)oooiiiir
4.2.6.3 Transfer Acknowledge (READY)
4.2.6.4 NextAddress Request (NA)ccooeiiiiinienaiiii,
4265 BusSize 16 (BST6)coovvviiiiiin, e

4.2.7 Bus Arbitration Signals ... i
4271 Infroduction i
4.2.7.2 Bus Hold Request (HOLD)cooviiiiiiiee e
4.2.7.3 Bus Hold Acknowledge (HLDA) ‘

4.2.8 Coprocessor Interface Signalsooiiiiiiiniiii i,
4.28.1 Introduction e
4.2.8.2 Coprocessor Request (PEREQ)
4.2.8.3 Coprocessor Busy (BUSY)ocoiiiiim i
4.2.8.4 Coprocessor Error (ERROR) e

4.291IMerrupt Signals
4.2.9.1 Introduction 1
4.2.9.2 Maskable Interrupt Request (INTR)c.cooviiiieeeiaaenn, 11-67
4.2.9.3 Non-Maskable Interrupt Request (NMI)nnnnn.. 11-67
4.29.4 ReSet (RESET)covvviiii i e, 11-67

4.2.10 8ignal SUMMANYooiiitiii i e 11-68

4.3 Bus Transfer Mechanismooiiiiiiimioi i 11-68

43.71Introduction ... oo 11-68

4.3.2Memory and I/OSPacES ...ttt 11-69

4.3.3 Memory and 1/0 Organizationoooiiiiiiiio 11-70

43.4DynamicDataBus Sizing i 11-70

4.3.5 Interfacing with 32- and 16-BitMemoriesoovvieiiiiii.. .11

4.3.86 Operand AlIgNMent ...ttt 11-72

11-5
B 4826175 D135b642 145 EEITLL

CONTENTS PAGE
4,0 FUNCTIONAL DATA (Continued)

4.4 Bus Functional Description ST 11.72
A4 INtrodUCHION ..o\ttt e e e 11-72
442 Address Pipelining ...ttt 11-75
4.43ReadandWrite Cyciescoooiiiiii i 11-77

4.4.3.1 IntrodUCHON ..o e e e 11-77
4.4.3.2 Non-Pipelined Addressc.oooeieiiiiiiiiiiiiiiiiineiiieianns 11-78
4.4.3.3 Non-Pipelined Address with Dynamic Data Bus Sizing 11-80
4.4.3.4 Pipelined Addressooviiiiiiiiriiieiaiai e 11-82
4.4.3.5 Initiating and Maintaining Pipelined Addressceeee 11-84
4.4.3.6 Pipelined Address with Dynamic DataBus Sizing 11-86
4.4.4 Interrupt Acknowledge (INTA) Cycles ...t 11-88
4.45Halt Indication CyCleooiiiiiiiiii i 11-89
4.4.6 Shutdown IndicationCycle N 11-90

4.5 Other Functional Descriptionsoiiiiiiiiiioiiaiiii e 11-91
4.5.1 Entering and Exiting Hold Acknowledge ... 11-91
4.5.2 Reset during Hold Acknowledge ... 11-91
4.5.3 Bus Activity During and Following Reset ... 11-91

4.6Self-Test SIgNatureooviuriiimmiiii i 11-93

4.7 Component and Revision Identifiers ... 11-93

4.8 Coprocessor Interfacingovveeiveeeniiiiie i 11-95
4.8.1 Software Testing for CoprocessorPresenceociiiiiiienee 11-95

BOMECHANICAL DATA ittt e e eens 11-96
5.1 INtrOdUCHIONeeiiii 11-96
B.2PINASSINMENTttt PO 11-96

B.OELECTRICAL DAT A ... it e i a et aens 11-102

B.1 INtrOdUCHION ..ot e e 11-102

6.2 Powear and GrouUNdiNgcvueruitereriieteiiia e iiia et 11-102
6.2.1 POWEr CONNBCHIONSoittiiterete it iieiatenerer s iiaaes 11-102
6.2.2 Power Decoupling Recommendations ..o, 11-102
6.2.3 Resistor Recommendations e e 11-102
6.2.4 Other Connection Recommendations ..o, 11-102

6.3 MaAXIMUM RAtINGSooer it e 11-103

6.4 Operating CONItioNSooiiiiiiiiii et 11-103

6.5 DC SPeCIficationscoiiiiiiii e 11-104

6.6 ACSPeCIficationsoiiiiiiiiiimieiii 11-105
6.6.1 AC Specification Definitionscoooiieieiiiiiiiiii 11-105
6.6.2 AC Specification Tablesoooiiiiiiiiiiiiiiii 11-106
B.8.3 ACTESt LOAUS ... ivieiiiiietti et 11-107
6.6.4 ACTImiNgWaveformsooiiiiiiiiiiii 11-107

11-6
M 4826175 0135643 081 EEITLL

CONTENTS PAGE
6.0 ELECTRICAL DATA (Continued)

6.7 Designing for ICETM-3BB USE0outiiiiiiiiii it 11-110
TOINSTRUCTION SET ... i e e e e 11-112
7.1 Military Intel386™ Processor Instruction Encoding and Clock Count Summary 11-112
7.21Instruction EnCoding ..o 11-127
721 OVBIVIBW ..ttt et ettt et e e 11-127
7.2.2 32-Bit Extensions of the InstructionSetcciiin, 11-128
7.2.3 Encoding of the Instruction Fieldscoovviiiiiiiiiiiiianent. 11-128
7.2.3.1 Encoding of Operand Length(w) Field
7.2.3.2 Encoding of the General Register (reg) Field
7.2.3.3 Encoding of the Segment Register (sreg) Field
7.2.3.4 Encodingof AddressModeccoiiiiii i
7.2.3.5 Encoding of Operation Direction(d) Field
7.2.3.6 Encoding of Sign-Extend (s)Field ..o,
7.2.3.7 Encoding of Conditional Test (tttn) Field

7.2.3.8 Encoding of Control or Debug or Test Register (eee) Field 11-133

- 117
B 4325175 0135L4Y4 T14 EEITLI

MILITARY Intel386™ MICROPROCESSOR

6v—esolie

l£d =00

Adv3y‘gise
“YN SQY
40014/ M

dl.w a‘0l/N

ISV -2V
‘£38 - 038

vQTH '13S3Y
ASNE "YOHN3
INN "¥ENI ‘GTI0H

/ SN EITAEN
z’ HOL3433d 3000303d
98£08 NOLLONYLSNI NOLLDNYLSNI 08INOD qouinoo MY L >
| ve-ze 3nano v s
EUELC NOILINYLSNI H__v wod ||.|."v s
35302, [mvaus? azaooza-¢ JOUINOD .
300 , 30IAI0
ATdIEINA
= Enww_:o ¥300930 ONIONIND3S M%N,_ﬁw
STV /usror3izud NOLLONYLSNI QNY 300930 _a3aay
SHIAIFD cg, |m - : Y3LdIHS
I -SNVil s = : 13duve
/XA Lann | 7y o ry
hd % .
1041NOD 3 2 > v
3zis sna A = =) SNE T0UINDD VREIINI
/3NM3did " r Y i 3 -
» % 2
¥3IAING ' = ” 7
[C|
SS3MAqY n h 4) h 4 1INN 1S3L
_ 7 a i NOLLOALO¥d
B aunguy € __H 3nnaRLLY
NV 0HINOD ANV 1IN
IHOVD SH3LSI9IY x“
3ova JoLIE553 ’ SNA SS3800Y JALDII
143
¥IZILINOIS i y3aav L7
1S3N03Y ¥3gav 10dNI=§ A \ SNE SSIYAAY 3ALLDIISI
04INOD SN8 11NN SNIOVd LINA NOILVININO3S

Figure 1-1. Military Intel386™ Processor Pipelined 32-Bit Microarchitecture

B 4826175 0135645 954 EEITLIL

11-8

intel.
1.0 BASE ARCHITECTURE

1.1 INTRODUCTION

The Military Intel386 microprocessor consists of a
central processing unit, a memory management unit
and a bus interface.

The central processing unit consists of the execu-
tion unit and instruction unit. The execution unit con-
tains the eight 32-bit general purpose registers
which are used for both address calculation, data
operations and a 64-bit barrel shifter used to speed
shift, rotate, multiply, and divide operations. The
multiply and divide logic uses a 1-bit per cycle algo-
rithm. The multiply algorithm stops the iteration
when the most significant bits of the multiplier are all
zero. This allows typical 32-bit multiplies to be exe-
cuted in under one microsecond. The instruction unit
decodes the instruction opcodes and stores them in
the decoded instruction queue for immediate use by
the execution unit.

The memory management unit (MMU) consists of a
segmentation unit and a paging unit. Segmentation
allows the managing of the logical address space by
providing an extra addressing component, one that
allows easy code and data relocatability, and effi-
cient sharing. The paging mechanism operates be-
neath and is transparent to the segmentation pro-
cess, to allow management of the physical address
space. Each segment is divided into one or more 4
Kbyte pages. To implement a virtual memory sys-
tem, the Military Intel386 microprocessor supports
full restartability for all page and segment faults.

Memory is organized into one or more variable
length segments, each up to four gigabytes in size. A
given region of the linear address space, a segment,
can have attributes associated with it. These attri-
butes include its location, size, type (i.e. stack, code
or data), and protection characteristics. Each task
on a Military Intel386 microprocessor can have a
maximum of 16,381 segments of up to four giga-
bytes each, thus providing 64 terabytes (trillion
bytes) of virtual memory to each task.

The segmentation unit provides four-levels of pro-
tection for isolating and protecting applications and
the operating system from each other. The hardware
enforced protection allows the design of systems
with a high degree of integrity.

The Military Intel386 microprocessor has two modes
of operation: Real Address Mode (Real Mode), and
Protected Virtual Address Mode (Protected Mode).
In Real Mode the Military Intel386 microprocessor
operates as a very fast M8086, but with 32-bit exten-

MILITARY Intel386™ MICROPROCESSOR

sions if desired. Real Mode is required primarily to
setup the processor for Protected Mode operation.
Protected Mode provides access to the sophisticat-
ed memory management, paging and privilege capa-
bilities of the processor.

Within Protected Mode, software can perform a task
switch to enter into tasks designated as- Virtual
M8086 Mode tasks. Each such task behaves with
M8086 semantics, thus allowing MB086 software (an
application program, or an entire operating system)
to execute. The Virtual M8086 tasks can be isolated
and protected from one another and the host Military
Intel386 microprocessor operating system, by the
use of paging, and the 1/0 Permission Bitmap.

Finally, to facilitate high performance system hard-
ware designs, the Military Intel386 microprocessor
bus interface offers address pipelining, dynamic data
bus sizing, and direct Byte Enable signals for each
byte of the data bus. These hardware features are
described fully beginning in Section 4.

1.2 REGISTER OVERVIEW

The Military Intel386 processor has 32 register re-
sources in the following categories:

e General Purpose Registers
s Segment Registers

¢ |nstruction Pointer and Flags
e Control Registers

e System Address Registers

¢ Debug Registers

® Test Registers.

The registers are a superset of the M8086, M80186
and M80286 registers, so all 16-bit MB086, M80186
and MB0286 registers are contained within the 32-bit
Military Intel386 microprocessor.

Figure 2-1 shows all of Military Intel386 microproc-
assor base architecture registers, which include the
general address and data registers, the instruction
pointer, and the flags register. The contents of these
registers are task-specific, so these registers are au-
tomatically loaded with a new context upon a task
switch operation.

The base architecture also includes six directly ac-
cessible segments, each up to 4 Gbytes in size. The
segments are indicated by the selector values
placed in Military Intel386 microprocessor segment
registers of Figure 2-1. Various selector values can
be loaded as a program executes, if desired.

11-9

B 482L175 0135646 6590 EEITLL

R R EEEEEDDDDD—€BBB_ETTEEES.,

MILITARY Intel386™ MICROPROCESSOR

GENERAL DATA AND ADDRESS REGISTERS
31 16 15 0
AX EAX
BX EBX
CX ECX
DX EDX
Sl ESI
Di EDI
BP EBP
sP ESP
SEGMENT SELECTOR REGISTERS
15 0
cs CODE
S8 STACK
DS
ES DATA
FS
GS
INSTRUCTION POINTER
AND FLAGS REGISTER
3 16 15 0
P EIP
FLAGS EFLAGS

Figure 2-1. Military Intel386 Microprocessor Base
Architecture Registers

The selectors are also task-specific, so the segment
registers are automatically loaded with new context
upon a task switch operation.

The other types of registers, Control, System Ad-
dress, Debug, and Test, are primarily used by sys-
tem software.

1.3 REGISTER DESCRIPTIONS

1.3.1 General Purpose Registers

General Purpose Registers: The eight general pur-
pose registers of 32 bits hold data or address quanti-
ties. The general registers, Figure 2-2, support data
operands of 1, 8, 16, 32 and 64 bits, and bit fields of
1 to 32 bits. They support address operands of 16
and 32 bits. The 32-bit registers are named EAX,
EBX, ECX, EDX, ESI, EDI, EBP, and ESP.

B 4826175 0135647 727 EEITLI

]

intel.
The least significant 16 bits of the registers can be
accessed separately. This is done by using the
16-bit names of the registers AX, BX, CX, DX, Sl, Di,
BP, and SP. When accessed as a 16-bit operand,

the upper 16-bits of the register are neither used nor
changed.

Finally 8-bit operations can individually access the
lowest byte (bits 0-7) and the higher byte (bits 8-
15) of general purpose registers AX, BX, CX and DX.
The lowest bytes are named AL, BL, CL and DL,
respectively. The higher bytes are named AH, BH, -
CH and DH, respectively. The individual byte acces-
sibility offers additional flexibility for data operations,
but is not used for effective address calculation.

31 16 15 8 7 0
AH Alx AL EAX
BH B|X BL EBX
CH CJx CL ECX
DH D|X DL EDX
sl ES
DI EDI
BP EBP
sP ESP
31 16 15 0
[[| Er
—
P

Figure 2-2. General Registers and
Instruction Pointer

1.3.2 Instruction Pointer

The instruction pointer, Figure 2-2, is a 32-bit regis-
ter named EIP. EIP holds the offset of the next
instruction to be executed. The offset is always rela-
tive to the base of the code segment (CS). The low-
er 16 bits (bits 0-15) of EIP contain the 16-bit in-
struction pointer named IP, which is used by 16-bit
addressing.

1.3.3 Flags Register

The Flags Register is a 32-bit register named
EFLAGS. The defined bits and bit fieids within
EFLAGS, shown in Figure 2-3, control certain opera-
tions and indicate status of the Military Intel386 mi-
croprocessor. The lower 16 bits (bit 0-15) of
EFLAGS contain the 16-bit flag register named
FLAGS, which is most useful when executing M8086
and MB80286 code.

MILITARY Intel386™ MICROPROCESSOR

FLAGS
3322222222221 111111111
10987654321088765432109876543210

v[r| Inbior folofilrlsiz] 1af I°] |c
EFLAGS RESERVED FOR INTEL vleloltl L FFIFlFLEEEE Lo F Lol e | F
r 3 LA 4 AL AAAAL L 3 b
VIRTUAL MODE) ﬁ LCARRY FLAG
RESUME FLAG PARITY FLAG
NESTED TASK FLAG AUXILIARY CARRY
/0 PRIVILEGE LEVEL ZERO FLAG
OVERFLOW - SIGN FLAG
DIRECTION FLAG TRAP FLAG
INTERRUPT ENABLE
271052-50

VM

Figure 2-3. Flags Register

(Virtual M8086 Mode, bit 17)

The VM bit provides Virtual M8086 Mode
within Protected Mode. If set while the Mili-
tary Intei386 microprocessor is in Protected
Mode, the Military intel386 microprocessor

- will switch to Virtual M8086 operation, han-

RF

dling segment loads as the M8086 does, but
generating exception 13 faults on privileged
opcodes. The VM bit can be set only in Pro-
tected Mods, by the IRET instruction (if cur-
rent privilege level = 0) and by task switches
at any privilege level. The VM bit is unaffect-
ed by POPF. PUSHF always pushes a 0 in
this bit, even if executing in virtual M8086
Mode. The EFLAGS image pushed during in-
terrupt processing or saved during task
switches will contain a 1 in this bit if the inter-
rupted code was executing as a Virtual
M8086 Task.

{Resume Flag, bit 16)

The RF flag is used in conjunction with the
debug register breakpoints. It is checked at
instruction boundaries before breakpoint pro-
cessing. When RF is set, it causes any debug
fault to be ignored on the next instruction. RF

_is then automatically reset at the successful

completion of every instruction (no faults are
signalled) except the IRET instruction, the
POPF instruction, (and JMP, CALL, and INT
instructions causing a task switch). These in-
structions set RF to the value specified by the
memory image. For example, at the end of
the breakpoint service routine, the IRET

NT

IOPL

instruction can pop an EFLAG image having
the RF bit set and resume the program'’s exe-
cution at the breakpoint address without gen-
erating another breakpoint fault on the same
location.

(Nested Task, bit 14)

This flag applies to Protected Mode. NT is set
to indicate that the execution of this task is
nested within another task. If set, it indicates
that the current nested task’s Task State
Segment (TSS) has a valid back link to the .
previous task’s TSS. This bit is set or reset by
control transfers to other tasks. The value of
NT in EFLAGS is tested by the IRET instruc-
tion to determine whether to do an inter-task
return or an intra-task return. A POPF or an
IRET instruction will affect the setting of this
bit according to the image popped, at any
privilege level. i

(Input/Output Privilege Level, bits 12-13)

This two-bit field applies to Protected Mode.
IOPL indicates the numerically maximum CPL
(current privilege level) value permitted to ex-
ecute 1/0 instructions without generating an
exception 13 fault or consulting the 1/0 Per-
mission Bitmap. It also indicates the maxi-
mum CPL value allowing alteration of the IF
(INTR Enable Flag) bit when new values are
popped into the EFLAG register. POPF and
IRET instruction can alter the IOPL field when
executed at CPL = 0. Task switches can al-

ways alter the IOPL field, when the new flag -

image is loaded from the incoming task's
TSS. .

| 1114
B 4826175 0135L48 bb3 EMITLL

MILITARY Intel386™ MICROPROCESSOR

intgl.

OF (Overflow Flag, bit 11) ZF (Zero Flag, bit 6)
OF is set if the operation resulted in a signed ZF is set if all bits of the resuit are 0. Other-
overflow. Signed overflow occurs when the wise it is reset.
operation resulted in carry/borrow into the AF (Auxiliary Carry Flag, bit 4
sign bit (high-order bit) of the result but did (Awdliary Cerry Flag, bit4) ,
not result in a carry/borrow out of the high- The Auiliary Flag is used to simplify the addi-
order bit, or vice-versa. For 8/16/32 bit oper- tion and subtraction of packed BCD quanti-
ations, OF is set according to overflow at bit ties. AF is set if the operation resulted in a
7/15/31, respectively. - carry out of bit 3 (addlthn) ora porrow into bit
o) 3 (subtraction). Otherwise AF is reset. AF is
DF (Direction Flag, bit 10) affected by carry out of, or borrow into bit 3
DF defines whether ESI and/or EDI registers only, regardless of overall operand length: 8,
postdecrement or postincrement during the 16 or 32 bits.
string instructions. Postincrement occurs if Pari i
DF is reset. Postdecrement occurs if DF is PF(arny Fla.gs. bit 2) . .
set. PF is set if the low-order eight bits of the op-
. eration contains an even number of “1’s”
IF (INTR Enable Flag, bit 9) (even parity). PF is reset if the low-order eight
The IF flag, when set, allows recognition of bits have odd parity. PF is a function of only
., external interrupts signalled on the INTR pin. the low-order eight bits, regardless of oper-
When IF is reset, external interrupts signalled and size.
on the INTR are not recognized. IOPL indi- i
cates the maximum CPL value allowing alter- CF (Caljry Flag, bit 0) : .
ation of the IF bit when new values are CF is set if the operation resulted in a carry
i out of {(addition), or a borrow into (subtraction)
popped into EFLAGS or FLAGS. d : ! v
. the high-order bit. Otherwise CF is reset. For
TF (Trap Enable Flag, bit 8) 8-, 16- or 32-bit operations, CF is set accord-
TF controls the generation of exception 1 ing to carry/borrow at bit 7, 15 or 31, respec-
trap when single-stepping through code. tively.
When TF is set, the Military Intel386 proces-
sor generates an exception 1 trap after the Note in these descriptions, “set” means “set to 1,”
next instruction is executed. When TF is re- and “reset” means “‘reset to 0.”
set, exception 1 traps occur only as a func-
tion of the breakpoint addresses loaded into
debug registers DRO-DR3. 1.3.4 Segment Registers
SF (Slg.n Flag., bit 7) . _ . Six 16-bit segment registers hold segment selector
SF is set if the high-order bit of the result is yajues identifying the currently addressable memory
set, it is reset otherwise. For 8-, 16-, 32-bit segments. Segment registers are shown in Figure 2-
- Opﬁratlons,. SF reflects the state of bit 7, 15, 4. In Protected Mode' each segment may range in
31 respectively. size from one byte up to the entire linear and physi-
SEGMENT
REGISTERS DESCRIPTOR REGISTERS (LOADED AUTOMATICALLY)
r ~ N s ~ Other A
Segment
15 0 Physical Base Address Segment Limit Attributes from Descriptor
Selector CS- —
Selector SS- — —
Selector DS- —=]—
Selector ES- —|—=t—
Selector FS- —|—{—
Selector GS- —_ i

Figure 2-4. Milltary Intel386™ Microprocessor Segment
Registers, and Associated Descriptor Registers

11-12
B 4826175 0135649 5TT ERITLL I

intel.

cal space of the machine, 4 Gbytes (232 bytes). If a
maximum-sized segment is wused (limit =
FFFFFFFFH) it should be Dword aligned (i.e., the
least two significant bits of the segment base should
be zero). This will avoid a segment limit violation (ex-
ception 13) caused by the wraparound. In Real Ad-
dress Mode, the maximum segment size is fixed at
64 Kbytes (216 bytes).

The six segments addressable at any given moment
are defined by the segment registers CS, SS, DS,
ES, FS and GS. The selector in CS indicates the
current code segment; the selector in SS indicates
the current stack segment; the selectors in DS, ES,
FS and GS indicate the current data segments.

1.3.5 Segment Descriptor Registers

The segment descriptor registers are not program-
mer visible, yet it is very useful to understand their
content. Inside the Military Intel386 processor, a de-
scriptor register (programmer invisible) is associated
with each programmer-visible segment register, as
shown by Figure 2-4. Each descriptor register holds
a 32-bit segment base address, a 32-bit segment
limit, and the other necessary segment attributes.

When a selector value is loaded into a segment reg-
ister, the associated descriptor register is automati-
cally updated with the correct information. In Real
Address Mode, only the base address is updated
directly (by shifting the selector value four bits to the
left), since the segment maximum limit and attributes
are fixed in Real Mode. In Protected Mode, the base
address, the limit, and the attributes are all updated
per the contents of the segment descriptor indexed
by the selector.

Whenever a memory reference occurs, the segment
descriptor register associated with the segment be-
ing used is automatically involved with the memory
reference. The 32-bit segment base address be-
comes a component of the linear address calcula-
tion, the 32-bit limit is used for the limit-check opera-
tion, and the attributes are checked against the type
of memory reference requested.

MILITARY intel386™ MICROPROCESSOR

1.3.6 Control Registers

The Military Intel386 microprocessor has three con-
trol registers of 32 bits, CR0, CR2 and CR3, to hold
machine state of a global nature (not specific to an
individual task). These registers, along with System
Address Registers described in the next section,
hold machine state that affects all tasks in the sys-
tem. To access the Control Registers, load and
store instructions are defined.

CRO: Machine Control Register (includes M80286
Machine Status Word)

CRO, shown in Figure 2-5, contains 6 defined bits for
control and status purposes. The low-order 16 bits
of CRO are also known as the Machine Status Word,
MSW, for compatibility with M80286 Protected
Mode. LMSW and SMSW instructions are taken as
special aliases of the load and store CRO opera-
tions, where only the low-order 16 bits of CRO are
involved. For compatibility with M80286 operating
systems the Military Intel386 processor’s LMSW in-
structions work in an identical fashion to the LMSW
instruction on the M80286. (i.e. It only operates on
the low-order 16-bits of CRO and it ignores the new
bits in CRO.) New Military Intel386 processor operat-
ing systems should use the MOV CRO, Reg instruc-
tion.

The detined CRO bits are described below.

PG (Paging Enable, bit 31)
the PG bit is set to enable the on-chip paging
unit. It is reset to disable the on-chip paging
unit. .

ET (Processor Extension Type, bit 4)
ET indicates the processor extension type (ei-
ther M80287 or M387 coprocessor) as detect-
ed by the level of the ERROR input following
M80386 reset. The ET bit may also be set or
reset by loading CRO under program control if
desired. If ET is set, the M387 NPX's compati-
ble 32-bit protocol is used. If ET is reset,
M80287-compatible 16-bit protocol is used.
Note that for strict MB0286 compatibility, ET is
not affected by the LMSW instruction. When
the MSW or CRO is stored, bit 4 accurately re-
flects the current state of the ET bit.

0
TIEIM|P

s|m|p|E|CRO
- J

MSW
NOTE: ndicates Intel reserved: Do not define; SEE SECTION 2.3.10
Figure 2-5. Control Register 0
11-13

M 4825175 0135L50 211 EEITLY

MILITARY Intel386™ MICROPROCESSOR

TS (Task Switched, bit 3)

TS is automatically set whenever a task switch
operation is performed. if TS is set, a coproces-
sor ESCape opcode will cause a Goprocessor
Not Available trap (exception 7). The trap han-
dler typically saves the M80287/M387 NPX
context belonging to a previous task, loads the
M80287/M387 NPX state belonging to the cur-
rent task, and clears the TS bit before returning
to the faulting coprocessor opcode.

EM (Emulate Coprocessor, bit 2)

The EMulate coprocessor bit is set to cause all
coprocessor opcodes to generate a Coproces-
sor Not Available fault (exception 7). it is reset
to allow coprocessor opcodes to be executed
on an actual M80287 or M387 coprocessor
(this the default case after reset). Note that the
WAIT opcode is not affected by the EM bit set-
ting.
MP (Monitor Coprocessor, bit 1)

The MP bit is used in conjunction with the TS
- bit to determine if the WAIT opcode will gener-
ate a Coprocessor Not Available fault (excep-
tion 7) when TS = 1. When both MP = 1 and
TS = 1, the WAIT opcode generates a ftrap.
Otherwise, the WAIT opcode does not gener-
ate a trap. Note that TS is automatically set
whenever a task switch operation is performed.

PE (Protection Enable, bit 0)

The PE bit is set to enable the Protected Mode.
If-PE is reset, the processor operates again in
Real Mode. PE may be set by loading MSW or
CRO. PE can be reset only by a load into CRO.
Resetting the PE bit is typically part of a longer
instruction sequence needed for proper tfran-
sition from Protected Mode to Real Mode. Note
that for strict M80286 compatibility, PE cannot
be reset by the LMSW instruction.

CR1: reserved
CR1 is reserved for use in future Intel processors.
CR2: Page Fault Linear Address

CR2, shown in Figure 2-6, holds the 32-bit linear ad-
dress that caused the last page fault detected. The

intel.

error code pushed onto the page fault handler's
stack when it is invoked provides additional status
information on this page fault.

CR3: Page Directory Base Address

CR3, shown in Figure 2-6, contains the physical ad-
dress of the page directory table. The Military
Intel386 processor page directory table is always
page-aligned (4 Kbyte-aligned). Therefore the low-
est twelve bits of CR3 are ignored when written and
they store as undefined.

A task switch through a TSS which changes the
value in CR3, or an explicit load into CR3 with any
value, will invalidate all cached page table entries in
the paging unit cache. Note that if the value in CR3
does not change during the task switch, the cached
page table entries are not flushed.

1.3.7 System Address Registers

Four special registers are defined to reference the
tables or segments supported by the M80286/Mili-
tary Intel386 microprocessor protection model.
These tables or segments are:

GDT (Global Descriptor Table),
IDT (Interrupt Descriptor Table),
LDT (Local Descriptor Tabie),
TSS (Task State Segment).

The addresses of these tables and segments are
stored in special registers, the System Address and
System Segment Reqisters illustrated in Figure 2-7.
These registers are named GDTR, IDTR, LDTR and
TR, respectively. Section 3 Protected Mode Archi-
tecture describes the use of these registers.

GDTR and IDTR

These registers hold the 32-bit linear base address
and 16-bit limit of the GDT and IDT, respectively.

The GDT and IDT segments, since they are global to
all tasks in the system, are defined by 32-bit linear
addresses (subject to page translation if paging is
enabled) and 16-bit limit values.

31 24123 16

PAGE FAULT LINEAR ADDRESS REGISTER

CR2

' PAGE DIRECTORY BASE REGISTER

| cR3

NOTE:

indicates Intel reserved: Do not define; SEE SECTION 2.3.10

Figure 2-6, Control Registers 2 and 3

11-14
: B 482L175 0135bL5) 158 ERITLY

intgl.

MILITARY Intel386™ MICROPROCESSOR

SYSTEM ADDRESS REGISTERS

47 32-BIT LINEAR BASE ADDRESS 16 15 LIMIT 0
GDTR '
IDTR
SYSTEM SEGMENT .
REGISTERS DESCRIPTOR REGISTERS (AUTOMATICALLY LOADED)
A .
fis o 7 32.BIT LINEAR BASE ADDRESS 32-BIT SEGMENT LIMIT ATTRIBUTES"

TR SELECTOR

LOTR SELECTOR

Figure 2-7. System Address and System Segment Registers

LDTR and TR

These registers hold the 16-bit selector for the LDT
descriptor and the TSS descriptor, respectively.

The LDT and TSS segments, since they are task-
specific segments, are defined by selector values
stored in the system segment registers. Note that a
segment descriptor register (programmer-invisible)
is associated with each system segment register.

1.3.8 Debug and Test Registers

Debug Registers: The six programmer accessible
debug registers provide on-chip support for debug-
ging. Debug Registers DRO-3 specify the four linear
breakpoints. The Debug Control Register DR7 is
used to set the breakpoints and the Debug Status
Register DR6, displays the current state of the
breakpoints. The use of the debug registers is de-
scribed in Section 1.12 Debugging Support.

DEBUG REGISTERS

31 0

LINEAR BREAKPOINT ADDRESS 0 DRO
LINEAR BREAKPOINT ADDRESS 1 DR1
LINEAR BREAKPOINT ADDRESS 2 DR2
LINEAR BREAKPOINT ADDRESS 3 DR3
Intel reserved. Do not define. DR4
Intel reserved. Do not define. DR5
BREAKPOQINT STATUS DR6
BREAKPOINT CONTROL DR7
TEST REGISTERS (FOR PAGE CACHE)

31 0

TEST CONTROL TR6
TEST STATUS TR7

Figure 2-8. Debug and Test Registers

BN 4826175 0135652 094 EEITLI

R R RRERRERREEEERRRRREERRERRRRRERRRRRRERRREEEREEEEEESREESSESEEEEEEEEES——

Test Registers: Two registers are used to control
the testing of the RAM/CAM (Content Addressable
Memories) in the Translation Lookaside Butfer por-
tion of the Military Intel386 microprocessor. TR6 is
the command test register, and TR7 is the data
register which contains the data of the Translation
Lookaside buffer test. Their use is discussed in Sec-
tion 1.11 Testability.

Figure 2-8 shows the Debug and Test registers.

1.3.9 Register Accessibility

There are a few differences regarding the accessibil-
ity of the registers in Real and Protected Mode. Ta-
ble 2-1 summarizes these differences. See Section
3 Protected Mode Architecture for further details.

1.3.10 Compatibility

VERY IMPORTANT NOTE:
COMPATIBILITY WITH FUTURE PROCESSORS

In the preceding register descriptions, note cer-
tain Military Intel386 processor register bits are
undefined. When undefined bits are called out,
treat them as fully undefined. This is essential
for your software compatibility with future proc-
essors! Follow the guidelines below:

1) Do not depend on the states of any unde-
fined bits when testing the values of defined
register bits. Mask them out when testing.

2) Do not depend on the states of any unde-
fined bits when storing them to memory or
another register.

3) Do not depend on the ability to retain infor-
mation written into any undefined bits.

4) When loading registers always load the unde-
fined bits as zeros.

11-15

a
MILITARY Intel386 ™ MICROPROCESSOR |n‘te| »

Table 2-1. Register Usage

* Usein Usein Usein
Register Real Mode Protected Mode Virtual M8086 Mode
Load Store Load Store Load Store
General Registers Yes Yes Yes Yes Yes Yes
Segment Registers Yes Yes Yes Yes Yes Yes
Flag Register Yes Yes Yes Yes 10PL IOPL*
Control Registers Yes Yes PL=0 PL=0 No Yes
GDTR Yes Yes PL=0 Yes No Yes
IDTR Yes Yes PL=0 Yes No Yes
LDTR No No PL=0 Yes No No
TR No No PL=0 Yes No No
Debug Control Yes Yes PL=0 PL=0 No No
Test Registers Yes Yes PL=20 PL=0 No No
NOTES:

PL = 0: The registers can be accessed only when the curmrent privilege level is zero.
*|OPL: The PUSHF and POPF instructions are made 1/0O Privilege Level sensitive in Virtual M8086 Mode.

5) However, registers which have been previ-
ously stored may be reloaded without mask-
ing.

Depending upon the values of undefined regis-
ter bits will make your software dependent upon
the unspecified Military Intei386 handling of
these bits. Depending on undefined values risks
making your software incompatible with future
processors that define usages for the Military
Intel386 microprocessor’'s undefined bits.
AVOID ANY SOFTWARE DEPENDENCE UPON
THE STATE OF UNDEFINED Military Intel386 MI-
CROPROCESSOR REGISTER BITS.

1.4 INSTRUCTION SET

1.4.1 Instruction Set Overview
The instruction set is divided into nine categories of
operations:

Data Transfer

Arithmetic

Shift/Rotate

String Maniputation

Bit Manipulation

Control Transfer

High Level Language Support

Operating System Support

Processor Control

These Military Intel386 processor instructions are
listed in Table 2-2.

All Military Intel386 processor instructions operate
on either 0, 1, 2, or 3 operands; where an operand
resides in a register, in the instruction itself, or in
memory. Most zero operand instructions (e.g. CLI,
STi) take only one byte. One operand instructions
generally are two bytes long. The average instruc-
tion is 3.2 bytes long. Since the Military Intel386
processor has a 16-byte instruction queue, an aver-
age of 5 instructions will be prefetched. The use of
two operands permits the following types of com-
mon instructions:

Register to Register
Memory to Register
Immediate to Register
Register to Memory
Immediate to Memory.

The operands can be either 8, 16, or 32 bits long. As
a general rule, when exscuting code written for the
Military Intel386 processor (32-bit code), operands
are 8 or 32 bits; when executing existing M80286 or
M8086 code (16-bit code), operands are 8 or 16 bits.
Prefixes can be added to all instructions which over-
ride the default length of the operands, (i.e. use 32-
bit operands for 16-bit code, or 16-bit operands for
32-bit code).

11-16
B 4825175 0135L53 T20 EEITLI I

intgl.

1.4.2 Military Intel386™™

MILITARY Intel386™ MICROPROCESSOR

Table 2-2b. Arithmetic Instructions

Microprocessor Instructions ADDITION
Table 2-2a. Data Transfer ADD Add operands
GENERAL PURPOSE ADC Add with carry
MOV Move operand INC Increment operand by 1
PUSH Push operand onto stack AAA ASCI! adjust for addition
POP Pop operand off stack DAA Decimal adjust for addition
PUSHA [Push all registers on stack SUBTRACTION
POPA Pop all registers off stack suB Subtract operands
XCHG |Exchange Operand, Register SBB Subtract with borrow
XLAT Translate DEC Decrement operand by 1
CONVERSION NEG Negate operand
MOVZX |Move byte or Word, Dword, with zero CMP Compare operands
extension DAS Decimal adjust for subtraction
MOVSX |Move byte or Word, Dword, sign AAS. ASCII Adjust for subtraction
oxtended MULTIPLICATION
cBw Convert byte to Word, or Word to Dword MUL Multiply Double/Single Precision
CWD Convert Word to DWORD IMUL Integer multiply
CWDE Convert Word to DWORD extended AAM ASCII adjust after multiply
CDQ Convert DWORD to QWORD DIVISION
INPUT/OUTPUT Div Divide unsigned
IN Input operand from 1/0 space DIV Integer Divide
ouT Output operand to 1/0 space AAD ASCH adjust before division
ADDRESS OBJECT
LEA Load effective address Table 2-2¢. String Instructions
LDS Load pointer into D segment register MOVS _ |Move byte or Word, Dword string
LES Load pointer into E segment register INS Input string from I/O space
LFS Load pointer into F segment register OUTS _ |Outputstring to I/O space
LGS Load pointer into G segment register CMPS _ |Compare byte or Word, Dword string
LSS Load pointer into S (Stack) segment SCAS __|Scan Byte or Word, Dword string
register LODS Load byte or Word, Dword string
FLAG MANIPULATION STOS Store byte or Word, Dword siring
LAHF Load A register from Flags REP Repeat
SAHF Store A register in Flags REPE/
PUSHF |Push flags onto stack ‘ REPZ Repeat while equal/zero
POPF Fop flags off stack ggsﬁé Repeat while not equal/not zero
PUSHFD 1Push EFlags onto stack Table 2-2d. Logical Instructions
POPFD |Pop EFlags off stack
LOGICALS
CLC Clear Carry Flag - NOT “NOT" operands
CLD Clear Direction Flag AND. “AND" operands
CMC Complement Carry Flag -
OR “Inclusive OR" operands
STO Sot Carry Flag XOR “Exclusive OR” operands
STD Set Direction Flag
TEST “Test” operands
n 11417

B 4826175 01L35b54 957 WMEITLL

[]
MILITARY Intel386™ MICROPROCESSOR |nte| o

Table 2-2d. Logical Instructions (Continued) Table 2-2f. Program Control Instructions
SHIFTS {Continued)
SHL/SHR | Shift logical left or right ITERATION CONTROLS
SAL/SAR |Shift arithmetic left or right LOOP |Loop
SHLD/ LOOPE/
SHRD |Double shift left or right LOOPZ | Loop if equal/zero
ROTATES LOOPNE/]
ROL/ROR|Rotate left/right 58)‘(’:"2 jmp';:f"::;;:'c’yl :°'°
RCL/RCR | Rotate through carry left/right
Table 2-2e. Bit Manipulation Instructions INT Imem::TERRUPTS

SII'dGLE BIT INSTRUCTIONS INTO Interrupt if overflow

g;s ::: ;r::: and Set IRET Return from Interrupt/Task
- CLI Clear interrupt Enable
BTR Bit Test and Reset STI Set Interrupt Enable
:;(F: ::: ;::1&: : wc::rr;plemem Table 2-2g. High Level Language Instructions
BSR Bit Scan Reverse BOUND |Check Array Bounds
Table 2-2f. Program Control Instructions ENTER greggng:‘ar.;ameter Block for Entering

CONDITIONAL TRANSFERS LEAVE Leave Procedure
SETCC |Set byte equal to condition code Table 2-2h. Protection Model
JA/INBE |Jump if above/not below nor equal SGDT Store Global Descriptor Table
JAE/JINB 1Jump if above or equal/not below SIDT Store Interrupt Descriptor Table
JB/JNAE |Jump if below/not above nor equal STR Store Task Register
JBE/JNA {Jump if below or equal/not above SLDT Store Local Descriptor Table
JC Jump if carry LGDT | Load Global Descriptor Table
JE/JZ Jump if equal/zero LIDT Load Interrupt Descriptor Table
JG/JNLE {Jump if greater/not less nor equal LTR Load Task Register
JGE/JNL {Jump if greater or equal/not less LLDT Load Local Descriptor Table
JL/INGE |Jump if less/not greater nor equal ARPL Adjust Requested Privilege Level
JLE/JNG |Jump if less or equal/not greater LAR Load Access Rights
JNC Jump if not carry LSL L.oad Segment Limit
JNE/JNZ [Jump if not equal/not zero VERR/
JNO Jump if not overflow VERW | Verify Segment for Reading or Writing
JNP/JPO | Jump if not parity/parity odd LMSW |Load Machine Status Word (fower
JNS Jump if not sign ' 16 bits of CRO)
JO Jump if overflow SMSW Store Machine Status Word
JP/JPE |Jump if parity/parity even Table 2-2I. Processor Control Instructions
JS | Jump if Sign HLT Halt

UNCONDITIONAL TRANSFERS WAIT | Wait until BUSY negated

CALL Call procedure/task ESC Escape
RET Return from procedure LOCK Lock Bus
JMP Jump

11-18 ‘
B 482L175 D135L55 &8T73 EBITLL ' I

intel.
1.5 ADDRESSING MODES

1.5.1 Addressing Modes Overview

The Military Intel386 microprocessor provides a total
of 11 addressing modes for instructions to specify
operands. The addressing modes are optimized to
allow the efficient execution of high level languages
such as C and FORTRAN, and they cover the vast
majority of data references needed by high-level lan-
guages.

1.5.2 Register and Immediate Modes

Two of the addressing modes provide for instruc-
tions that operate on register or immediate oper-
ands: .

Register Operand Mode: The operand is located
in one of the 8-, 16- or 32-bit general registers.

Immediate Operand Mode: The operand is in-
cluded in the instruction as part of the opcode.

1.5.3 32-Bit Memory Addressing
Modes

The remaining 9 modes provide a mechanism for
specifying the effective address of an operand. The
linear address consists of two components: the seg-
ment base address and an effective address. The
effective address is calculated by using combina-
tions of the following four address slements:

DISPLACEMENT: An 8-, or 32-bit immediate value,
following the instruction.

BASE: The contents of any general purpose regis-
ter. The base registers are generally used by compil-
ers to point to the start of the local variable area.

INDEX: The contents of any general purpose regis-
ter except for ESP. The index registers are used to
access the elements of an array, or a string of char-
acters. .

SCALE: The index register’s value ¢an be multiplied
by a scale factor, either 1, 2, 4 or 8. Scaled index
mode is espacially useful for accessing arrays or
structures.

Combinations of these 4 components make up the 8
additional addressing modes. There is no perform-
ance penalty for using any of these addressing com-
binations, since the effective address calculation is
pipelined with the exsecution of other instructions.

MILITARY Intel386™ MICROPROCESSOR

The one exception is the simuitaneous use of Base
and Index components which requires one addition-
al clock.

As shown in Figure 2-9, the effective address (EA) of
an operand is calculated according to the following
formula.

EA=Base Reg+ (Index Reg * Scaling) + Displacement

Direct Mode: The operand’s offset is contained as
part of the instruction as an 8-, 16- or 32-bit dis-
placement.

EXAMPLE: INC Word PTR [500]

Register Indirect Mode: A BASE register contains
the address of the operand.
EXAMPLE: MOV [ECX], EDX

Based Mode: A BASE register’s contents is added
to a DISPLACEMENT to form the operands offset.
EXAMPLE: MOV ECX, [EAX +24]

index Mode: An INDEX register’s contents is added
to a DISPLACEMENT to form the operands offset.
EXAMPLE: ADD EAX, TABLE{ESI]

Scaled Index Mode: An INDEX register’s contents is
multiplied by a scaling factor which is added to a
DISPLACEMENT to form the operands offset.
EXAMPLE: IMUL EBX, TABLE[ESI*4],7

Based Index Mode: The contents of a BASE register
is added to the contents of an INDEX register to
form the effective address of an operand.
EXAMPLE: MOV EAX, [ESI] [EBX]

Based Scaled Index Mode: The contents of an IN-
DEX register is multiplied by a SCALING factor and
the result is added to the contents of a BASE regis-
ter to obtain the operands offset.

EXAMPLE: MOV ECX, (EDX*8] [EAX]

Based index Mode with Displacement: The contents
of an INDEX Register and a BASE register's con-
tents and a DISPLACEMENT are all summed to-
gether to form the operand ofiset.

EXAMPLE: ADD EDX, [ESI] [EBP + 00FFFFFOH]}

Based Scaled Index Mode with Displacament: The
contents of an INDEX register are multiplied by a
SCALING factor, the result is added to the contents
of a BASE register and a DISPLACEMENT to form
the operand’s offset.

EXAMPLE: MOV EAX, LOCALTABLE[EDI*4]
[EBP + 80]

11-19

M 482L17?5 0135656 73T EEMITLL

e e —

MILITARY intel386™ MICROPROCESSOR

SEGMENT REGISTER —
ss
Gs INDEX REGISTER
FS
ES
oS
—cs SELECTOR
SCALE
1,2,4, 0R 8
v
" DISPLACEMENT
() e——— (IN INSTRUCTION)
EFFECTIVE
A SEGMENT
DDRESS SEGM
LINEAR
DESCRIPTOR REGISTERS)~ ADDRESS
(©)———>]| rarcer aboress
X
SELECTED
SEGMENT
LT j
Y BASE ADDRESS Jf—d - e e m e >
SEGMENT BASE ADDRESS
271052-51

Figure 2-9. Addressing Mode Calcuiations

1.5.4 Differences Between 16- and
32-Bit Addresses

In order to provide software compatibility with the
M80286 and the M8086, the Military Intel386 micro-
processor can execute 16-bit instructions in Real
and Protected Modes. The processor determines
the size of the instructions it is executing by examin-
ing the D bit in the CS segment Descriptor. If the D
bit is O then all operand lengths and effective ad-
dresses are assumed to be 16 bits long. If the D bit
is 1 then the default length for operands and ad-
dresses is 32 bits. In Real Mode the default size for
operands and addresses is 16-bits.

Regardless of the default precision of the operands
or addresses, the Military Intel386 microprocessor is
able to execute either 16 or 32-bit instructions. This
is specified via the use of override prefixes. Two pre-
fixes, the Operand Size Prefix and the Address
Length Prefix, override the value of the D bit on an
individual instruction basis. These prefixes are auto-
matically added by Intel assembiers.

Example: The processor is executing in Real Mode
and the programmer needs to access the EAX regis-
ters. The assembler code for this might be
MOV EAX, 32bitMEMORYOP, ASM386 automatical-
ly determines that an Operand Size Prefix is needed
and generates it.

Example: The D bit is 0, and the programmer wishes
to use Scaled Index addressing mode to access an
array. The Address Length Prefix allows the use of
MOV DX, TABLE[ESI*2]. The assembler uses an
Address Length Prefix since, with D=0, the default
addressing mode is 16-bits.

Example: The D bit is 1, and the program wants to
store a 16-bit quantity. The Operand Length Prefix is
used to specify only a 16-bit value; MOV MEM16,
DX.

11-20 A
M 4826175 0135657 b?L EEITLL I

intgl.

MILITARY Intel386™ MICROPROCESSOR

Table 2-3. BASE and INDEX Registers for 16- and 32-Bit Addresses

16-Bit Addressing 32-Bit Addressing
BASE REGISTER BX,BP Any 32-bit GP Register
INDEX REGISTER S1,DI Any 32-bit GP Register
Except ESP
SCALE FACTOR none 1,2,4,8
DISPLACEMENT 0, 8, 16 bits 0, 8, 32 bits

The OPERAND LENGTH and Address Length Pre-
~ fixes can be applied separately or in combination to
any instruction. The Address Length Prefix does not
allow addresses over 64 Kbytes to be accessed in
Real Mode. A memory address which exceeds
FFFFH will result in a General Protection Fauit. An
Address Length Prefix only allows the use of the ad-
ditional Military Intel386 microprocessor addressing
modes.

When executing 32-bit code, the Military Intel386 mi-
croprocessor uses either 8-, or 32-bit displacements,
and any register can be used as base or index regis-
ters. When executing 16-bit code, the displacements
are either 8, or 16 bits, and the base and index regis-
ter conform to the 286 model. Table 2-3 illustrates
the differences.

1.6 DATA TYPES
The Military Intel386 microprocessor supports all of
the data types commonly used in high level lan-
guagss:

Bit: A single bit quantity.

Bit Field: A group of up to 32 contiguous bits,
which spans a maximum of four bytes.

Bit String: A set of contiguous bits, on the Military
Intel386 microprocessor bit strings can be up to 4
gigabits long.

Byte: A signed 8-bit quantity.

Unsigned Byte: An unsigned 8-bit quantity.
Integer (Word): A signed 16-bit quantity.

Long Integer (Double Word): A signed 32-bit quan-
tity. All operations assume a 2's complement rep-
resentation.

Unsigned Integer (Word): An unsigned 16-bit
quantity.

Unsigned Long Integer (Double Word). An un-
signed 32-bit quantity.

Signed Quad Word: A signed 64-bit quantity.

Unsigned Quad Word: An unsigned 64-bit quanti-
ty.

Offset: A 16- or 32-bit offset only quantity which
indirectly references another memory location.

Pointer: A full pointer which consists of a 16-bit
segment selector and either a 16- or 32-bit offset.

Char: A byte representation of an ASCII Alphanu-
meric or control character.

String: A contiguous sequence of bytes, words or
dwords. A string may contain between 1 byte and
4 Gbytes.

BCD: A byte (unpacked) representétion of decimal
digits 0-9.

Packed BCD: A byte (packed) representation of
two decimal digits 0-9 storing one digit in each
nibble.

When the Military Intel386 microprocessor is cou-
pled with a numerics coprocessor such as the
M80287 or the Military i387 coprocessor then the
following common Floating Point types are support-
ed.

Floating Point: A signed 32-, 64-, or 80-bit real
number representation. Floating point numbers
are supported by the M80287 and Military i387 nu-
merics Coprocessor.

Figure 2-10 illustrates the data types supported by
the Military Intel386 processor and the Military i387
COprocessor.

11-21
I BN 4826175 0135658 502 ERITL]

MILITARY Intei386™ MICROPROCESSOR I

4847 323 16 15

7 0
SIGNED : BINARY I"""T"H'I I"""Tl'l"'l"'l'lTl'ﬂ'l
BYTE CODED
SIGN BIT ~J DECIMAL BCD
L . (sco) GIT
MAGNITUDE DIGIT N DIGIT 1 m 0
+ +1 [}
7 0 7 0 7 07 0
UNSIGNED | ASCII
A [T eee [T
e ASCH ASCHl ASCIi
MAGNITUDE CHARACTERy CHARACTER, CHARACTER,
+1 o] +N . +1 [+]
1514 87 0 7 0 7 07 0
SIGNED PACKED TITIITT Y IT[I
L o[eee [T
-nsa L ..
e A |
SIGN BIT MOST LEAST
MAGNITUDE SIGNIFICANT DIGIT. SIGNIFICANT DIGIT
+1 0 +N +1 0
15 0 7/15 0 7/15 07/15 0
UNSIGNED | BYTE
—| i
MAGNITUDE
. +3 +2 1615 +1 0 o +2 GIGABITS -2 Gw“z"fo
SIGNED DOUBLE BIT I “ 11; L,;
WORD STRING I | | | I
iGN BT Jiwss I BITo
MAGNITUDE
+3 +2 +1 0 +3 +2 +1 4]
3t 0 31 0
UNSIGNED DOUBLE SHORT
WORD 32-BIT
POINTER
L I L : I
MAGNITUDE ’ OFFSET
+7 +6 +5 +5 +3 +2 +1 0 +5 +4 +3 +2 +1 [}

SIGNED QUAD ” ' l I I I | I I Lowe T :
WORD 48-BIT
POINTER

SIGN BIT =hil-MsB L I I
MAGNITUDE SELECTOR OFFSET
+9 +B8 +7 +6 +5 +4 +3 +2 +1 O
0
‘”“’"GII HENENEREE
POINT® .
SiGN BIT) i I
EXPONENT MAGNITUDE
+5 +4 +3 +2 +1 0
32-817 *SUPPORTED BY
BIT FIELD M80287 OR MILITARY
i387 NUMERIC DATA
fo—— BT FELD ———] '
170 32 BITS COPROCESSORS
271052-52

Figure 2-10. Military Intei386™ Microprocessor Supported Data Types

11.22
B 4826175 0135659 449 EMITLL

intel.
1.7 MEMORY ORGANIZATION

1.7.1 Introduction

Memory on the Military Intel386 microprocessor is
divided up into 8-bit quantities (bytes), 16-bit quanti-
ties (words), and 32-bit quantities (dwords). Words
are stored in two consecutive bytes in memory with
the low-order byte at the lowest address, the high
order byte at the high address. Dwords are stored in
four consecutive bytes in memory with the low-order
byte at the lowest address, the high-order byte at
the highest address. The address of a word or
dword is the byte address of the low-order byte.

In addition to these basic data types the Military
Intel386 microprocessor supports two larger units of
memory: pages and segments. Memory can be di-
vided up into one or more variable length segments,
which can be swapped to disk or shared between
programs. Memory can also be organized into one
or more 4 Kbyte pages. Finally, both segmentation
and paging can be combined, gaining the advan-
tages of both systems. The Military Intel386 micro-
processor supports both pages and segments in or-
der to provide maximum flexibility to the system de-
signer. Segmentation and paging are complementa-
ry. Segmentation is useful for organizing memory in
logical modules, and as such is a tool for the appli-

cation programmer, while pages are usefu! for the

system programmer for managing the physical mem-
ory of a system.

1.7.2 Address Spaces

The Military Intel386 microprocessor has three dis-
tinct address spaces: logical, linear, and physical.

MILITARY Intel386™ MICROPROCESSOR

A logical address (also known as a virtual address)
consists of a selector and an offset. A selector is the
contents of a segment register. An offset is formed
by summing all of the addressing components
(BASE, INDEX, DISPLACEMENT) discussed in Sec-
tion 1.5.3 Memory Addressing Modes into an ef-
fective address. Since each task on Military Intel386
microprocessor has a maximum of 16K (214 —1) se-
lectors, and offsets can be 4 gigabytes, (232 bits)
this gives a total of 246 bits or 64 terabytes of logi-
cal address space per task. The programmer sees
this virtual address space.

The segmentation unit translates the logical ad-
dress space into a 32-bit linear address space. If the
paging unit is not enabled then the 32-bit linear ad-
dress corresponds to the physical address. The
paging unit translates the linear address space into
the physical address space. The physical address
is what appears on the address pins.

The primary difference between Real Mode and Pro-
tected Mode is how the segmentation unit performs
the translation of the logical address into the linear
address. In Real Mode, the segmentation unit shifts
the selector left four bits and adds the resuit to the
offset to form the linear address. While in Protected
Mode every selector has a linear base address as-
sociated with it. The linear base address is stored in
one of two operating system tables (i.e. the Local
Descriptor Table or Global Descriptor Table). The
selector's linear base address is added to the offset
to form the final linear address.

Figure 2-11 shows the relationship between the vari-
ous address spaces.

EFFECTIVE ADDRESS CALCULATION

INDEX

BASE ¢

DISPLACEMENT
32 0
SCALE
1,2,4,8
PHYSICAL
MEMORY
\: BE3 - BEO
A31-A2
32, EFFECTIVE
" ADDRESS 32 32
15 2 0 L0GICAL OR SEGMENTATION ,] PAGING UNIT ; >
%], VIRTUAL ADDRESS | UNIT LINEAR * | (OPTIONAL USE) |’ PHYSICAL
seLecTor | p P > ADDRESS ADDRESS
L DESCRIPTOR
INDEX
SEGMENT
REGISTER
271052-53

Figure 2-11. Address Translation

11-23

M 482b17?5 0135660 160 EEMITLI

MILITARY Intel386™ MICROPROCESSOR

1.7.3 Segment Register Usage

The main data structure used to organize memory is
the segment. On the Military Intel386 microproces-
sor, segments are variable sized blocks of linear ad-
dresses which have certain attributes associated
with them. There are two main types of segments:
code and data, the segments are of variable size
and can be as small as 1 byte or as large as 4 giga-
bytes (232 bytes).

In order to provide compact instruction encoding,
and increase processor performance, instructions
do not need to explicitly specify which segment reg-
ister is used. A default segment register is automati-
cally chosen according to the rules of Table 2-4
(Segment Register Selection Rules). In general, data
references use the selector contained in the DS reg-
ister; Stack references use the SS register and In-
struction fetches use the CS register. The contents
of the Instruction Pointer provides the offset. Special
segment override prefixes allow the explicit use of a
given segment register, and override the implicit
rules listed in Table 2-4. The override prefixes also
allow the use of the ES, FS and GS segment regis-
ters.

]

intal.
There are no restrictions regarding the overlapping
of the base addresses of any segments. Thus, all 6
segments could have the base address set to zero
and create a system with a four gigabyte linear ad-
dress space. This creates a system where the virtual
address space is the same as the linear address

space. Further details of segmentation are dis-
cussed in Section 3.1.

1.8 1/0 SPACE

The Military Intel386 microprocessor has two distinct
physical address spaces: Memory and 1/0. General-
ly, peripherals are placed in /O space although the
Military Intel386 processor also supports memory-
mapped peripherals. The I/O space consists of
64 Kbytes, it can be divided into 64K 8-bit ports, 32K
16-bit ports, or 16K 32-bit ports, or any combination
of ports which add up to less than 64 Kbytes. The
64K 1/0 address space refers to physical memory
rather than linear address since 1/0 instructions do
not go through the segmentation or paging hard-
ware. The M/IO pin acts as an additional address
line thus allowing the system designer to easily de-
termine which address space the processor is ac-
cessing.

Table 2-4. Segment Register Selection Rules

Type of Implied (Default) Segment Override
Memory Reference Segment Use Prefixes Possible

Code Fetch Ccs None

Destination of PUSH, PUSHF, SS None

INT, CALL, PUSHA instructions

Source of POP, POPA, POPF, SS None

IRET, RET instructions

Destination of STOS, MOVS, REP ES None

STOS, REP MOVS Instructions

(Dl is Base Register)

Other Data References, with

Effective Address Using Base

Register of:
[EAX] DS DS,CS,SS,ES,FS,GS
[EBX] DS DS,CS,SS,ES,FS,GS
[ECX] DS DS,CS,SS,ES,FS,GS
[EDX] DS DS,CS,SS,ES,FS,GS
[ESI] DS DS,CS,SS,ES,FS,GS -
[EDI]* DS DS,CS,SS,ESFS,GS
[EBP] SS DS,CS,SS,ESFS,GS
[ESP] SS DS,CS,SS,ES,FS,GS

* Data referances for the memory destination of the STOS and MOVS instructions (and REP STOS and REP MOVS)
use DI as the base register and ES as the segment, with no override possible.

11-24

P 4826175 01356kl OT? EEITLL

intel.

The 1/0 ports are accessed via the IN and OQUT 110
instructions, with the port address supplied as an
immediate 8-bit constant in the instruction or in the
DX register. All 8- and 16-bit port addresses are zero
extended on the upper address lines. The 170 in-
structions cause the M/10 pin to be driven low. '

1/0 port addresses 00F8H through O0FFH are re-
served for use by Intel.

1.9 INTERRUPTS

1.9.1 Interrupts and Exceptions

Interrupts and exceptions alter the normal program
flow, in order to handle external events, to report
errors or exceptional conditions. The difference be-
tween interrupts and exceptions is that interrupts are
used to handle asynchronous external events while
exceptions handle instruction faults. Although a pro-
gram can generate a software interrupt via an INT N
instruction, the processor treats software interrupts
as exceptions.

Hardware interrupts occur as the result of an exter-
nal event and are classified into two types: maskable
or non-maskabls. Interrupts are serviced after the
execution of the current instruction. After the inter-
rupt handler is finished servicing the interrupt, exe-
cution proceeds with the instruction immediately af-
ter the interrupted instruction. Sections 1.9.3 and
1.9.4 discuss the differences between Maskable and
Non-Maskable interrupts.

Exceptions are classified as faults, traps, or aborts
depending on the way they are reported, and wheth-
er or not restart of the instruction causing the excep-
tion is supported. Faults are exceptions that are de-
tected and serviced before the execution of the
faulting instruction. A fault would occur in a virtual
memory system, when the processor referenced a
page or a segment which was not present. The oper-
ating system would fetch the page or segment from
disk, and then the Military Intel386 microprocessor
would restart the instruction. Traps are exceptions
that are reported immediately after the execution of
the instruction which caused the problem. User de-
fined interrupts are examples of traps. Aborts are
exceptions which do not permit the precise location
of the instruction causing the exception to be deter-
mined. Aborts are used to report severe errors, such
as a hardware error, or illegal values in system ta-
bles.

MILITARY Intel386™ MICROPROCESSOR

Thus, when an interrupt service -routine has been
completed, execution proceeds from the instruction
“immediately following the interrupted instruction. On
the other hand, the return address from an excep-
tion fault routine will always point at the instruction
causing the exception and include any leading in-
struction prefixes. Table 2-5 summarizes the possi-
ble interrupts for the Military intel386 microproces-
sor and shows where the return address points.

The Military Intel386 microprocessor has the ability
to handle up to 256 different interrupts/exceptions.
In order to service the interrupts, a table with up to
256 interrupt vectors must be defined. The interrupt
vectors are simply pointers to the appropriate inter-
rupt service routine. in Real Mode (see Section 2.1),
the vectors are 4 byte quantities, a Code Segment
plus a 16-bit offset; in Protected Mode, the interrupt
vectors are 8 byte quantities, which are put in an
Interrupt Descriptor Table (see Section 3.1). Of the
256 possible interrupts, 32 are reserved for use by
Intel, the remaining 224 are free to be used by the
system designer.

1.9.2 Interrupt Processing

When an interrupt occurs the following actions hap-
pen. First, the current program address and the
Flags are saved on the stack to allow resumption of
the interrupted program. Next, an 8-bit vector is sup-
plied to the Military Intel386 microprocessor which
identifies the appropriate entry in the interrupt table.
The table contains the starting address of the inter-
rupt service routine. Then, the user supplied inter-
rupt service routine is executed. Finally, when an
IRET instruction is executed the old processor state
is restored and program execution resumes at the
appropriate instruction.

The 8-bit interrupt vector is supplied to the Military
Intel386 microprocessor in several different ways:
exceptions supply the interrupt vector internally;
software INT instructions contain or imply the vector;
maskable hardware interrupts supply the 8-bit vector
via the interrupt acknowledge bus sequence. Non-
Maskable hardware interrupts are assigned to inter-
rupt vector 2.

1.9.3 Maskable Interrupt

Maskable interrupts are the most common way used
by the Military Intel386 microprocessor to respond to
asynchronous external hardware events. A hard-
ware interrupt occurs when the INTR is pulled high
and the Interrupt Flag bit (IF) is enabled. The proc-
essor only responds to interrupts between instruc-

11-25

B 4826175 0135662 T33 EMEITLI

11

——l

MILITARY Intel386™ MICROPROCESSOR

intgl.

Table 2-5. Interrupt Vector Assignments

Instruction Which Return Address
Function l:terrupt Can Cause , Points to Type
umber Exception ‘s Faulting
Instruction
Divide Error 0 DIV, IDIV YES FAULT
Debug Exception 1 any instruction YES TRAP*
NMI Interrupt 2 INT 2 or NMI NO NMI
One Byte Interrupt 3 INT NO TRAP
Interrupt on Overflow 4 INTO NO TRAP
Array Bounds Check 5 BOUND YES FAULT
Invalid OP-Code 6 Any lllegal instruction YES FAULT
Device Not Available 7 ESC, WAIT YES FAULT
Double Fault 8 Any Instruction That Can ABORT
Generate an Exception

Invalid TSS 10 JMP, CALL, IRET, INT YES FAULT
Segment Not Present 11 Segment Register instructions YES FAULT
Stack Fauit 12 Stack References YES FAULT
General Protection Fauit 13 Any Memory Reference YES FAULT
Page Fault 14 Any Memory Access or Code Fetch YES FAULT
Coprocessor Error 16 ESC, WAIT YES FAULT
Intel Reserved 17-32
Two Byte Interrupt 0-255 INTn NO TRAP

* Some debug exceptions may report both traps on the previous instruction, and faults on the next instruction.

Note: Exception 9 no longer occurs on the M80386 due to the imp

tions, (REPeat String instructions, have an “interrupt
window"”, between memory moves, which allows in-
terrupts during long string moves). When an interrupt
occurs the processor reads an 8-bit vector supplied
by the hardware which identifies the source of the
interrupt, (one of 224 user defined interrupts). The
exact nature of the interrupt sequence is discussed
in section 4.

The IF bit in the EFLAG registers is reset when an
interrupt is being serviced. This effectively disables
servicing additional interrupts during an interrupt
service routine. However, the IF may be set explicitly
by the interrupt handler, to allow the nesting of inter-
rupts. When an IRET instruction is executed the
original state of the IF is restored.

1.9.4 Non-Maskable Interrupt

Nan-maskable interrupts provide a method of servic-
ing very high priority interrupts. A common example
of the use of a non-maskable interrupt (NMI) would
be to activate a power failure routine. When the NMI

d interface bet

1 the MB0386 and its coprocessors.

input is pulled high it causes an interrupt with an
internally suppiied vector value of 2. Unlike a normal
hardware interrupt, no interrupt acknowledgment se-
quence is performed for an NMt.

While executing the NMI servicing procedure, the
Military Intel386 microprocessor will not service fur-
ther NMI requests, until an interrupt return (IRET)
instruction is executed or the processor is reset. If
NMI occurs while currently servicing an NMI, its
presence will be saved for servicing after executing
the first IRET instruction. The IF bit is cleared at the
beginning of an NMI interrupt to inhibit further INTR
interrupts.

1.9.5 Software Interrupts

A third type of interrupt/exception for the Military
Intel386 microprocessor is the software interrupt, An
INT n instruction causes the processor to execute
the interrupt service routine pointed to by the nth
vector in the interrupt table.

' 11-26
B 4826175 01356L3 97T BEITLY

intgl.

A special case of the two byte software interrupt INT
n is the one byte INT 3, or breakpoint interrupt. By
inserting this one byte instruction in a program, the
user can set breakpoints in his program as a debug-
ging tool.

A final type of software interrupt, is the single step
interrupt. !t is discussed in Section 1.12.

1.9.6 Interrupt and Exception
Priorities

Interrupts are externally-generated events. Maska-
ble Interrupts (on the INTR input) and Non-Maskable
Interrupts (on the NMI input) are recognized at in-
struction boundaries. When NMI and maskable
INTR are both recognized at the same instruction
boundary, the Military Intel386 microprocessor in-
vokes the NMI service routine first. If, after the NMI
service routine has been invoked, maskable inter-
rupts are still enabled, then the Military Intel386 mi-
croprocessor will invoke the appropriate interrupt
service routine.

Table 2-6a. Military Intel386 Microprocessor
Priority for Invoking Service Routines in Case of
Simultaneous External Interrupts

1. NMI
2.INTR

Exceptions are internally-generated events. ‘Excep-
tions are detected by the Military Intel386 microproc-
essor if, in the course of executing an instruction, the
Military Intel386 microprocessor detects a problem-
atic condition. The Military Intel386 microprocessor
then immediately invokes the appropriate exception
service routine. The state of the Military Intel386 mi-
croprocessor is such that the instruction causing the
exception can be restarted. If the exception service
routine has taken care of the problematic condition,
the instruction will execute without causing the same
exception. '

It is possible for a single instruction to generate sev-
eral exceptions (for example, transferring a single
operand could generate two page faults if the oper-
and location spans two ‘“‘not present”’ pages). How-
ever, only one exception is generated upon each at-
tempt to execute the instruction. Each exception
service routine should correct its corresponding ex-
ception, and restart the instruction. In this manner,
exceptions are serviced until the instruction exe-
cutes successfully.

As the Military Intel386 microprocessor executes in-

structions, it follows a consistent cycle in checking

for exceptions, as shown in Table 2-6b. This cycle is

B 482LL7?5 0135bLLY A0L EMEITLL
. R I————————

MILITARY Intel386™ MICROPROCESSOR

repeated as each instruction is executed, and oc-
curs in paraliel with instruction decoding and execu-
tion.

Table 2-6b. Sequence of Exception Checking

Consider the case of the Military Intel386 micro-
processor having just completed an instruction. It
then performs the foliowing checks before reach-
ing the point where the next instruction is com-
pleted:

1. Check for Exception 1 Traps from the instruc-
tion just completed (single-step via Trap Flag,
or Data Breakpoints set in the Debug Regis-
ters).

2. Check for Exception 1 Faults in the next in-
struction (Instruction Execution Breakpoint set
in the Debug Registers for the next instruc-
tion).

3. Check for external NMI and INTR.

4. Check for Segmentation Faults that prevented
fetching the entire next instruction (exceptions
11 or 13).

5. Check for Page Faults that prevented fetching
the entire next instruction (exception 14).

6. Check for Faults decoding the next instruction
(exception 6 if illegal opcode; exception 6 if in
Real Mode or in Virtual M8086 Mode and at-
tempting to execute an instruction for Protect-
ed Mode only (see 3.6.4); or exception 13 if
instruction is longer than 15 bytes, or privilege
violation in Protected Mode (i.e. not at IOPL or
at CPL=0).

7. If WAIT opcode, check if TS=1 and MP=1
(exception 7 if both are 1).

8. If ESCAPE opcode for numeric coprocessor,
check if EM=1 or TS=1 (exception 7 if either
are 1).

9. If WAIT opcode or ESCAPE opcode for nu-
meric coprocessor, check ERROR input signal
(exception 16 if ERROR input is asserted).

10. Check in the following order for each memo-
ry reference required by the instruction:

a. Check for Segmentation Faults that pre-
vent transferring the entire memory quanti-
ty (exceptions 11, 12, 13).

b. Check for Page Faults that prevent trans-
ferring the entire memory quantity (excep-
tion 14).

Note that the order stated supports the
concept of the paging mechanism being
“underneath” under segmentation mecha-
nism. Therefore, for any given code or
data reference in memory, segmentation
exceptions are generated before paging
exceptions are generated.

11-27

MILITARY Intel386T™ MICROPROCESSOR

1.9.7 Instruction Restart

The Military Intel386 microprocessor fully supports
restarting all instructions after faults. If an exception
is detected in the instruction to be executed (excep-
tion categories 4 through 10 in Table 2-6¢), the Mili-
tary Intel386 microprocessor invokes the appropri-
ate exception service routine. The Military Intel386
microprocessor is in a state that permits restart of
the instruction, for all cases but those in Table 2-6¢.
Note that all such cases are easily avoided by prop-
er design of the operating system.

Table 2-6¢. Conditions Preventing
Instruction Restart

A. An instruction causes a task switch to a task
whose Task State Segment is partially “not
present”. (An entirely “not present” TSS is re-
startable.) Partially present TSS’s can be
avoided either by keeping the TSS’s of such
tasks present in memory, or by aligning TSS
segments to reside entirely within a single 4K
page (for TSS segments of 4 Kbytes or less).

B. A coprocessor operand wraps around the top
of a 64 Kbyte segment or a 4 Gbyte segment,
and spans three pages, and the page holding
the middle portion of the operand is “not pres-
ent.” This condition can be avoided by starting
at a page boundary any segments containing
coprocessor operands if the segments are ap-
proximately 64K-200 bytes or larger (i.e. large
enough for wraparound of the coprocessor
operand to possibly occur).

Note that these conditions are avoided by using
the operating system designs mentioned in this
table.

1.9.8 Double Fault

A Double Fault (exception 8) results when the proc-
essor attempts to invoke an exception service rou-
tine for the segment exceptions (10, 11, 12 or 13),
but in the process of doing so, detects an exception
other than a Page Fault (exception 14).

A Double Fauit (exception 8) will also be generated
when the processor attempts to invoke the Page
Fault (exception 14) service routine, and detects an
oxception other than a second Page Fault. In any
functional system, the entire Page Fault service rou-
tine must remain “present” in memory.

Double page faults however do not raise the double
fault exception. If a second page fault occurs while
the processor is attempting to enter the service rou-
tine for the first time, then the processor will invoke
the page fault (exception 14) handler a second time
rather than the double page fault (exception 8) han-
dier. A subsequent fault, though, will lead to shut-
down.

intgl.

When a Double Fault occurs, the Military Intel386
microprocessor invokes the exception service rou-
tine for exception 8.

1.10 RESET AND INITIALIZATION

When the processor is initialized or Reset the regis-
ters have the values shown in Table 2-7. The
M80386 will then start executing instructions near
the top of physical memory, at location FFFFFFFOH.
When the first InterSegment Jump or Call is execut-
ed, address lines A20-31 will drop low for CS-rela-
tive memory cycles, and the Military Intel386 micro-
processor will only execute instructions in the lower
one megabyte of physical memory. This allows the
system designer to use a ROM at the top of physical
memory to initialize the system and take care of Re-
sets.

RESET forces the Military Intel386 processor to ter-
minate all execution and local bus activity. No in-
struction execution or bus activity will occur as long
as Reset is active. Between 350 and 450 CLK2 peri-
ods after Reset becomes inactive the Military
Intel386 processor will start executing instructions at
the top of physical memory.

Table 2-7. Register Values after Reset

Flag Word UUUU0002H Note 1

Machine Status Word (CR0) | UUUUUUUOH Note 2

Instruction Pointer 0000FFFOH

Code Segment FOOOH Note 3

Data Segment 0000H

Stack Segment 0000H

Extra Segment (ES) 0000H

Extra Segment (FS) 0000H

Extra Segment (GS) 0000H

DX register component and
stepping ID Note 5

All other registers undefined Note 4

NOTES:

1. EFLAG Register. The upper 14 bits of the EFLAGS reg-
ister are undefined, VM (Bit 17) and RF (BIT) 16 are 0 as
are all other defined flag bits.

2. CRO: (Machine Status Word). All of the defined fields in
the CRO are 0 (PG Bit 31, TS Bit 3, EM Bit 2, MP Bit 1, and
PE Bit 0) except for ET Bit 4 (processor extension type).
The ET Bit is set during Reset according to the type of Co-
processor in the system. If the coprocessor is a Military
i387 coprocessor then ET will be 1, if the coprocessor is an
M80287 or no coprocessor is present then ET will be 0. All
other bits are undefined.

3. The Code Segment Register (CS) will have its Base Ad-
dress set to FFFFO000H and Limit set to OFFFFH.

4. All undefined bits are Intel Reserved and should not be
used.

5. DX register always holds component and stepping iden-
tifier (see 4.7). EAX register holds self-test signature if self-
test was raquested (see 4.6).

11-28
B 482bL75 DL356LS 7u2 EEITLL I

intgl.

1.11 TESTABILITY

1.11.1 Self-Test

The Military Intel386 microprocessor has the capa-
bility to perform a self-test. The self-test checks the
function of all of the Control ROM and most of the
non-random logic of the part. Approximately one-
half of the Military Intel386 microprocessor can be
tested during self-test.

Self-Test is initiated on the Military Intel386 micro-
processor when the RESET pin transitions from
HIGH to LOW, and the BUSY pin is low. The self-
test takes about 2**19 clocks, or approximately 33
milliseconds with a 16 MHz Military Intel386 micro-
processor. At the completion of self-test the proces-
sor performs resst and begins normal operation.
The part has successfully passed self-test if the con-
tents of the EAX register are zero (0). If the results of
EAX are not zero then the self-test has detected a
flaw in the part.

1.11.2 TLB Testing

The Military Intel386 microprocessor provides a
mechanism for testing the Translation Lookaside
Buffer (TLB) if desired. This particular mechanism is
unique to the Military Intel386 microprocessor and
may not be continued in the same way in future
processors. When testing the TLB it is recommend-
ed that paging be turned off (PG = 0 in CR0) to
avoid interference with the test data being written to
the TLB.

There are two TLB testing operations: 1) write en-
tries into the TLB, and, 2) perform TLB lookups. Two
Test Registers, shown in Figure 2-12, are provided
for the purpose of testing. TR6 is the ““test command
register”, and TR7 is the “test data register”. The
fields within these registers are defined below.

C: This is the command bit. For a write into TR6 to
cause an immediate write into the TLB entry, write a
0 to this bit. For a write into TR6 to cause an immedi-
ate TLB lookup, write a 1 to this bit.

Linear Address: This is the tag field of the TLB. On
a TLB write, a TLB entry is- allocated to this linear
address and the rest of that TLB entry is set per the

. value of TR7 and the value just written into TR6. On
a TLB lookup, the TLB is interrogated per this value
and if one and only one TLB entry matches, the rest
of the fields of TR6 and TR7 are set from the match-
ing TLB entry.

Physical Address: This is the data field of the TLB.
On a write to the TLB, the TLB entry allocated to the
linear address in TR6 is set to this value. On a TLB
lookup, the data field (physical address) from the
TLB is read out to here.

B 4826175 0135b6bLbL LAT EMITLD
R R R LGS

MILITARY Intel386™ MICROPROCESSOR

PL: On a TLB write, PL=1 causes the REP fisld of
TR?7 to select which of four associative blocks of the
TLB is to be written, but PL=0 allows the internal
pointer in the paging unit to select which TLB block
is written. On a TLB lookup, the PL bit indicates
whether the lookup was a hit (PL gets setto 1) ora
miss (PL gets reset to 0).

V: The valid bit for this TLB entry. All valid bits can
also be cleared by writing to CR3.

D, D: The dirty bit for/from the TLB entry.

U, U: The user bit for/from the TLB entry.

W, W: The writable bit for/from the TLB entry.

For D, U and W, both the attribute and its comple-
ment are provided as tag bits, to permit the option of

a “don’t care” on TLB lookups. The meaning of
these pairs of bits is given in the following table:

x| x Effect During Value of Bit

TLB Lookup X after TLB Write
o|o0 Miss All Bit X Becomes Undefined
0|1 |Matchif X =0 Bit X Becomes 0
1]0 | MatchifX = 1 Bit X Becomes 1
1(1 Match all Bit X Becomes Undefined

For writing a TLB entry:

1. Write TR7 for the desired physical address, PL
and REP values.
2. Write TR6 with the appropriate linear address,

etc. (be sure to write C = 0 for “write” com-
mand).

For looking up (reading) a TLB entry:
1. Write TR6 with the appropriate linear address (be
sure to write C=1 for “lookup” command).

2. Read TR7 and TR®. if the PL bit in TR7 indicates
a hit, then the other values reveal the TLB con-
tents. If PL indicates a miss, then the other values
in TR7 and TR6 are indeterminate.

1.12 DEBUGGING SUPPORT

The Military Intei386 microprocessor provides sever-
al features which simplify the debugging process.

- The three categories of on-chip debugging aids are:

1) the code execution breakpoint opcode (0CCH),

2) the single-step capability provided by the TF bit in
the flag register, and

3) the code and data breakpoint capability provided
by the Debug Registers DR0-3, DR6, and DR7.

11-29

MILITARY Inte!386™ MICROPROCESSOR

31

LINEAR ADDRESS

PHYSICAL ADDRESS

indicates Intel reserved: Do not define; SEE SECTION 1.3.10

Figure 2-12. Test Registers

1.12.1 Breakpoint Instruction

A single-byte-opcode breakpoint instruction is avail-
able for use by software debuggers. The breakpoint
opcode is 0CCh, and generates an exception 3 trap
when executed. In typical use, a debugger program
can “plant” the breakpoint instruction at all desired
code execution breakpoints. The single-byte break-
point opcode is an alias for the two-byte general
software interrupt instruction, INT n, where n=3.
The only difference between INT 3 (0CCh) and INT n
is that INT 3 is never IOPL-sensitive but INT n is
IOPL-sensitive in Protected Mode and Virtual M8086
Mode.

1.12.2 Single-Step Trap

If the single-step flag (TF, bit 8) in the EFLAG regis-
ter is found to be set at the end of an instruction, a
single-step exception occurs. The single-step ex-
ception is auto vectored to exception number 1. Pre-
cisely, exception 1 occurs as a trap after the instruc-
tion following the instruction which set TF. In typical
practice, a debugger sets the TF bit of a flag register
image on the debugger’s stack. It then typically
transfers control to the user program and loads the
flag image with a signal instruction, the IRET instruc-
tion. The single-step trap occurs after executing one
instruction of the user program.

Since the exception 1 occurs as a trap (that is, it
occurs after the instruction has already executed),
the CS:EIP pushed onto the debugger’s stack points
to the next unexecuted instruction of the program
being debugged. An exception 1 handler, merely by
ending with an IRET instruction, can therefore effi-
ciently support single-stepping through a user pro-
gram.

1.12.3 Debug Registers

The Debug Registers are an advanced debugging
feature of the Military intel386 microprocessor. They
allow data access breakpoints as well as code exe-
cution breakpoints. Since the breakpoints are indi-
cated by on-chip registers, an instruction execution

11-30

breakpoint can be placed in ROM code or in code
shared by several tasks, neither of which can be
supported by the INT3 breakpoint opcode.

The Military Intel386 microprocessor contains six
Debug Registers, providing the ability to specify up
to four distinct breakpoints addresses, breakpoint
control options, and read breakpoint status. Initially
after reset, breakpoints are in the disabled state.
Therefore, no breakpoints will occur unless the de-
bug registers are programmed. Breakpoints set up in
the Debug Registers are autovectored to exception
number 1.

1.12.3.1 LINEAR ADDRESS BREAKPOINT
REGISTERS (DRO-DR3)

Up to four breakpoint addresses can be specified by
writing into Debug Registers DRO-DR3, shown in
Figure 2-13. The breakpoint addresses specified are
32-bit linear addresses. Military Intel386 microproc-
essor hardware continuously compares the linear
breakpoint addresses in DRO-DR3 with the linear
addresses generated by executing software (a linear
address is the result of computing the effective ad-
dress and adding the 32-bit segment base address).
Note that if paging is not enabled the linear address
equals the physical address. If paging is enabled,
the linear address is translated to a physical 32-bit
address by the on-chip paging unit. Regardless of
whether paging is enabled or not, however, the
breakpoint registers hold linear addresses.

1.12.3.2 DEBUG CONTROL REGISTER (DR7)

A Debug Control Register, DR7 shown in Figure

2-13, allows several debug control functions such as
enabling the breakpoints and setting up other con-
trol options for the breakpoints. The fields within the
Debug Control Register, DR7, are as follows:

LENi (breakpoint length specification bits)

A 2-bit LEN field exists for each of the four break-
points. LEN specifies the length of the associated
breakpoint field. The choices for data breakpoints
are: 1 byte, 2 bytes, and 4 bytes. Instruction execu-

M 442bL175 0135b6b? 515 EMITLIL

|nte| . MILITARY Intel386™ MICROPROCESSOR

31 16 15 0
BREAKPOINT 0 LINEAR ADDRESS DRO
BREAKPOINT 1 LINEAR ADDRESS DR1
BREAKPOINT 2 LINEAR ADDRESS DR2
BREAKPOINT 3 LINEAR ADDRESS DR3
Intel reserved. Do not define. - DR4
Intel reserved. Do not define. DR5

B|B|B
2|1lo DRé
L|GIL
1lolo DR7
‘ 0
indicates Intel reserved: Do not define; SEE SECTION 1.3.10
Figure 2-13. Debug Registers
tion breakpoints must have a length of 1 (LENi = The following is an example of various size break-
00). Encoding of the LENi field is as follows: point fields. Assume the breakpoint linear address in
DR2 is 00000005H. In that situation, the following
Usage of Least illustration indicates the region of the breakpoint
LENI Breakpoint Significant Bits in field for lengths of 1, 2, or 4 bytes.
Encoding | Field Width | Breakpoint Address
Register i, (I=0—3) DR2=00000005H; LEN2 = 00B
00 1 byte All 32-bits used to 31 0
specify a siqgle-byte
breakpoint field. 00000008H
01 2 bytes A1-A31 used to
specify a two-byte, bkpt fid2, 00000004H
word-aligned 00000H
breakpoint field. A0 in 000
Breakpoint Address
Register is not used. DR2=00000005H; LEN2 = 01B
10 Undefined— 31 Y
do not use
this encoding 00000008H
11 4 bytes A2-A31usedto
specify a four-byte, <— bkpt fld2 — {00000004H
dword-aligned ’ 00000000H
breakpoint field. AO
and A1 in Breakpoint :
Address Register are DR2=00000005H; LEN2 = 11B
not used.
31 0
The LENi field controls the size of breakpoint field i
by controlling whether all low-order linear address 00000008H
bits in the breakpoint address register are used to <« bkptfid2 — 00000004H

detect the breakpoint event. Therefore, all break-

point fields are aligned; 2-byte breakpoint fields be- l l l
gin on Word boundaries, and 4-byte breakpoint
fields begin on Dword boundaries.

11-31
B 4325175 0135668 451 EEITLL

00000000H

MILITARY Intel386™ MICROPROCESSOR

RWi (memory access qualifier bits)

A 2-bit RW field exists for each of the four break-
points. The 2-bit RW field specifies the type of usage
which must occur in order to activate the associated
breakpoint.

RW Usage
Encoding Causing Breakpoint
00 Instruction execution only
01 Data writes only
10 Undefined—do not use this encoding
11 Data reads and writes only

RW encoding 00 is used to set up an instruction
execution breakpoint. RW encodings 01 or 11 are
used to set up write-only or read/write data break-
points.

Note that instruction execution breakpoints are
taken as faults (i.e. before the instruction exe-
cutes), but data breakpoints are taken as traps
(i.e. after the data transfer takes place).

Using LENi and RWi to Set Data Breakpoint i

A data breakpoint can be set up by writing the linear
address into DRi (i = 0-3). For data breakpoints,
RWi can = 01 (write-only) or 11 (write/read). LEN
can = 00, 01, or 11.

If a data access entirely or partly falls within the data
breakpoint field, the data breakpoint condition has
occurred, and if the breakpoint is enabled, an excep-
tion 1 trap will occur.

Using LENi and RWi to Set Instruction Execution
Breakpoint i

An instruction execution breakpoint can be set up by
writing address of the beginning of the instruction
(including prefixes if any) into DRi (i = 0-3). RWi
must = 00 and LEN must = 00 for instruction exe-
cution breakpoints.

If the instruction beginning at the breakpoint address
is about to be executed, the instruction execution
breakpoint condition has occurred, and if the break-
point is enabled, an exception 1 fault will occur be-
fore the instruction is executed.

Note that an instruction execution breakpoint ad-
dress must be equal to the beginning byte address
of an instruction (including prefixes) in order for the
instruction execution breakpoint to occur.

GD (Global Debug Register access detect)

The Debug Registers can only be accessed in Real
Mode or at privilege level 0 in Protected Mode. The

11-32

intel.

GD bit, when set, provides extra protection against
any Debug Register access even in Real Mode or at
privilege level O in Protected Mode. This additional
protection feature is provided to guarantee that a
software debugger (or ICE-386) can have full control
over the Debug Register resources when required.
The GD bit, when set, causes an exception 1 fault if
an instruction attempts to read or write any Debug
Register. The GD bit is then automatically cleared
when the exception 1 handler is invoked, allowing
the exception 1 handler free access to the debug
registers.

GE and LE (Exact data breakpoint match, global and
local)

If either GE or LE is set, any data breakpoint trap will
be reported exactly after completion of the instruc-
tion that caused the operand transfer. Exact report-
ing is provided by forcing the Military Intel386 micro-
processor execution unit to wait for completion of
data operand transfers before beginning execution
of the next instruction.

If exact data breakpoint match is not seiected, data
breakpoints may not be reported until several in-
structions later or may not be reported at all. When
enabling a data breakpoint, it is therefore recom-
mended to enable the exact data breakpoint match.

When the Military Intel386 microprocessor performs
a task switch, the LE bit is cleared. Thus, the LE bit
supports fast task switching out of tasks, that have
enabled the exact data breakpoint match for their
task-local breakpoints. The LE bit is cleared by the
processor during a task switch, to avoid having ex-
act data breakpoint match enabled in the new task.
Note that exact data breakpoint match must be re-
enabled under software control.

The Military Intel386 microprocessor GE bit is unaf-
fected during a task switch. The GE bit supports ex-
act data breakpoint match that is to remain enabled
during all tasks executing in the system.

Note that instruction execution breakpoints are al-
ways reported exactly, whether or not exact data
breakpoint match is selected.

Gi and Li (breakpoint enable, global and local)

If either Gi or Li is set then the associated breakpoint
(as defined by the linear address in DRi, the length
in LENi and the usage criteria in RWi) is enabled. {f
either Gi or Li is set, and the Military Intel386 micro-
processor detects the ith breakpoint condition, then
the exception 1 handler is invoked.

When the Military Intel386 microprocessor performs
a task switch to a new TSS, all Li bits are cleared.
Thus, the Li bits support fast task switching out of
tasks that use some task-local breakpoint registers.

B 4325175 0135669 398 EEITLI

intgl.

The Li bits are cleared by the processor during a
task switch, to avoid spurious exceptions in the new
task. Note that the breakpoints must be re-enabled
under software control.

All Military Intel386 microprocessor Gi bits are unaf-
fected during a task switch. The Gi bits support
breakpoints that are active in all tasks executing in
the system.

1.12.3.3 DEBUG STATUS REGISTER (DR6)

A Debug Status Register, DR6 shown in Figure 2-13,
allows the exception 1 handler to easily determine
why it was invoked. Note the exception 1 handier
can be invoked as a result of one of several events:

1) DRO Breakpoint fault/trap.
2) DR1 Breakpoint fault/trap.
3) DR2 Breakpoint fault/trap.
4) DR3 Breakpoint fault/trap.
5) Single-step (TF) trap.

6) Task switch trap.

7) Fault due to attempted debug register access
when GD=1.

The Debug Status Register contains single-bit flags
for each of the possible events invoking exception 1.
Note below that some of these events are faults (ex-
ception taken before the instruction is executed),
while other events are traps (exception taken after
the debug events occurred).

The flags in DR6 are set by the hardware but never
cleared by hardware. Exception 1 handler software
should clear DR6 before returning to the user pro-
gram to avoid -future confusion in identifying the
source of exception 1.

The fields within the Debug Status Register, DR6,
are as follows:

Bi (debug fault/trap due to breakpoint 0-3)

Four breakpoint indicator flags, B0-B3, correspond
one-to-one with the breakpoint registers in DRO-
DR3. A flag Bi is set when the condition described
by DRI, LENi, and RWi occurs.

If Gi or Li is set, and if the ith breakpoint is detected,
the processor will invoke the exception 1 handler.
The exception is handled as a fault if an instruction
execution breakpoint occurred, or as a trap if a data
breakpoint occurred.

IMPORTANT NOTE: A flag Bi is set whenever the
hardware detects a match condition on enabled
breakpoint i. Whenever a match is detected on at
least one enabled breakpoint i, the hardware imme-
diately sets all Bi bits corresponding to breakpoint

B 4826175 0135670 OOT EEITLI
R ————

MILITARY Intel386™ MICROPROCESSOR

conditions matching at that instant, whether enabled
or not. Therefore, the exception 1 handler may see
that multiple Bi bits are set, but only set Bi bits corre-
sponding to enabled breakpoints (Li or Gi set) are
true indications of why the exception 1 handler was
invoked.

BD (debug fault due to attempted register access
when GD bit set)

This bit is set if the exception 1 handler was invoked
due to an instruction attempting to read or write to
the debug registers when GD bit was set. If such an
event occurs, then the GD bit is automatically
cleared when the exception 1 handler is invoked,
allowing handler access to the debug registers.

BS (debug trap due to single-step)

This bit is set if the exception 1 handler was invoked
due to the TF bit in the flag register being set (for
single-stepping). See Section 1.12.2,

BT (debug trap due to task switch)

This bit is set if the exception 1 handler was invoked
due to a task switch occurring to a task having a
Military Intel386 microprocessor TSS with the T bit
set. (See Figure 4-15a). Note the task switch into the
new task occurs normally, but before the first in-
struction of the task is executed, the exception 1
handler is invoked. With respect to the task switch
operation, the operation is considered to be a trap.

1.12.3.4 USE OF RESUME FLAG (RF) IN FLAG
REGISTER

The Resume Flag (RF) in the flag word can sup-
press an instruction execution breakpoint when the
exception 1 handler returns to a user program at a
user address which is also an instruction execution
breakpoint. See Section 1.3.3.

2.0 REAL MODE ARCHITECTURE
2.1 REAL MODE INTRODUCTION

When the processor is reset or powered up it is ini-
tialized in Real Mode. Real Mode has the same base
architecture as the M8086, but allows access to the
32-bit register set of the Military Intel386 microproc-
essor. The addressing mechanism, memory sizs, in-
terrupt handling, are all identical to the Real Mode
on the M80286.

All of the Military Intel386 microprocessor instruc-
tions are available in Real Mode (except those in-
structions listed in 3.6.4). The default operand size in
Real Mode is 18-hits, just like the M8086. In order to
use the 32-bit registers and addressing modes, over-
ride prefixes must be used. In addition, the segment
size on the Military Intel386 microprocessor in Real

11-33

MILITARY Intel386™ MICROPROCESSOR

OFFSET

19 0

SEGMENT
SELECTOR

0000

MAX LIMIT
FIXED AT 64K IN
REAL MODE

L (*)——{ WEwoRY GPERAND

SELECTED

64K SEGMENT

SEGMENT BASE

271052-54

Figure 3-1. Real Address Mode Addressing

Mode is 64 Kbytes so 32-bit effective addresses
must have a value less the 0000FFFFH. The primary
purpose of Real Mode is to set up the processor for
Protected Mode Operation.

The LOCK prefix on the Military Intel386 processor,
even in Real Mode, is more restrictive than on the
M80286. This is due to the addition of paging on the
Military Intel386 processor in Protected Mode and
Virtual M8086 Mode. Paging makes it impossible to
guarantee that repeated string instructions can be
LOCKed. The Military Intel386 processor can't re-
quire that all pages holding the string be physically
present in memory. Hence, a Page Fault {exception
14) might have to be taken during the repeated
string instruction. Therefore the LOCK prefix can’t
be supported during repeated string instructions.

These are the only instruction forms where the
LOCK prefix is legal on the Military Intel386 proces-
sor:

Operands
Opcode (Dest, Source)
BIT Test and)
SET/RESET/COMPLEMENT | Mem. Reg/immed
XCHG Reg, Mem
XCHG Mem, Reg
ADD, OR, ADC, SBB, Mem, Reg/immed
AND, SUB, XOR
NOT, NEG, INC, DEC Mem

An exception 6 will be generated if a LOCK prefix is
placed before any instruction form or opcode not
listed above. The LOCK prefix allows indivisible
read/modify/write operations on memory operands
using the instructions above. For example, even the
“ADD Reg, Mem” is not LOCKable, because the
Mem operand is hot the destination (and therefore
no memory read/modify/operation is being per-
formed).

Since, on the Military Intel386 microprocessor, re-
peated string instructions are not LOCKable, it is not
possible to LOCK the bus for a long period of time.
Therefore, the LOCK prefix is not IOPL-sensitive on
the Military Intei386 microprocessor. The LOCK pre-
fix can be used at any privilege level, but only on the
instruction forms listed above.

2.2 MEMORY ADDRESSING

In Real Mode the maximum memory size is limited to
1 megabyte. Thus, only address lines A2-A19 are
active. (Exception, the high address lines A20-A31
are high during CS-relative memory cycles until an
intersegment jump or call is executed (see Section
1.10)).

Since paging is not allowed in Real Mode the linear
addresses are the same as' physical addresses.
Physical addresses are formed in Real Mode by
adding the contents of the appropriate segment reg-
ister which is shifted left by four bits to an effective
address. This addition results in a physical address
from 00000000H to 0010FFEFH. This is compatible
with M80286 Real Mode. Since segment registers
are shifted left by 4 bits this implies that Real Mode
segments always start on 16 byte boundaries.

All segments in Real Mode are exactly 64 Kbytes
long, and may be read, written, or executed. The
Military Intel386 processor will generate an excep-
tion 13 if a data operand or instruction fetch occurs
past the end of a segment. (i.e. if an operand has an
offset greater than FFFFH, for example a word with
a low byte at FFFFH and the high byte at 0000H)

Segments may be overlapped in Real Mode. Thus, if
a particular segment does not use all 64 Kbytes an-
other segment can be overiayed on top of the un-
used portion of the previous segment. This allows
the programmer to minimize the amount of physical
memory needed for a program.

11-34
B 4826175 013567} Tub EEITLL I

intgl.

2.3 RESERVED LOCATIONS

There are two fixed areas in memory which are re-
served in Real address mode: system initialization
area and the interrupt table area. Locations 00000H
through 003FFH are reserved for interrupt vectors.
Each one of the 256 possible interrupts has a 4-byte
jump vector reserved for it. Locations FFFFFFFOH
through FFFFFFFFH are reserved for system initiali-
zation.

2.4 INTERRUPTS

Many of the exceptions shown in Table 2-5 and dis-
cussed in section 1.9 are not applicable to Real
Mode operation, in particular exceptions 10, 11, 14,
will not happen in Real Mode. Other exceptions
have slightly different meanings in Real Mode; Table
3-1 identifies these exceptions.

2.5 SHUTDOWN AND HALT

The HLT instruction stops program execution and
prevents the processor from using the local bus until
restarted. Either NMI, INTR with interrupts enabled
(IF=1), or RESET will force the Military Intel386 mi-
croprocassor out of halt. If interrupted, the saved
CS:IP wilt point to the next instruction after the HLT.

Shutdown will occur when a severe error is detected
that prevents further processing. In Real Mode,
shutdown can occur under two conditions:

An interrupt or an exception occur (Exceptions 8
or 13) and the interrupt vector is larger than the
Interrupt Descriptor Table (i.e. there is not an in-
terrupt handler for the interrupt).

MILITARY Intel386™ MICROPROCESSOR

A CALL, INT or PUSH instruction attempts to wrap
around the stack segment when SP is not even.
(e.g. pushing a value on the stack when SP =
0001 resulting in a stack segment greater than
FFFFH)

An NMI input can bring the processor out of shut-
down if the Interrupt Descriptor Tabie limit is large
enough to contain the NMI interrupt vector (at least
0017H) and the stack has enough room to contain
the vector and flag information (i.e. SP is greater
than 0005H). Otherwise shutdown can only be exit-
ed via the RESET input.

3.0 PROTECTED MODE
ARCHITECTURE

3.1 INTRODUCTION

The complete capabilities of the Military Intel386 mi-
croprocessor are unlocked when it operates in Pro-
tected Virtual Address Mode (Protected Mode). Pro-
tected Mode vastly increases the linear address
space to four gigabytes (232 bytes) and allows the
running of virtual memory programs of almost unlim-
ited size (64 terabytes or 246 bytes). In addition Pro-
tected Mode allows the Military Intel386 processor
to run all of the existing M8086 and M80286 soft-
ware, while providing a sophisticated memory man-
agement and a hardware-assisted protection mech-
anism. Protected Mode allows the use of additional
instructions especially optimized for supporting mul-
titasking operating systems. The base architecture
of the Military Intel386 microprocessor remains the
same, the registers, instructions, and addressing
modes described in the previous sections are re-
tained. The main difference between Protected
Mode, and Real Mode from a programmer’s view is
the increased address space and a different ad-
dressing mechanism.

Table 3-1
Interrupt Related Return
Fqnction Number Instructions Address Location
Interrupt table limit too small 8 INT Vector is not Before
within table limit Instruction
CS, DS, ES, FS, GS 13 Word memory reference Before
Segment overrun exception beyond offset = FFFFH. Instruction
An attempt to execute
past the end of CS segment.
SS Segment overrun exception 12 Stack Reference Before
beyond offset = FFFFH Instruction
[| 11-35

B 482bL175 0135672 982 EMITLD A
R R II————————

MILITARY Intel386™ MICROPROCESSOR

3.2 ADDRESSING MECHANISM

Like Real Mode, Protected Mode uses two compo-
nents to form the logical address, a 16-bit selector is
used to determine the linear base address of a seg-
ment, the base address is added to a 32-bit effective
address to form a 32-bit.linear address. The linear
address is then either used as the 32-bit physical
address, or if paging is enabled the paging mecha-
nism maps the 32-bit linear address into a 32-bit
physical address.

The difference between the two modes lies in calcu-
lating the base address. In Protected Mode the se-
lector is used to specify an index into an operating

intel.

system defined table (see Figure 4-1). The table
contains the 32-bit base address of a given seg-
ment. The physical address is formed by adding the
base address obtained from the table to the offset.

Paging provides an additional memory management
mechanism which operates only in Protected Mode.
Paging provides a means of managing the very large
segments of the Military Intel386 microprocessor. As
such, paging operates beneath segmentation. The
paging mechanism translates the protected linear
address which comes from the segmentation unit
into a physical address. Figure 4-2 shows the com-
plete Military Intel386 microprocessor addressing
mechanism with paging enabled.

48/32 BIT POINTER
SEGMENT LIMIT
SELECTOR | OFFSET
47/31 31/15)
e (+ MEMORY OPERAND
uP TO SELECTED
ACCESS RIGHTS 4GB SEGMENT
LINIT
BASE ADDRESS
SEGMENT BASE
SEGMENT ADDRESS
DESCRIPTOR
271052-55
Figure 4-1. Protected Mode Addressing
48 BIT POINTER
PHYSICAL ADDRESS
SEGMENT J OFFSET 4 KBYTES
15 31 0
4 KBYTES
MILITARY
i386™ 4 KBYTES
ACCESS RIGHTS PAGING PHYSICAL
ADDRESS
= MECHANISM o WEWORY GPERAND | | PHYSICAL PAGE:
BASE ADDR + 4 K S
32 LINEAR PAGE FRAME
SEGMENT ADDRESS ADDRESS
DESCRIPTOR 4 KBYTES
4 KBYTES
4 KBYTES
271052-56

Figure 4-2. Paging and Segmentation

11-36

B 4826175 0135673 819 ERITLD

intgl.
3.3 SEGMENTATION

3.3.1 Segmentation Introduction

Segmentation is one method of memory manage-
ment. Segmentation provides the basis for protec-
tion. Segments are used to encapsulate regions of
memory which have common attributes. For exam-
ple, all of the code of a given program could be con-
tained in a segment, or an operating system table
may reside in a segment. All information about a
segment is stored in an 8 byte data structure called
a descriptor. All of the descriptors in a system are
contained in tables recognized by hardware.

3.3.2 Terminology

The following terms are used throughout the discus-
sion of descriptors, privilege levels and protection:

PL: Privilege Level—One of the four hierarchical
privilege levels. Level 0 is the most privileged level
and level 3 is the least privileged. More privileged
levels are numerically smaller than less privileged
levels.

RPL: Requestor Privilege Level—The privilege level
of the original supplier of the selector. RPL is deter-
mined by the least two significant bits of a selector.

DPL: Descriptor Privilege Level—This is the least
privileged level at which a task may access that de-
scriptor (and the segment associated with that de-
scriptor). Descriptor Privilege Level is determined by
bits 6:5 in the Access Right Byte of a descriptor.

CPL: Current Privilege Level—The privilege level at
which a task is currently executing, which equals the
privilege level of the code segment being executed.

MILITARY intel386™ MICROPROCESSOR

CPL can also be determined by examining the low-
est 2 bits of the CS register, except for conforming
code segments.

EPL: Effective Privilege Level—The effective privi-
lege level is the least privileged of the RPL and DPL.
Since smaller privilege level values indicate greater
privilege, EPL is the numerical maximum of RPL and
DPL.

Task: One instance of the execution of a program.
Tasks are also referred to as processes.

3.3.3 Descriptor Tables

3.3.3.1 DESCRIPTOR TABLES INTRODUCTION

The descriptor tables define all of the segments
which are used in a Military Intel386 microprocessor
system. There are three types of tables on the Mili-
tary Intel386 microprocessor which hold descriptors:
the Global Descriptor Table, Local Descriptor Table,
and the Interrupt Descriptor Table. All of the tables
are variable length memory arrays. They can range
in size between 8 bytes and 64 Kbytes. Each table
can hold up to 8192 8 byte descriptors. The upper
13 bits of a selector are used as an index into the
descriptor table. The tables have registers associat-
ed with them which hold the 32-bit linear base ad-
dress, and the 16-bit limit of each table.

Each of the tables has a register associated with it
the GDTR, LDTR, and the IDTR (see Figure 4-3).
The LGDT, LLDT, and LIDT instructions, load the
base and limit of the Global, Local, and Interrupt De-
scriptor Tables, respectively, into the appropriate
register. The SGDT, SLDT, and SIDT store the base
and limit values. These tables are manipulated by
the operating system. Therefore, the load descriptor
table instructions are privileged instructions.

15

LDT DESCR

LOTR | SELECTOR

I LDT LiMiT

iDT BASE

IDTR 1| INEAR ADDRESS

3

GDT LIMIT

GDT BASE

GDTR | | INEAR ADDRESS

3

0

32
PROGRAM INVISIBLE
AUTOMATICALLY LOADED
FROM LDT DESCRIPTOR

'
)
v
Ll
L]
L]
LDT BASE »
LINEAR ADDRESS | *
’
L
»
L]
L]
L

271052-57

Figure 4-3. Descriptor Tabie Registers

11-37
B 482L1L75 D135674 755 EEITLL

MILITARY Intel386™ MICROPROCESSOR

3.3.3.2 GLOBAL DESCRIPTOR TABLE

The Global Descriptor Table (GDT) contains de-
scriptors which are possibly available to all of the
tasks in a system. The GDT can contain any type of
segment descriptor except for descriptors which are
used for servicing interrupts (i.e. interrupt and trap
descriptors). Every Military Intei386 microprocessor
system contains a GDT. Generally the GDT contains
code and data segments used by the operating sys-
tems and task state segments, and descriptors for
the LDTs in a system.

The first slot of the Global Descriptor Table corre-
sponds to the null selector and is not used. The null
selector defines a null pointer value.

3.3.3.3 LOCAL DESCRIPTOR TABLE

LDTs contain descriptors which are associated with
a given task. Generally, operating systems are de-
signed so that each task has a separate LDT. The
LDT may contain only code, data, stack, task gate,
and call gate descriptors. LDTs provide a mecha-
nism for isolating a given task’s code and data seg-
ments from the rest of the operating system, while-
the GDT contains descriptors for segments which
are common to all tasks. A segment cannot be ac-
cossed by a task if its segment descriptor does not
exist in either the current LDT or the GDT. This pro-
vides both isolation and protection for a task’s seg-
ments, while still allowing global data to be ‘shared
among tasks.

Unlike the 6 byte GDT or IDT registers which contain
a base address and limit, the visible portion of the
LDT register contains only a 16-bit selector. This se-
lector refers to a Local Descriptor Table descriptor in

intel.

3.3.3.4 INTERRUPT DESCRIPTOR TABLE

The third table needed for Military Intel386 micro-
processor systems is the Interrupt Descriptor Table.
(See Figure 4-4.) The IDT contains the descriptors
which point to the location of up to 256 interrupt
service routines. The IDT may contain only task
gates, interrupt gates, and trap gates. The IDT
should be at least 256 bytes in size in order to hold
the descriptors for the 32 Intel Reserved Interrupts.
Every interrupt used by a system must have an entry
in the IDT. The IDT entries are referenced via INT
instructions, external interrupt vectors, and excep-
tions. (See 1.9 Interrupts).

a - MEMORY A v
GATE FOR
INTERRUPT #n
GATE FOR
INTERRUPT #n-1
. wTERRUST
oo { . f vanie
(o7)
i v GATE FOR
o7 marr L INTERRUPT #1
GATE FOR
\| wreRmuPY 40
1O BASE
E]
~ =
271052-58

Figure 4-4, Interrupt Mﬂptor
Table Register Use

3.3.4 Descriptors
3.3.4.1 DESCRIPTOR ATTRIBUTE BITS

The object to which the segment selector points to
is called a descriptor. Descriptors are eight byte

the GDT. quantities which contain attributes about a given re-
gion of linear address space (i.e. a segment). These
31 0 BYTE
ADDRESS
SEGMENTBASE 15...0 SEGMENT LIMIT15...0 0
LIMIT BASE

BASES31...24 |G} D}{O O 19.. .16 P PPL] ’;’YPT A 29 16 +4

BASE Base Address of the segment

LIMIT The length of the segment

P Present Bit 1=Present 0=Not Present

OPL Descriptor Privilege Level 0-3

s Segment Descriptor 0= System Descriptor 1=Code or Data Segment Descriptor

TYPE Type of Segment

A Accessed Bit

G Granularity Bit 1=Segment length is page granular 0= Segment length is byte granular

D Default Operation Size (recognized in code segment descriptors only) 1=232-bit segment 0= 16-bit segment

(1] Bit must be zero (0) for compatibility with future processors

NOTE:

In a maximum-sized segment (i.e. a segment with G = 1 and segment limit 19..0 = FFFFFH), the lowest 12 bits of the

segment base should be zero (i.e. segment base 11..0 = 000H).

Figure 4-5. Segment Descriptors

11-38
‘ B 4826175 0135675 691 EEITLD

intgl.

attributes include the 32-bit base linear address of
the segment, the 20-bit length and granularity of the
segment, the protection level, read, write or execute
privileges, the default size of the operands (16-bit or
32-bit), and the type of segment. All of the attribute
information about a segment is contained in 12 bits
in the segment descriptor. Figure 4-5 shows the gen-
eral format of a descriptor. All segments on the Mili-
tary Intel386 microprocessor have three attribute
fields in common: the P bit, the DPL bit, and the §
bit. The Present P bit is 1 if the segment is loaded in
physical memory, if P =0 then any attempt to access
this segment causes a not present exception (ex-
ception 11). The Descriptor Privilege Level DPL is a
two-bit field which specifies the protection level 0-3
associated with a segment.

MILITARY Intel386™ MICROPROCESSOR

The Military Intel386 processor has two main cate-
gories of segments system segments and non-sys-
tem segments (for code and data). The segment 8
bit in the segment descriptor determines if a given
segment is a system segment or a code or data seg-
ment. If the S bit is 1 then the segment is either a
code or data segment, if it is O then the segment is a
system segment.

3.3.4.2 Intel386™ CODE, DATA DESCRIPTORS
(8=1

Figure 4-6 shows the general format of a code and
data descriptor and Table 4-1 illustrates how the bits
in the Access Rights Byte are interpreted.

0= Detault Instruction Attributes are 16-Bits

NOTE:

31 0
SEGMENT BASE 15...0 SEGMENT LIMIT15...0 0
LIMIT ACCESS BASE
BASE31...24 |G| D{0] O 19.. 16 RIGHTS 23 16 +4
e BYTE .
D/B 1=Default Instructions Attributes are 32-Bits G Granularity Bit 1= Segment length is page granular

In a maximum-size segment (i.e., a segment with G = 1 and segment limit 19 ... 0 = FFFFFH), the lowest 12 bits of

the segment base should be zero (i.e., segment base 11 ... 000 = 000H).

0=Segment length is byte granular
0 Bit must be zero {0) for compatibility with future processors

Figure 4-6. Segment Descriptors

Table 4-1. Access Rights Byte Definition for Code and Data Descriptions

Poglittion Name Function
7 Present (P) P =1 Segmentis mapped into physical memory.
P = 0 No mapping to physical memory exits, base and limit are
not used.
6-5 |(Descriptor Privilege Segment privilege attribute used in privilege tests.
" |Level (DPL)
4 Segment 8 =1 Code or Data (includes stacks) segment descriptor
Descriptor (S) [S = 0 System Segment Descriptor or Gate Descriptor
3 Executable (E) E = 0 Descriptor type is data segment: 1K
2 Expansion Direc- |ED = 0 Expand up segment, offsets must be < limit. Data
tion (ED) ED = 1 Expand down segment, offsets must be > limit. Segment
1 Wiriteable (W) W = 0 Data segment may not be written into. S=1,
Type W = 1 Data segment may be written into. JE=0)
F'el_d. . 3 Executable (E) E = 1 Descriptor type is code segment: Y if
Definition| 5 Conforming (C) [C =1 Code segment may only be executed Code
when CPL > DPL and CPL | Segment
remains unchanged. Ss=1,
1 Readable (R) R = 0 Code segment may not be read. E=1)
R =1 Code segment may be read. y
0 Accessed (A) A =0 Segment has not been accessed.
A =1 Segment selector has been loaded into segment register
or used by selector test instructions.

11-39
B 4826175 013567k 528 EEITLL

MILITARY Intel386T™ MICROPROCESSOR

Code and data segments have several descriptor
,fields in common. The accessed A bit is set whenev-
er the processor accesses a descriptor. The A bit is
used by operating systems to keep usage statistics
on a given segment. The G bit, or granularity bit,
specifies if a segment length is byte-granular or
page-granular. M80386 segments can be one mega-
byte long with byte granularity (G=0) or four giga-
bytes with page granularity (G=1), (i.e., 220 pages
each page is 4 Kbytes in length). The granularity is
totally unrelated to paging. A Military Intel386 micro-
processor system can consist of segments with byte
granularity, and page granularity, whether or not
paging is enabled.

The executable E bit tells if a segment is a code or
data segment. A code segment (E=1, S=1) may be
execute-only or execute/read as determined by the
Read R bit. Code segments are execute only if
R=0, and execute/read if R=1. Code segments
may never be written into,

NOTE:

Code segments may be modified via aliases. Alias-‘

es are writeable data segments which occupy the
same range of linear address space as the code
segment. :

The D bit indicates the default length for operands
and effective addresses. If D=1 then 32-bit oper-
ands and 32-bit addressing modes are assumed. If
D=0 then 16-bit operands and. 16-bit addressing
modes are assumed. Therefore all existing 286 code
segments will execute on the Military Intel386 proc-
assor assuming the D bit is set 0.

Another attribute of code segments is determined by
the conforming C bit. Conforming segments, C=1,
can be executed and shared by programs at differ-
ent privilege levels. (See Section 3.4 Protection.)

n

intel.
Segments identified as data segments (E=0, S=1)
are used for two types of Military Intel386 microproc-
essor segments: stack and data segments. The ex-
pansion direction (ED) bit specifies if a segment ex-
pands downward (stack) or upward (data). If a seg-
ment is a stack segment all offsets must be greater
than the segment limit. On a data segment all off-
sets must be less than or equal to the limit. In other
words, stack segments start at the base linear ad-
dress plus the maximum segment limit and grow
down to the base linear address plus the limit. On
the other hand, data segments start at the base lin-
ear address and expand to the base linear address
plus limit.

The write W bit controls the ability to write into a
segment. Data segments are read-only if W=0. The
stack segment must have W=1.

The B bit controls the size of the stack pointer regis-
ter. If B=1, then PUSHes, POPs, and CALLs all use
the 32-bit ESP register for stack references and as-
sume an upper limit of FFFFFFFFH. If B=0, stack
instructions all use the 16-bit SP register and as-
sume an upper limit of FFFFH.

3.3.4.3 SYSTEM DESCRIPTOR FORMATS

System segments describe information about oper-
ating system tables, tasks, and gates. Figure 4-7
shows the general format of system segment de-
scriptors, and the various types of system segments.
Military Intel386 processor system descriptors con-
tain a 32-bit base linear address and a 20-bit seg-
ment limit. M80286 system descriptors have a 24-bit
base address and a 16-bit segment limit. M80286
system descriptors are identified by the upper 16
bits being all zero.

31 16 0
SEGMENT BASE 15...0 SEGMENT LIMIT15...0 0
LIMIT BASE
cee +
BASE31...24 | G| 0} 0] O 19...16 P DI|’L 0 | TYIP_E 1 23.. 16 4
Type Defines Type Defines
0 Invalid 8 Invalid
1 Available 286 TSS g Available Intel386™ TSS
2 LOT A Undefined (Intel Reserved)
3 Busy 286 TSS B Busy Intel386 TSS
4 . 286 Call Gate (o] intel386 Call Gate
5 Task Gate (for 286 or Intel386 Task) D Undefined (Intel Resarved)
6 286 Interrupt Gate E Intei386 interrupt Gate
7 286 Trap Gate F Intel386 Trap Gate
NOTE:
In a maximum-size segment (i.e., a seagment with G = 1 and segment limit 19 ... 0 = FFFFFH), the lowest 12 bits of
the segment base should be zero (i.e., segment base 11 ... 000 = 00CH).

Figure 4-7. System Segments Descriptors

11-40
M 4826175 0135677 4b4 ERITLI I

intal.

3.3.4.4 LDT DESCRIPTORS (S=0, TYPE=2)

LDT descriptors (S=0 TYPE=2) contain informa-
tion about Local Descriptor Tables. LDTs contain a
table of segment descriptors, unique to a particular
task. Since the instruction to load the LDTR is only
available at privilege level 0, the DPL field is ignored.
LDT descriptors are only allowed in the Global De-
scriptor Table (GDT).

3.3.4.5 TSS DESCRIPTORS
(=0, TYPE=1, 3, 9, B)

A Task State Segment (TSS) descriptor contains in-
formation about the location, size, and privilege level
of a Task State Segment (TSS). ATSS inturnis a
special fixed format segment which contains all the
state information for a task and a linkage field to
permit nesting tasks. The TYPE field is used to indi-
cate whether the task is currently BUSY (i.e. on a
chain of active tasks) or the TSS is available. The
TYPE field also indicates if the segment contains a
. 286 or a Military Intel386 microprocessor TSS. The
Task Register (TR) contains the selector which
points to the current Task State Segment.

3.3.4.6 GATE DESCRIPTORS (S=0,
TYPE=4-7,C, F)

Gates are used to control access to entry points
within the target code segment. The various types of

MILITARY Intel386™ MICROPROCESSOR

gate descriptors are call gates, task gates, inter-
rupt gates, and trap gates. Gates provide a level of
indirection between the source and destination of
the control transfer. This indirection allows the proc-
essor to automatically perform protection checks. it
also allows system dssigners to control entry points
to the operating system. Call gates are used to
change privilege levels (see Section 3.4 Protec-
tion), task gates are used to perform a task switch,
and interrupt and trap gates are used to specify in-
terrupt service routines.

Figure 4-8 shows the format of the four types of gate
descriptors. Call gates are primarily used to transfer
program control to a more privileged level. The call
gate descriptor consists of three fields: the access
byte, a long pointer (selector and offset) which
points to the start of a routine and a word count
which specifies how many parameters are to be cop-
ied from the caller's stack to the stack of the called
routine. The word count field is only used by call
gates when there is a change in the privilege level,
other types of gates ignore the word count field.

Interrupt and trap gates use the destination selector
and destination offset fields of the gate descriptor as
a pointer to the start of the interrupt or trap handler
routines. The difference between interrupt gates and
trap gates is that the interrupt gate disables inter-
rupts (resets the IF bit) while the trap gate does not.

31 24 16 8 5 0
SELECTOR OFFSET15...0 0
WORD
OFFSET31...16 DPL| O TYPE 0l0j0 COUNT +4
. L 4...0
Gate Descriptor Fields
Name Value Description
Type 4 286 call gate
5 Task gate (for 286 or Military Intei386™ microprocessor task)}
6 286 interrupt gate
7 286 trap gate
Cc Military Intel386 microprocessor call gate
E Military Intel386 microprocessor interrupt gate
F Military Intel386 microprocessor trap gate
P 0 Descriptor contents are not valid
1 Descriptor contents are valid

DPL—least privileged level at which a task may access the gate. WORD COUNT 0-~31—the number of parameters to copy from caller’s stack
to the called procedure's stack. The parameters are 32-bit quantities for Military Intel386 microprocessor gates, and 16-bit quantities for 286

gates.
DESTINATION 16-bit Selector to the target code segment
SELECTOR selector or
Selsctor to the target task state segment for task gate

DESTINATION offset Entry point within the target code segment
OFFSET 16-bit 286

32-bit Military Intel386

microprocessor

Figure 4-8. Gate Descriptor Formats

\
11-41

BN 482k175 0135678 370 EEITLY

.

MILITARY Intel386T™ MICROPROCESSOR

Task gates are used to switch tasks. Task gates
may only refer to a task state segment (see Section
3.4.6 Task Switching) therefore only the destination
selector portion of a task gate descriptor is used,
and the destination offset is ignored.

Exception 13 is generated when a destination selec-
tor does not refer to a correct descriptor type, i.e., a
code segment for an interrupt, trap or call gate, a
TSS for a task gate.

The access byte format is the same for all gate de-
scriptors. P=1 indicates that the gate contents are
valid. P=0 indicates the contents are not valid and
causes exception 11 if referenced. DPL is the de-
scriptor privilege level and specifiess when this de-
scriptor may be used by a task (see Section 3.4 Pro-
tection). The S field, bit 4 of the access rights byte,
must be 0 to indicate a system control descriptor.
The type field specifies the descriptor type as indi-
cated in Figure 4-8.

3.3.4.7 DIFFERENCES BETWEEN MILITARY
Intel386™ MICROPROCESSOR AND 286
DESCRIPTORS

In order to provide operating system compatibility
between the M80286 and Military Intel386 proces-
sor, the Military Intel386 processor supports all of
the M80286 segment descriptors. Figure 4-9 shows
the general format of an M80286 system segment
descriptor. The only differences between 286 and
Military Intel386 processor descriptor formats are
that the values of the type fields, and the limit and
base address fields have been expanded for the Mil-
itary Intel386 processor. The M80286 system seg-
ment descriptors contained a 24-bit base address
and 16-bit limit, while the Military Intel386 processor
system segment descriptors have a 32-bit base ad-
dress, a 20-bit limit field, and a granularity bit.

By supporting M80286 system segments the Military
Intel386 processor is able to execute 286 applica-
tion programs on a Military Intel386 processor oper-
ating system. This is possible because the proces-

-

intel.
sor automatically understands which descriptors are
286 descriptors and which descriptors are Military
Intel386 processor descriptors. In particular, if the

upper word of a descriptor is zero, then that descrip-
tor is a 286-style descriptor.

The only other differences between 286-style de-
scriptors and Military Intei386 processor descriptors
is the interpretation of the word count field of call
gates and the B bit. The word count field specifies
the number of 16-bit quantities to copy for 286 cali
gates and 32-bit quantities for Military Intel386 proc-
essor call gates. The B bit controls the size of
PUSHes when using a call gate; if B=0 PUSHes are
16 bits, if B=1 PUSHes are 32 bits.

3.3.4.8 SELECTOR FIELDS

A selector in Protected Mode has three fields: Local
or Global Descriptor Table Indicator (Tl), Descriptor
Entry Index (Index), and Requestor (the selector’s)
Privilege Level (RPL) as shown in Figure 4-10. The
Tl bits select one of two memory-based tables of
descriptors (the Global Descriptor Table or the Local
Descriptor Table). The Index selects one of 8K de-
scriptors in the appropriate descriptor table. The
RPL bits allow high speed testing of the selector’s
privilege attributes.

3.3.4.9 SEGMENT DESCRIPTOR CACHE

In addition to the selector value, every segment reg-
ister has a segment descriptor cache register asso-
ciated with it. Whenever a segment register's con-
tents are changed, the B-byte descriptor associated
with that selector is automatically loaded (cached)
on the chip. Once loaded, all references to that seg-
ment use the cached descriptor information instead
of reaccessing the descriptor. The contents of the
descriptor cache are not visible to the programmer.
Since descriptor caches only change when a seg-
ment register is changed, programs which modify
the descriptor tables must reload the appropriate
segment registers after changing a descriptor’s val-
ue.

31 0

SEGMENT BASE 15...0 [SEGMENT LIMIT15...0 0

Intel Reserved ‘ BASE
Sett00 i el N S T

BASE Base Address of the segment DPL Descriptor Privilege Level 0-3

LIMIT The length of the segment) System Descriptor 0=System 1=User

P Present Bit 1=Present 0=Not Present TYPE Type of Segment

Figure 4-9. 286 Code and Data Segment Descriptors

i

11-42 I
B 482LL75 0135679 237 EEITLL

L
Intd o MILITARY Intei386™ MICROPROCESSOR

SELECTOR
15 43210
SEGMENT T rRPL
REGISTER 0] 0 ===-0Jof1]1}1] }
- * | TaBLE
INDEX INDICATOR
Ti=1 n=ol
N N
A DESCRIPTOR A
oA NUMBER A
6
5
4
3
2 2
1 1
0 0 NULL
LOCAL GLOBAL
DESCRIPTOR DESCRIPTOR
TABLE TABLE
271052-59
Figure 4-10. Example Descriptor Selection
a 11-43

M 4426175 0L35680 T59 EEITLY

.,

MILITARY Intei386™ MICROPROCESSOR |

. 3.3.4.10 SEGMENT DESCRIPTOR REGISTER
SETTINGS

The contents of the segment descriptor cache vary
depending on the mode the M80386 is operating in.
When operating in Real Address Mods, the segment
base, limit, and other attributes within the segment
cache registers are defined as shown in Figure 4-11.

L]

intgl.
For compatiblity with the M8086 architecture, the
base is set to sixteen times the current selector
value, the limit is fixed at 0000FFFFH, and the attri-
butes are fixed so as to indicate the segment is pres-
ent and fully usable. In Real Address Mode, the in-
ternal “privilege level” is always fixed to the highest

level, level 0, so 1/0 and other privileged opcodes
may be executed.

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS
32-BIT BASE 32-BIT LIMIT OTHER ATTRIBUTES
(UPDATED DURING SELECTOR (FIXED) (FlXED)
LOAD INTO SEGMENT REGISTER)

CONFORMING PRIVILEGE
STACK SIZE
EXECUTABLE
WRITEABLE
READABLE
EXPANSION DIRECTION
GRANULARITY
ACCESSED
PRIVILEGE LEVEL
PRESENT

__JBASE___________Lmm__ }l 4
Ccs 16X CURRENT CS SELECTOR' QO0OCOFFFFH YIO|Y[B|UY|YIY[=IN
S$ 16X CURRENT SS SELECTOR QO00Q0FFFFH Y{iO|Y|B|UJY|YIN|W|=-
[} 16X CURRENT DS SELECTOR O00OFFFFH Y|O|Y[B|U[Y|Y|N|=]=-
£S 16X CURRENT ES SELECTOR Q000FFFFH Y|O[Y[BIU[Y|Y|N|=]=
FS 16X CURRENT FS SELECTOR 0000FFFFH YiOlY[B|U[Y][Y[N|=]=
GS 16X CURRENT GS SELECTOR 0000FFFFH YIO|Y|B|U[Y|Y|N]|=]| =

intersegment JMP, or INT). (See Figure 4-13 Example.)

*Except the 32-bit CS base is initialized to FFFFFOOOH after reset until first intersegment control transfer (e.g. intersegment CALL, or

271052-60

Key: Y =yes D = expand down
N =no B8 = byte granularity
0 = privitege level 0 P = page granularity
1 = privilege level 1 W = push/pop 16-bit words
2 = privilege level 2 F = push/pop 32-bit dwords
3 = privilege level 3 - = does not apply to that segment cache register
U = expand up
Figure 4-11. Segment Descriptor Caches for Real Address Mode
(Segment Limit and Attributes are Fixed)
11-44

M 4426175 0135681 995 EEITLL

intgl.

When operating in Protected Mode, the segment
base, limit, and other attributes within the segment
cache registers are defined as shown in Figure 4-12.
In Protected Mode, sach of these fields are defined

MILITARY Intel386™ MICROPROCESSOR

according to the contents of the segment descriptor
indexed by the selector value loaded into the seg-
ment register.

SEGMENT
32 = BIT BASE

(UPDATED DURING
SELECTOR LOAD INTO
SEGMENT REGISTER)

CONFORMING PRIVILEGE

32=BIT LIMIT

(UPDATED DURING
SELECTOR LOAD INTO
SEGMENT REGISTER)

DESCRIPTOR CACHE REGISTER CONTENTS

OTHER ATTRIBUTES

(UPDATED DURING
SELECTOR LOAD INTO
SEGMENT REGISTER)

STACK SIZE
EXECUTABLE
WRITEABLE
READABLE
EXPANSION DIRECTION
GRANULARITY
ACCESSED
PRIVILEGE LEVEL
PRESENT

BASE LIMIT 4 l v
€S | BASE PER SEG DESCR | LIMIT PER SEG DESCR |p|d|d|d|d{d|N|Y|=|d
S5_| BASE PER SEG DESCR | LIMIT PER SEG DESCR__ | p|d|d[d[d|r [w|N[d[~-
DS | BASE PER SEG DESCR | LIMIT PER SEG DESCR__ [p|dld[d[d[d[d[n]~] -
ES | BASE PER SEG DESCR | LIMIT PER SEGDESCR _ |pid|d|d[d|d[d[N[~[-
FS_| BASE PER SEG DESCR | LIMIT PER SEG DESCR |p|d[d[d|d|did[Nj-] -
GS | BASE PER SEG DESCR | LIMIT PER SEG DESCR |p[d[dldfdfd]a[N]-] -

271052-61

Key: Y = fixed yes

N = fixed no

d = per segment descriptor

p = per segment descriptor; descriptor must indicate "present” to avoid exception 11
(exception 12 in case of SS)

r = per segment descriptor, but descriptor must indicate “readable” to avoid exception 13
(special case for SS)

w = per segment descriptor, but descriptor must indicate “writable” to avoid exception 13
(special case for SS)

- = does not apply to that segment cache register

Figure 4-12. Segment Descriptor Caches for Protected Mode (Loaded per Descriptor)

11-45

B 482L17?5 0135kLec2 821 EMITLL

MILITARY Intel386™ MICROPROCESSOR

When operating in a Virtual M8086 Mode within the
Protected Mode, the segment base, limit, and other
attributes within the segment cache registers are de-
fined as shown in Figure 4-13. For compatibility with
the M8086 architecture, the base is set to sixteen
times the current selector value, the limit is fixed at

intel.

0000FFFFH, and the attributes are fixed so as to
indicate the segment is present and fully usable. The
virtual program executes at lowest privilege level,
level 3, to allow trapping of all IOPL-sensitive in-
structions and level-0-only instructions.

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS
32 - BIT BASE 32 = 8IT LiMIT OTHER ATTRIBUTES
(UPDATED DURING SELECTOR (FIXED) (FIXED)
LOAD INTO SEGMENT REGISTER)
CONFORMING PRIVILEGE
STACK SIZE
EXECUTABLE
WRITEABLE
READABLE
EXPANSION DIRECTION
GRANULARITY
ACCESSED -
PRIVILEGE LEVEL
PRESENT
BASE LIMIT ¥ l v v
(=] 16X CURRENT CS SELECTOR OOO0OFFFFH |Y|3|Y|B|U]lY[Y]Y|=]|N
SS 16X CURRENT SS SELECTOR O000FFFFH [Y|3[Y[B|U]Y|Y[N|W]|=
DS 16X CURRENT DS SELECTOR OO00OFFFFH [Y[3[Y|B[(U]|Y|Y|N|=|~-
ES 16X CURRENT ES SELECTOR OO00OFFFFH {Y!3|Y|B|U|Y|Y|N|{=]|~
FS 16X CURRENT FS SELECTOR Q000FFFFH {Y{3|Y|B|U]Y|Y|[N|=] -
GS 16X CURRENT GS SELECTOR QOC00FFFFH |Y|3|YIBIU{YIYIN|=|=
"""""""""""""""""""""""""""" 271052-62
Key: Y = yes D = expand down
N =no B = byte granularity
0 = privilege level 0 P = page granularity
1 = privilege level 1 W = push/pop 16-bit words
2 = privilege level 2 F = push/pop 32-bit dwords
3 = privilege level 3 - = does not apply to that segment cache register
U = expand up

‘Figure 4-13. Segment Descriptor Caches for Virtual M8086 Mode within Protected Mode
' (Segment Limit and Attributes are Fixed)

11-46

B 482b175 D135LA83 7LA EEITLI

intal.
3.4 PROTECTION

3.4.1 Protection Concepts

cr
ENFORCED

SQFTWARE
INTERFACES 05 EXTENSIONS

SYSTEM
SERVICES
PL

271052-63

Figure 4-14. Four-Level Hierachical Protection

The Military intel386 microprocessor has four levels
of protection which are optimized to support the
needs of a multi-tasking operating system to isolate
and protect user programs from each other and the
operating system. The privilege levels control the
use of privileged instructions, 1/0 instructions, and
access to segments and segment descriptors. Un-
like traditional microprocessor-based systems where
this protection is achieved only through the use of
complex external hardware and software the Military
Intel386 processor provides the protection as part of
its integrated Memory Management Unit. The Mili-
tary Intel386 processor offers an additional type of
protection on a page basis, when paging is enabled
(See Section 3.5.3 Page Level Protection).

The four-level hierarchical privilege system is illus-
trated in Figure 4-14. It is an extension of the user/
supervisor privilege mode commonly used by mini-
computers and, in fact, the user/supervisor mode is
fully supported by the Military Intel386 processor
paging mechanism. The privilege levels (PL) are
numbered 0 through 3. Level 0 is the most privileged
or trusted level.

3.4.2 Rules of Privilege

The Military Intel386 processor controls access to
both data and procedures between levels of a task,
-according to the following rules.

* Data stored in a segment with privilege level p can
be accessed only by code executing at a privilege
level at least as privileged as p.

* A code segment/procedure with privilege level p
can only be called by a task executing at the same
or a lesser privilege level than p.

B 482L175 0135684 T4 ERITLI

e

MILITARY Intel386™ MICROPROCESSOR

3.4.3 Privilege Levels

3.4.3.1 TASK PRIVILEGE

At any point in time, a task on the Military Intel386
processor always executes at one of the four privi-
lege levels. The Current Privilege Level (CPL) speci-
fies the task’s privilege level. A task’s CPL may only
be changed by control transfers through gate de-
scriptors to a code segment with a different privilege
level. (See Section 3.4.4 Privilege Level Transfers)
Thus, an application program running at PL = 3 may
call an operating system routine at PL = 1 (via a
gate) which would cause the task’s CPL to be set to
1 until the operating system routine was finished.

3.4.3.2 SELECTOR PRIVILEGE (RPL)

The privilege level of a selector is specified by the
RPL field. The RPL is the two least significant bits of
the selector. The selector’s RPL is only used to es-
tablish a less trusted privilege level than the current
privilege level for the use of a segment. This level is
called the task’s effective privilege level (EPL). The
EPL is defined as being the least privileged (i.e. nu-
merically larger) level of a task’s CPL and a selec-
tor's RPL. Thus, if selector's RPL = 0 then the CPL
always specifies the privilege level for making an ac-
cess using the selector. On the other hand if RPL. =
3 then a selector can only access segments at level
3 regardless of the task’s CPL. The RPL is most
commonly used to verify that pointers passed to an
operating system procedure do not access data that
is of higher privilege than the procedure that origi-
nated the pointer. Since the originator of a selector
can specify any RPL value, the Adjust RPL (ARPL)
instruction is provided to force the RPL bits to the
originator's CPL.

3.4.3.3 1/0 PRIVILEGE AND /0 PERMISSION
BITMAP

The 110 privilege level (IOPL, a 2-bit field in the
EFLAG register) defines the least privileged leve! at
which 1/0 instructions can be unconditionally per-
formed. I/0 instructions can be unconditionally per-
formed when CPL < IOPL. (The 1/0 instructions are
IN, OUT, INS, OUTS, REP INS, and REP OUTS,)
When CPL > IOPL, and the current task is associat-
ed with a 286 TSS, attempted 1/0 instructions cause
an exception 13 fault. When CPL > |OPL, and the
current task is associated with a Military Intel386
processor TSS, the 1/0 Permission Bitmap (part of a
Military Intel386 processor TSS) is consulted on
whether I/0 to the port is allowed, or an exception
13 fault is to be generated instead. For diagrams of
the 1/0 Permission Bitmap, refer to Figures 4-15a
and 4-15b. For further information on how the 1/0

11-47

MILITARY Intel386™ MICROPROCESSOR

Permission Bitmap is used in Protected Mode or in
Virtual M8086 Mods, refer to Section 3.6.4 Protec-
tion and 1/0 Permission Bitmap.

The 1/0 privilege level (IOPL) also affects whether
several other instructions can be executed or cause
an exception 13 fault instead. These instructions are
called “IOPL-sensitive” instructions and they are
CLI and STI. (Note that the LOCK prefix is not IOPL-
sensitive on the Military Intel386 processor.)

The IOPL also affects whether the IF (interrupts en-
able flag) bit can be changed by loading a value into
the EFLAGS register. When CPL < IOPL, then the
IF bit can be changed by loading a new value into
the EFLAGS register. When CPL > IOPL, the IF bit
cannot be changed by a new value POP'ed into (or
otherwise loaded into) the EFLAGS register; the IF
bit merely remains unchanged and no exception is
generated.

Table 4-2. Pointer Test Instructions

Instruction | Operands Function

ARPL

Selector,
Register

Adjust Requested Privi-
lege Level: adjusts the
RPL of the selector to the
numeric maximum of
current selector RPL value
and the RPL value in the
register. Set zero flag if
selector RPL was
changed.

VERR Selector | VERIfy for Read: sets the
zero flag if the segment
referred to by the selector

can be read.

VERify for Write: sets the
zero flag if the segment
referred to by the selector
can be written.

VERW | Selector

LSL Register,
Selector

Load Segment Limit: reads
the segment limit into the
register if privilege rules
and descriptor type aliow.
Set zero flag if successful.

LAR Register,
Selector

Load Access Rights: reads
the descriptor access
rights byte into the register
if privilege rules allow. Set

zero flag if successful.

L]
l ntel o
3.4.3.4 PRIVILEGE VALIDATION

The Military Intel386 microprocessor provides sever-
al instructions to speed pointer testing and help
maintain system integrity by verifying that the selec-
tor value refers to an appropriate segment. Table 4-
2 summarizes the selector validation procedures
available for the Military Intel386 microprocessor.

This pointer verification prevents the common prob-
lem of an application at PL = 3 calling a operating
systems routine at PL = 0 and passing the operat-
ing system routine a “bad” pointer which corrupts a
data structure belonging to the operating system. If
the operating system routine uses the ARPL instruc-
tion to ensure that the RPL of the selector has no
greater privilege than that of the caller, then this
problem can be avoided.

3.4.3.5 DESCRIPTOR ACCESS

There are basically two types of segment accesses:
those involving code segments such as control
transfers, and those involving data accesses. Deter-
mining the ability of a task to access a segment in-
volves the type of segment to be accessed, the in-
struction used, the type of descriptor used and CPL,
RPL, and DPL as described above.

Any time an instruction loads data segment registers
(DS, ES, FS, GS) the Military Intel386 processor
makes protection validation checks. Selectors load-
ed in the DS, ES, FS, GS registers must refer only to
data segments or readable code segments. The
data access rules are specified in Section 3.2.2
Rules of Privilege. The only exception to those
rules is readable conforming code segments which
can be accessed at any privilege level.

Finally the privilege validation checks are performed.
The CPL is compared to the EPL and if the EPL is
more privileged than the CPL an exception 13 (gen-
eral protection fault) is generated.

The rules regarding the stack segment are slightly
different than those involving data segments. In-
structions that load selectors into SS must refer to
data segment descriptors for writeable data seg-
ments. The DPL and RPL must equal the CPL. All
other descriptor types or a privilege level violation
will cause exception 13. A stack not present fault
causes exception 12. Note that an exception 11 is
used for a not-present code or data segment.

3.4.4 Privilege Level Transfers

Inter-segment control transfers occur when a selec-
tor is loaded in the CS register. For a typical system
most of these transfers are simply the result of a call

11-48
B 4826175 0L35685 530 EAITLI I _

MILITARY Intei386™ MICROPROCESSOR

intgl.

Table 4-3. Descriptor Types Used for Control Transfer

Descriptor Descriptor
Control Transfer Types Operation Types Referenced Table

Intersegment within the same privilege level JMP, CALL, RET, IRET* | Code Segment | GDT/LDT
Intersegment to the same or higher privilege levei | CALL Call Gate GDT/LDT
Interrupt within task may change CPL Interrupt Instruction, Trap or DT

Exception, External Interrupt

interrupt Gats
Intersegment to a lower privilege level RET, IRET* Code Segment | GDT/LDT
(changes task CPL)

CALL, JMP Task State GDT

Segment

Task Switch CALL, JMP Task Gate GDT/LDT

IRET** Task Gate DT

Interrupt Instruction,

Exception, External

Interrupt

*NT (Nested Task bit of flag register) = 0
**NT (Nested Task bit of flag register) = 1

or a jump to another routine. There are five types of
control transfers which are summarized in Table 4-3.
Many of these transfers result in a privilege level
transfer. Changing privilege levels is done only via
control transfers, by using gates, task switches, and
interrupt or trap gates.

Control transfers can only occur if the operation
which loaded the selector references the correct de-
scriptor type. Any violation of these descriptor usage
rules will cause an exception 13 (e.g. JMP through a
call gate, or IRET from a normal subroutine call).

In order to provide further system security, all control
transfers are also subject to the privilege rules.

The privilege rules require that:

— Privilege level transitions can only occur via
gates.

— JMPs can be made to a non-conforming code
segment with the same privilege or to a conform-
ing code segment with greater or equal privilege.

— CALLs can be made to a non-conforming code
segment with the same privilege or viaa gateto a
more privileged level.

— Interrupts handled within the task obey the same
privilege rules as CALLs.

— Conforming Code segments are accessible by
privilege levels which are the same or less privi-
leged than the conforming-code segment’s DPL.

— Both the requested privilege level (RPL) in the
selector pointing to the gate and the task’s CPL

must be of equal or greater privilege than the
gate’s DPL.

— The code segment selected in the gate must be
the same or more privileged than the task’s CPL.

— Return instructions that do not switch tasks can
only return control to a code segment with same
or less privilege.

— Task switches can be performed by a CALL,
JMP, or INT which references either a task gate
or task state segment who's DPL is less privi-
leged or the same privilege as the old task’s CPL.

Any control transfer that changes CPL within a task
causes a change of stacks as a result of the privi-
lege level change. The initial values of SS:ESP for
privilege levels 0, 1, and 2 are retained in the task
state segment (see Section 3.4.6 Task Switching).
During a JMP or CALL control transfer, the new
stack pointer is loaded into the SS and ESP regis-
ters and the previous stack pointer is pushed onto
the new stack.

When RETurning to the original privilege level, use
of the lower-privileged stack is restored as part of
the RET or IRET instruction operation. For subrou-
tine calls that pass parameters on the stack and
cross privilege levels, a fixed number of words (as
specified in the gate’s word count field) are copied
from the previous stack to the current stack. The
inter-segment RET instruction with a stack adjust-
ment value will correctly restore the previous stack
pointer upon return.

11-49

B 432b175 0135686 477 EMITL]

MILITARY Intei386™ MICROPROCESSOR in .
31 16 15 [J
0000000000000000 | BACK LINK ¢ 7SS Bast
ESPO 4]
0000000000000000 1 550 8
£5P1 ¢ STACKS
£000000000000000 l ss1 10 ng 01,2
ESP2 4
0000000000000000 | $52 "
CR3 1c
EIP 20
EFLAGS 24
EAX 28
£CX 2
EDX 30
EBX 34
EsP 38
EBP 3¢
ESI o o
o 44 | STATE
0000000000000000 ES 4
0000000000000000 cs 4
0000000000000000 ss 50
0000000000000000 S 54
0000000000000000 FS 58
0000000000000000 cs | 5¢
0000000000000000 LDV 80 |
BIT_MAP_OFFSET(15:0) 0000000000000000 | T |54
AVAILABLE ~— .] N DEBUG
h SYSTEM STATUS, ETC. & TRAP BIT
v IN i386™ MICROPROCESSOR TSS v
31 2423 16] 15 a7 [
83 56|55 4847 40 30 32| BIT_MAP_OFFSET
95 88|87 sof 79 7271 64
T 96 OFFSET + ¢
T o B s+ 1o
H H [L)
H BASE H1 h 1/0 PERMISSION BITMAP I
E P E———— °E 65407 (:g:TB,;”,:‘E:PB;E |B/E° OFFSET + 1FEC
Lo sl s 55439 TRUNCATED USING TSS LINIT.) OFFSET + 1FFO
TASK REGISTER 65471 OFFSET + 1FF4
65503 65472 | OFFSET + 1FFB
TR SHEOR 65535 85504 | OFFSET + 1FFC
15 0 "FFHY OFFSET + 2000
i % +ss i = orFser + 20004
34 i386 TSS DESCRIPTOR (IN GDT) 0
SEGMENT BASE 15...0 SEGMENT LIMIT 15..0
o BASE 31..24 IG | 1 |o|o| ‘L:‘:Ts P|D:L lol S :ffs
Type = 9: Available Military Intel386 microprocessor TSS 271052-64
Type = B: Busy Military Intel386 microprocessor TSS

Figure 4-15a. Military Intel386T™ Microprocessor TSS and TSS Registers

11-50

B 482b175 0135647 303 MNITLI

intgl.

MILITARY Intel386™ MICROPROCESSOR

31302928272625242322212019181716151413121110 8

3t
63
95
127

1111011 0]00001

o - O
Q- 0
O = =
S - -
O - =

0
1
0

o = O

o
1
0

o - O
e - o

1 11 1 1
1 11 1 1
0 00 0 0

T otc.

1
o
1
/]

0 10

O = = O
O - =
O = = O
O - - -
o - O Oflm
- 0O = - OfN

10
11
00

o = -
-0 - = olo»

- 0 = =« O|w
- 0 = = ala
- 0 = = olu
- o = o cln
.0 a0 al-
-0 = = =]lo

1/0 Ports Accessible: 2 —> 9, 12, 13, 15, 20 — 24, 27, 33, 34, 40, 41, 48, 50, 52, 53, 58 — 60, 62, 63, 86 — 127

i
271052-71

Figure 4-15b. Sampie 1/0 Permission Bit Map

3.4.5 Call Gates

Gates provide protected, indirect CALLs. One of the
major uses of gates is to provide a secure method of
privilege transfers within a task. Since the operating
system defines all of the gates in a system, it can
ensure that alt gates only allow entry into a few trust-
ed procedures (such as those which allocate memo-
ry, or perform 1/0).

Gate descriptors follow the data access rules of priv-
ilege; that is, gates can be accessed by a task if the
EPL, is equal to or more privileged than the gate
descriptor's DPL. Gates follow the control transfer
rules of privilege and therefore may only transfer
control to a more privileged level.

Call Gates are accessed via a CALL instruction and
are syntactically identical to calling a normal subrou-
tine. When an inter-level Military Intel386 processor
call gate is activated, the following actions occur.

1. Load CS:EIP from gate check for validity
2. SS is pushed zero-extended to 32 bits
3. ESP is pushed

4. Copy Word Count 32-bit parameters from the
old stack to the new stack

5. Push Return address on stack

The procedure is identical for 286 Call gates, except
that 16-bit parameters are copied and 16-bit regis-
ters are pushed.

Interrupt Gates and Trap gates work in a similar
fashion as the call gates, except there is no copying
of parameters. The only difference between Trap
and Interrupt gates is that control transfers through
an Interrupt gate disable further interrupts (i.e. the IF
bit is set to 0), and Trap gates leave the interrupt
status unchanged.

3.4.6 Task Switching

A very important attribute of any multi-tasking/multi-
user operating systems is its ability to rapidly switch
between tasks or processes. The Military Intei386
processor diractly supports this operation by provid-
ing a task switch instruction in hardware. The Military

Intel386 processor task switch operation saves the
entire state of the machine (all of the registers, ad-
dress space, and a link to the previous task), loads a
new execution state, performs protection checks,
and commences execution in the new task, in about
17 microseconds. Like transfer of control via gates,
the task switch operation is invoked by executing an’
inter-segment JMP or CALL instruction which refers
1o a Task State Segment (TSS), or a task gate de-
scriptor in the GDT or LDT. An INT n instruction,
exception, trap, or external interrupt may also invoke
the task switch operation if there is a task gate de-
scriptor in the associated IDT descriptor slot.

The TSS descriptor points to a segment (see Figure
4-15) containing the entire Military Intei386 proces-
sor execution state while a task gate descriptor con-
tains a TSS selector. The Military Intel386 processor
supports both 286 and Military Intel386 processor
style TSSs. Figure 4-16 shows a 286 TSS. The limit
of a Intei386 TSS must be greater than 0064H
(002BH for a 286 TSS), and can be as large as 4
Gigabytes. In the additional TSS space, the operat-
ing system is free to store additional information
such as the reason the task is inactive, time the task
has spent running, and open files belong to the task.

Each task must have a TSS associated with it. The
current TSS Iis identified by a special register in the
Military Intel386 processor called the Task State
Segment Register (TR). This register contains a se-
lector referring to the task state segment descriptor
that defines the current TSS. A hidden base and limit
register associated with TR are loaded whenever TR
is loaded with a new selector. Returning from a task
is accomplished by the IRET instruction. When IRET
is executed, control is returned to the task which
was interrupted. The current executing task’s state
is saved in the TSS and the old task state is restored
from its TSS.

Several bits in the flag register and machine status
word (CRO) give information about the state of a
task which are useful to the operating system. The
Nested Task (NT) (bit 14 in EFLAGS) controls the
function of the IRET instruction. If NT = 0, the IRET
instruction performs the regular return; when NT =
1, IRET performs a task switch operation back to the
previous task. The NT bit is set or reset in the follow-
ing fashion:

11-51

M 442L175 0135688 24T EEITLL

MILITARY Intel386™ MICROPROCESSOR

15 0
BACK LINK SELECTOR TO TSS | ©
SP FOR CPL 0 2]
SS FOR CPL 0 4
SP FOR CPL 1 6 | INAL
e .
SP FOR CPL 2 A
SS FOR CPL 2 c)
1P (ENTRY POINT) E)
FLAGS 10
AX 12
X 14
DX 16
8X 18§ CURRENT
SP 1A | TASK
m c | staTe
sI IE
ol 20
€S SELECTOR 22
CS SELECTOR 24
SS SELECTOR 26
DS SELECTOR 28
TASK'S LDT SELECTOR oA

JL AVAIABLE .

" w 271052-65

Figure 4-16. 286 TSS

When a CALL or INT instruction initiates a task
switch, the new TSS will be marked busy and the
back link field of the new TSS set to the old TSS
selector. The NT bit of the new task is set by CALL
or INT initiated task switches. An interrupt that does
not cause a task switch will clear NT. (The NT bit will
be restored after execution of the interrupt handler)
NT may also be set or cleared by POPF or IRET
instructions. ‘

The Military Intel386 processor task state segment
is marked busy by changing the descriptor type field

from TYPE 9H to TYPE BH. A 286 TSS is marked -

busy by changing the descriptor type field from
TYPE 1 to TYPE 3. Use of a selector that references
a busy task state segment causes an exception 13.

The Virtual Mode (VM) bit 17 is used to indicate if a
task, is a virtual M8086 task. If VM = 1, then the
tasks will use the Real Mode addressing mecha-
nism. The virtual MB086 environment is only entered
and exited via a task switch (see Section 3.6 Virtual
Mode).

The coprocessor’s state is not automatically saved
when a task switch occurs, because the incoming
task may not use the coprocessor. The Task
Switched (TS) Bit (bit 3 in the CRO) helps deal with

11-52

-

intgl.
the coprocessor's state in a multi-tasking environ-
ment. Whenever the Military Intel386 processor
switches tasks, it sets the TS bit. The Military
Intel386 processor detects the first use of a proces-
sor extension instruction after a task switch and
causes the processor extension not available excep-
tion 7. The exception handler for exception 7 may
then decide whether to save the state of the co-
processor. A processor extension not present ex-
ception (7) will occur when attempting to execute an
ESC or WAIT instruction if the Task Switched and
Monitor coprocessor extension bits are both set (i.e.
TS = 1 and MP = 1).

The T bit in the Military intel386 processor TSS indi-
cates that the processor should generate a debug
exception when switching to a task. If T = 1 then
upon entry to a new task a debug exception 1 will be
generated.

3.4.7 Initialization and Transition to
Protected Mode

Since the Military Intel386 processor begins execut-
ing in Real Mode immediately after RESET it is nec-
essary to initialize the system tables and registers
with the appropriate values.

The GDT and IDT registers must refer to a valid GDT
and IDT. The IDT should be at least 256 bytes long,
and GDT must contain descriptors for the initial
code, and data segments. Figure 4-17 shows the
tables and Figure 4-18 the descriptors needed for a
simple Protected Mode Military Intel386 processor
system. It has a single code and single data/stack
segment each four gigabytes long and a single privi-
lege level PL = 0,

The actual method of enabling Protected Mode is to
load CRO with the PE bit set, via the MOV CRO, R/M
instruction. This puts the Military Intel386 processor
in Protected Mode.

After enabling Protected Mode, the next instruction
should execute an intersegment JMP to load the CS
register and flush the instruction decode queus. The
final step is to load all of the data segment registers
with the initial selector values.

An alternate approach to entering Protected Mode
which is especially appropriate for multi-tasking op-
erating systems, is to use the built in task-switch to
load all of the registers. In this case the GDT would
contain two TSS descriptors in addition to the code
and data descriptors needed for the first task. The
first JMP instruction in Protected Mode would jump
to the TSS causing a task switch and loading all of
the registers with the values stored in the TSS. The
Task State Segment Register should be initialized to
point to a valid TSS descriptor since a task switch
saves the state of the current task in a task state
segment.

M 432L175 0135689 146 EEITLI

Intd o MILITARY Intel386™ MICROPROCESSOR

3 0
RESET ROUTINES | /7"
FFFFFFFO
INITIALIZATION
ROUTINES
<1 00000118
DATA DESCRIPTOR
CoDE DESCRIPTOR | o oot 'O | oo
NULL SELECTOR] 000108
TR [00FF] LmiT 00000100
00000000 INTERRUPT o7
BASE ADDRESS DESCRIPTORS (32)
00000000 2711052-66
Figure 4-17. Simple Protected System
DATA SEGMENTBASE 15...0 SEGMENT LIMIT 15...0
DESCRIPTOR| 0118 (H) FFFF (H)
LIMIT
BASE31...24|G|D BASE23...16
2 0|0 19.16 1(0 0|10 O 1|0
00 (H 11 00 (H
CODE SEGMENT BASE 15...0 SEGMENT LIMIT15...0
DESCRIPTOR| 0118 (H) FFFF (H)
LIMIT
BASE31...24|G|D BASE23...16
1 0|0 19.16 110 Of1(1 0 1|0
00 H 111 00 (H
NULL | DESCRIPTOR
0
31 24 16 15 8 0
Figure 4-18. GDT Descriptors for Simple System
3.4.8 Tools for Building Protected 3.5 PAGING
Systems

In order to simplify the design of a protected muiti- ~ 3.5.1 Paging Concepts

tasking system, Intel provides a tool which allows o

the system designer an easy method of constructing ~ Paging is another type of memory management
the data structures needed for a Protected Mode useful for virtual memory multitasking operating sys-
Military Intel386 processor system. This tool is the ~ tems. Unlike segmentation which modularizes pro-
builder BLD-386. BLD-386 lets the operating system grams and data into variable length segments, pa-
writer specify all of the segment descriptors dis-

cussed in the previous sections (LDTs, IDTs, GDTs,

Gates, and TSSs) in a high-level language.

[] 11-53
M 432L175 0135690 978 EMITLL

MILITARY Intel386T™ MICROPROCESSOR

ging divides programs into multiple uniform size
pages. Pages bear no direct relation to the logical
structure of a program. While segment selectors can
be considered the logical “name” of a program
module or data structure, a page most likely corre-
sponds to only a portion of a module or data struc-
ture.

By taking advantage of the locality of reference dis-
played by most programs, only a small number of
pages from each active task need be in memory at
any one moment.

3.5.2 Paging Organization

3.5.2.1 PAGE MECHANISM

The Military Intel386 processor uses two lavels of
tables to translate the linear address (from the seg-
mentation unit) into a physical address. There are
three components to the paging machanism of the
Military Intel386 processor: the page directory, the
page tables, and the page itself (page frame). All
memory-resident elements of the Military Intel386
processor paging mechanism are the same size,
namely, 4 Kbytes. A uniform size for all of the ele-
ments simplifies memory allocation and reallocation
schemes, since there is no problem with memory
fragmentation. Figure 4-19 shows how the paging
mechanism works.

intgl.

3.5.2.2 PAGE DESCRIPTOR BASE REGISTER

CR2 is the Page Fault Linear Address register. It
holds the 32-bit linear address which caused the last
page fault detected.

CR3 is the Page Directory Physical Base Address
Register. It contains the physical starting address of
the Page Directory. The lower 12 bits of CR3 are
always zero to ensure that the Page Directory is al-
ways page aligned. Loading it via a MOV CR3, reg
instruction causes the Page Table Entry cache to be
flushed, as will a task switch through a TSS which
changes the value of CRO. (See 3.5.4 Translation
Lookaside Buffer).

3.5.2.3 PAGE DIRECTORY

The Page Directory is 4 Kbytes long and allows up to
1024 Page Directory Entries. Each Page Directory
Entry contains the address of the next level of ta-
bles, the Page Tables and: information about the
page table. The contents of a Page Directory Entry
are shown in Figure 4-20. The upper 10 bits of the
linear address (A22-A31) are used as an index to
select the correct Page Directory Entry.

TWO LEVEL PAGING SCHEME
31 22 12 0
———>{ DwecTory | TasLe | orrser | USER
LINEAR MEMORY
ADDRESS 10 ‘o L 12 1
31 ° @-» ADDRESS
386 $ T
31 0 3 4 (Oaq >
w[T] |
CR1 > >
GJ PAGE TABLE
CR2 T
CR3 ROOT >
DIRECTORY
~ CONTROL REGISTERS
271052-67
Figure 4-19, Paging Mechanism
31 12 11 10 9 8 7 6 5 4 3 2 1 0
0S U R
PAGE TABLE ADDRESS 31..12 RESERVED 0 0 D| A 0 O | —|—]| P
SiwW

Figure 4-20. Page Directory Entry (Points to Page Table)

11-54

M 4826175 0135691 834 EMTITLL

intgl.

MILITARY Intel386™ MICROPROCESSOR

31 12 1M 10 9 8 7 6 5 4 3 2 1 0
0s U R

PAGE FRAME ADDRESS 31..12 RESERVED 0J|O0O|D|{A]J]O|O|—]|—]|P
' S | W

Figure 4-21. Page Table Eﬁtry {Points to Page)

3.5.2.4 PAGE TABLES

Each Page Table is 4 Kbytes and holds up to 1024
Page Table Entries. Page Table Entries contain the
starting address of the page frame and statistical
information about the page (see Figure 4-21). Ad-
dress bits A12-A21 are used as an index to select
one of the 1024 Page Table Entries. The 20 upper-
bit page frame address is concatenated with the
lower 12 bits of the linear address to form the physi-
cal address. Page tables can be shared between
tasks and swapped to disks.

3.5.2.5 PAGE DIRECTORY/TABLE ENTRIES

The lower 12 bits of the Page Table Entries and
Page Directory Entries contain statistical information
about pages and page tables respectively. The P
(Present) bit 0 indicates if a Page Dirsctory or Page
Table entry can be used in address translation. If
P = 1 the entry can be used for address translation
if P = 0 the entry can not be used for transiation,
and all of the other bits are available for use by the
software. For example the remaining 31 bits could
be used to indicate where on the disk the page is
stored.

The A (Accessed) bit 5, is set by the M80386 for
both types of entries before a read or write access
occurs to an address covered by the entry. The D
(Dirty) bit 6 is set to 1 before a write to an address
covered by that page table entry occurs. The D bitis
undefined for Page Directory Entries. When the P, A
and D bits are updated by the Military Intel386 proc-
essor, it generates a Read-Modify-Write cycle which
locks the bus and prevents conflicts with other proc-
essors or perpherials. Software which modifies
these bits should use the LOCK prefix to ensure the
integrity of the page tables in multi-master systems.

The 3 bits marked OS Reserved in Figure 4-20 and
Figure 4-21 (bits 9-11) are software definable. OSs
are free to use these bits for whatever purpose they
wish. An example use of the OS Reserved bits
would be to store information about page aging. By
keeping track of how long a page has been in mem-
ory since being accessed, an operating system can
implement a page replacement algorithm like Least
Recently Used.

The (User/Supervisor) U/S bit 2 and the (Read/
Write) R/W bit 1 are used to provide protection attri-
butes for individual pages.

3.5.3 Page Level Protection
(R/W, U/S Bits)

The Military Intel386 processor provides a set of
protection attributes for paging systems. The paging
mechanism distinguishes between two levels of pro-
tection: User which corresponds to level 3 of the
segmentation based protection, and supervisor
which encompasses all of the other protection levels
(0, 1, 2). Programs executing at Level 0, 1 or 2 by-
pass the page protection, although segmentation
based protection is still enforced by the hardware.

The U/S and R/W bits are used to provide Us-
er/Supervisor and Read/Write protection for individ-
ual pages or for all pages covered by a Page Table
Directory Entry. The U/S and R/W bits in the first
level Page Directory Table apply to all pages de-
scribed by the page table pointed to by that directory
entry. The U/S and R/W bits in the second level

~ Page Table Entry apply only to the page described

by that entry. The U/S and R/W bits for a given
page are obtained by taking the most restrictive of
the U/S and R/W from the Page Directory Table
Entries. and the Page Table Entries and using these
bits to address the page.

Example: If the U/S and R/W bits for the Page Di-
rectory entry were 10 and the U/S and R/W bits for
the Page Table Entry were 01, the access rights for
the page would be 01, the numerically smaller of the
two. Table 4-4 shows the affect of the U/S and R/W
bits on accessing memory.

Table 4-4. Protection Provided by R/W and U/S

.| Permitted | Permitted Access
u/s | R/W Level 3 Levels0,1,0r2
0 0 None Read/Write
0 1 None Read/Write
1 0 Read-Only Read/Write
1 1 Read/Write Read/Write

However a given segment can be easily made read-
only for level 0, 1, or 2 via the use of segmented
protection mechanisms. {Section 3.4 Protection).

11-55

B 482b175 0135692 770 EMITLI

MILITARY Intel386™ MICROPROCESSOR

3.5.4 Translation Lookaside Buffer

The Military Intel386 processor paging hardware is
designed to support demand paged virtual memory
systoms. However, performance would degrade
substantially if the processor was required to access
two levels of tables for every memory reference.
solve this problem, the Military Intel386 processor
keeps a cache of the most recently accessed pagss,
this cache is called the Translation Lookaside Buffer
(TLB). The TLB is a four-way set associative 32-en-
try page table cache. It automatically keeps the most
commonly used Page Table Entries in the proces-
sor. The 32-entry TLB coupled with a 4K page size,
results in coverage of 128 Kbytes of memory ad-
dresses. For many common multi-tasking systems,
the TLB will have a hit rate of about 98%. This
means that the processor will only have to access
the two-level page structure on 2% of all memory
references. Figure 4-22 illustrates how the TLB com-
plements the Military Intel386 processor's paging
mechanism.

3.5.5 Paging Operation

32 ENTRIES
PHYSICAL
TRANSLATION MENORY
apess —»—] LooKasiDE —>
BUFFER HIT
MiSS
3 0
f
PAGE PAGE
DIRECTORY TABLE
® 98% HIT RATE
271052-68

a

intel.
read the appropriate Page Table Entry and set the
Access bit. If P = 1 on the Page Table Entry indicat-
ing that the page is in memory, the Military intel386
processor will update the Access and Dirty bits as
needed and fetch the operand. The upper 20 bits of
the linear address, read from the page table, will be
stored in the TLB for future accesses. However, if
P = 0 for either the Page Directory Entry or the
Page Table Entry, then the processor will generate a
page fault, an Exception 14.

The processor will also generate an exception 14,
page fault, if the memory reference violated the
page protection attributes (i.e. U/S or R/W) (e.g. try-
ing to write to a read-only page). CR2 will held the
linear address which caused the page fault. If a sec-
ond Page Fault occurs, while the processor is at-
tempting to enter the service routine for the first,
then the processor will invoke the Page Fault (ex-
ception 14) handler a second time, rather than the
Double Fault (exception 8) handler. Since Exception
14 is classified as a fault, CS: EIP will point to the
instruction causing the page fault. The 16-bit error
code pushed as part of the page fault handler will
contain status bits which indicate the cause of the
page fault.

The 16-bit error code is used by the operating sys-
tem to determine how to handle the page fault Fig-
ure 4-23a shows the format of the page-fault error
code and the interpretation of the bits.

NOTE: '
Even though the bits in the error code (U/S, W/R,
and P) have similar names as the bits in the Page
Directory/Table Entries, the interpretation of the er-
ror code bits is different. Figure 4-23b indicates
what type of access caused the page fault.

Figure 4-22. Translation Lookaside Buffer

The paging hardware operates in the following fash-
ion. The paging unit hardware receives a 32-bit lin-
ear address from the segmentation unit. The upper
20 linear address bits are compared with all 32 en-
tries in the TLB to determine if there is a match. If
there is a match (i.e. a TLB hit), then the 32-bit phys-
ical address is calculated and will be placed on the
address bus.

However, if the page table entry is not in the TLB,
the Military Intel386 microprocessor will read the ap-
propriate Page Directory Entry. If P = 1 on the Page
Directory Entry indicating that the page table is in
memory, then the Military Intel386 processor will

11-56

15 3210
u

ulufujujuiujulujululu|uju|u| |wiP
S|R

Figure 4-23a. Page Fault Error Code Format

U/S: The U/S bit indicates whether the access
causing the fault occurred when the processor was
executing in User Mode (U/S = 1) or in Supervisor
mode (U/S = 0)

W/R: The W/R bit indicates whether the access
causing the fault was a Read (W/R = 0) or a Write
(W/R = 1)

P: The P bit indicates whether a page fault was
caused by a not-present page (P = 0), or by a page
level protection violation (P = 1)

U: UNDEFINED

B 482bL175 0135L93 LO7? MEITLL

u/s W/R Access Type
0 0 Supervisor* Read
0 1 Supervisor Write
1 0 User Read
1 | User Write

*Descriptor table access will fault with U/S = 0, even if the program
is executing at level 3.

Figure 4-23b. Type of Access
Causing Page Fault

3.5.6 Operating System
Responsibilities

The Military Intel386 processor takes care of the
page address translation process, relieving the bur-
den from an operating system in a demand-paged
system. The operating system is responsible for set-
ting up the initial page tables, and handling any page
faults. The operating system also is required to inval-
idate (i.e. flush) the TLB when any changes are
made to any of the page table entries. The operating
system must reload CR3 to cause the TLB to be
flushed.

Setting up the tables is simply a matter of loading
CR3 with the address of the Page Directory, and
allocating space for the Page Directory and the
Page Tables. The primary responsibility of the oper-
ating system is to implement a swapping policy and
handle all of the page faults.

A final concern of the operating system is to ensure
that the TLB cache matches the information in the
paging tables. In particular, any time the operating
system sets the P present bit of page table entry to
zero, the TLB must be flushed. Operating systems
may want to take advantage of the fact that CR3 is
stored as part of a TSS, to give every task or group
of tasks its own set of page tables.

3.6 VIRTUAL M8086 ENVIRONMENT

3.6.1 Executing M8086 Programs

The Military Intel386 processor allows the execution
of M8086 application programs in both Real Mode
and in the Virtual M8086 Moade (Virtual Mode). Of
the two methods, Virtual M8086 Mode offers the
system designer the most flexibility. The Virtual
M8086 Mode allows the execution of M8086 appli-
cations, while still allowing the system designer to
take full advantage of the Military Intel386 processor
protection mechanism. In particular, the Military
Intel386 processor allows the simultaneous exscu-
tion of MB086 operating systems and its applica-
tions, and a Military Intel386 processor operating
system and both M80286 and Military Intel386 proc-

B 4426375 0L35694 543 ERITLI
I—.—l

MILITARY Intel386™ MICROPROCESSOR

essor applications. Thus, in a multi-user Military
Intel386 processor computer, one person could be
running an MS-DOS spreadsheet, another person
using MS-DOS, and a third person could be running
multiple Unix utilities and applications. Each person
in this scenario would believe that he had the com-
puter completely to himself. Figure 4-24 illustrates
this concept.

3.6.2 Virtual M8086 Mode Addressing
Mechanism

One of the major differences between Military
Intel386 processor Real and Protected modes is

-how the segment selectors are interpreted. When

the processor is executing in Virtual M8086 Mode
the segment registers are used in an identical fash-
ion to Real Mode. The contents of the segment reg-
ister is shifted left 4 bits and added to the offset to
form the segment base lingar address.

The Military Intel386 processor allows the operating
system to specify which programs use the M8086
style address mechanism, and which programs use
Protected Mode addressing, on a per task basis.
Through the use of paging, the one megabyte ad-
dress space of the Virtual Mode task can be mapped
to anywhere in the 4 gigabyte linear address space
of the Military Intel386 processor. Like Real Mods,
Virtual Mode effective addresses (i.e., segment off-
sets) that exceed 64 Kbyte will cause an exception
13. However, these restrictions should not prove to
be important, because most tasks running in Virtual
M8086 Mode will simply be existing M8086 applica-
tion programs.

3.6.3 Paging In Virtual Mode

The paging hardware allows the concurrent running
of multiple Virtual Mode tasks, and provides protec-
tion and operating system isolation. Although it is
not strictly necessary to have the paging hardware
enabled to run Virtual Mode tasks, it is needed in
order to run multiple Virtual Mode tasks or to relo-
cate the address space of a Virtual Mode task to
physical address space greater than one megabyte.

The paging hardware allows the 20-bit linear ad-
dress produced by a Virtual Mode program to be
divided into up to 256 pages. Each one of the pages
can be located anywhere within the maximum 4 giga-
byte physical address space of the Military Intel386
processor. In addition, since CR3 (the Page Directo-
ry Base Register) is loaded by a task switch, each
Virtual Mode task can use a different mapping
scheme to map pages to different physical locations.
Finaily, the paging hardware allows the sharing of
the M8086 operating system code between muiltiple

11-57

MILITARY Intel386™ MICROPROCESSOR

PAGE N

MB086 0S

EMPTY

TASK 2 PAGE
TABLE

PAGE DIRECTORY
TASK 2

VIRTUAL MODE
Qsoss TASK

f

PAGE N

PAGE 1

M8086 0S

PHYSICAL
MEMORY

—

02000000(H)

7////////////
il

AVAILABLE

L 4

EMPTY

TASK 1 PAGE
TABLE

PAGE DIRECTORY
ROOT

A 4

PAGE DIRECTORY
TASK 1

VIRTUAL MODE

QBDSG TASK

00000000(H)
TASK 1 M8086 05
MEMORY MEMORY

777} TASK 2 \J M80386 05
//A MEMORY & MEMORY

271052-69

Figure 4-24. Virtual M8086 Environment Memory Management

M8086 applications. Figure 4-24 shows how the Mili-
tary Intel386 processor paging hardware enables
multiple M8086 programs to run under a virtual
memory demand paged system.

3.6.4 Protection and 1/0 Permission
Bitmap

All Virtual MB8086 Mode programs execute at privi-
lege level 3, the level of least privilege. As such,
Virtual M8086 Mode programs are subject to all of
the protection checks defined in Protected Mode.
(This is different from Real Mode which implicitly is
executing at privilege level 0, the level of greatest
privilege.) Thus, an attempt to execute a privileged
instruction when in Virtual M8086 Mode will cause
an exception 13 fault.

The following are privileged instructions, which may
be executed only at Privilege Level 0. Therefore, at-
tempting to execute these instructions in Virtual
M8086 Mode (or anytime CPL > 0) causes an ex-
ception 13 fault:

LIDT; MOV DRn,reg;
LGDT; MOV TRn,reg;

MOV reg,DRn;
MOV reg,TRn:;

LMSW; MOV reg,CRn.
CLTS;

HLT;

MOV CRn,reg;

Several instructions, particularly those applying to
the multitasking model and protection model, are
available only in Protected Mode. Therefore, at-
tempting to execute the following instructions in
Real Mode or in Virtual M8086 Mode generates an
exception 6 fault:

LTR; STR;
LLDT; SLDT ;
LAR; VERR ;
LSL; VERW ;
ARPL,

The instructions which are IOPL-sensitive in Protect-
ed Mode are:

IN; STI;
OUT; CLI
INS;

OUTS;

REP INS;

REP OUTS;

11-58
B 482b175 0135695 4AT MMITLL I

intel.

In Virtual M8086 Mode, a slightly different set of in-
structions are made IOPL-sensitive. The following in-
structions are IOPL-sensitive in Virtual M8086 Mode:

INT n; STI;
PUSHF ; CLI;
POPF; IRET

The PUSHF, POPF, and IRET instructions are IOPL-
sensitive in Virtual M8086 Mode only. This provision
allows the IF flag (interrupt enable flag) to be virtual-
ized to the Virtual M8086 Mode program. The INT n
software interrupt instruction is also IOPL-sensitive
in Virtual M8086 Mode. Note, however, that the INT
3 (opcode OCCH), INTO, and BOUND instructions
are not IOPL-sensitive in Virtual M8086 mode (they
aren’t IOPL sensitive in Protected Mode either).

Note that the 1/0 instructions (IN, OUT, INS, OUTS,
REP INS, and REP OUTS) are not IOPL-sensitive in
Virtual M8086 mode. Rather, the 1/0 instructions be-
come automatically sensitive to the 170 Permission
Bitmap contained in the Military Intel386 Proces-
sor Task State Segment. The I/0 Permission Bit-
map, automatically used by the Military Intel386
processor in Virtual M8086 Mods, is illustrated by
Figures 4-15a and 4-15b.

The |I/0 Permission Bitmap can be viewed as a 0-
64 Kbit bit string, which begins in memory at offset
Bit_Map__Offset in the current TSS. The 16-bit
pointer Bit__Map__Offset (15:0) is found in the word
beginning at offset 66H (102 decimal) from the TSS
base, as shown in Figure 4-15a.

Each bit in the 1/0 Permission Bitmap corresponds
to a single byte-wide 1/0 port, as illustrated in Figure
4-15a. If a bit is 0, 170 to the corresponding byte-
wide port can occur without generating an excep-
tion. Otherwise the 1/0 instruction causes an excep-
tion 13 fault. Since every byte-wide I/0 port must be
protectable, all bits corresponding to a word-wide or
dword-wide port must be 0 for the word-wide or
dword-wide /O to be permitted. If all the referenced
bits are 0, the 1/0 will be allowed. If any referenced
bits are 1, the attempted 1/0 will cause an exception
13 fault.

Due to the use of a pointer to the base of the I/0
Permission Bitmap, the bitmap may be located any-
where within the TSS, or may be ignored completely
by pointing the Bit__Map__Offset {(15:0) beyond the
limit of the TSS segment. In the same manner, only
a small portion of the 64K 1/0 space need have an
associated map bit, by adjusting the TSS limit to
truncate the bitmap. This eliminates the commitment
of BK of memory when a complete bitmap is not
required, while allowing the fully general case if de-
sired.

EXAMPLE OF BITMAP FOR 1/0 PORTS 0-255:
Setting the TSS limit to (bit_Map__Offset + 31 +
1**} [** see note below] will allow a 32-byte bit-

MILITARY Intel386™ MICROPROCESSOR

map for the 1/0 ports #0-255, plus a terminator
byte of all 1's [** see note below]. This allows the
170 bitmap to control I1/0 Permission to 1/0 port 0-
255 while causing an exception 13 fault on attempt-
ed 170 to any 1/0 port 256 through 65,565.

**IMPORTANT IMPLEMENTATION NOTE: Beyond
the last byte of 170 mapping information in the /0
Permission Bitmap must be a byte containing all 1's.
The byte of all 1's must be within the limit of the
Intel386 TSS segment (see Figure 4-15a).

3.6.5 Interrupt Handling

In order to fully support the emuiation of an M8086
machine, interrupts in Virtual M8086 Mode are han-
dled in a unique fashion. When running in Virtual
Mode all interrupts and exceptions involve a privi-
lege change back to the host Military Intel386 proc-
essor operating system. The Military Intel386 proc-
essor operating system determines if the interrupt
comes from a Protected Mode application or from a
Virtual Mode program by examining the VM bit in the
EFLAGS image stored on the stack.

When a Virtual Mode program is interrupted and ex-
ecution passes to the interrupt routine at level 0, the
VM bit is cleared. However, the VM bit is still set in
the EFLAG image on the stack.

The Military intel386 processor operating system in
turn handles the exception or interrupt and then re-
turns control to the M8086 program. The Military
Intel386 processor operating system may choose to
let the M8086 operating system handle the interrupt
or it may emulate the function of the interrupt han-
dler. For example, many MB8086 operating system
calls are accessed by PUSHing parameters on the
stack, and then executing an INT n instruction. If the
IOPL is set to 0 then all INT n instructions will be
intercepted by the Military Intel386 processor oper-
ating system. The Military Intel386 processor operat-
ing system could emulate the M8086 operating sys-
tem’s call. Figure 4-25 shows how the Military
Intel386 processor operating system could intercept
an M8086 operating system’s call to “Open a File”.

A Military Intel386 processor operating system can
provide a Virtual M8086 Environment which is totally
transparent to the application software via intercept-
ing and then emulating M8086 operating system'’s
calls, and intercepting IN and OUT instructions.

3.6.6 Entering and Leaving Virtual
M8086 Mode

Virtual M8086 mode is entered by executing an IRET
instruction (at CPL=0), or Task Switch (at any CPL)
to a Military Intel386 processor task whose Military
Intel386 processor TSS has a FLAGS image con-

11-59

B 43826175 0135696 31 WEITLL

—+n

MILITARY Intel386™ MICROPROCESSOR

taining a 1 in the VM bit position while the processor
is executing in Protected Mode. That is, one way to
enter Virtual M8086 mode is to switch to a task with
a Military Intel386 processor TSS that has a 1 in the
VM bit in the EFLAGS image. The other way is to
execute a 32-bit IRET instruction at privilege level 0,
where the stack has a 1 in the VM bit in the EFLAGS
image. POPF does not affect the VM bit, even if the
processor is in Protected Mode or level 0, and so
cannot be used to enter Virtual M8086 Mode.
PUSHF always pushes a C in the VM bit, even if the
processor is in Virtual M8086 Mode, so that a pro-
gram cannot tell if it is executing in REAL mode, or in
Virtual M8086 mode.

The VM bit can be set by executing an IRET instruc-
tion only at privilege level 0, or' by any instruction or
Interrupt which causes a task switch in Protected
Mode (with VM=1 in the new FLAGS image), and
can be cleared only by an interrupt or exception in
Virtual M8086 Mode. IRET and POPF instructions
executed in REAL mode or Virtual M8086 mode will
not change the value in the VM bit.

The transition out of virtual M8086 mode to Military
Intel386 processor protected mode occurs only on
receipt of an interrupt or exception (such as due to a
sensitive instruction). In Virtual M8086 mode, all in-
terrupts and exceptions vector through the protect-
ed mode IDT, and enter an interrupt handler in pro-
tected Military Intel386 processor mode. That is, as
part of interrupt processing, the VM bit is cleared.

Because the matching IRET must occur from level 0,
if an Interrupt or Trap Gate is used to field an inter-
rupt or exception out of Virtual M8086 mode, the
Gate must perform an inter-level interrupt only to
level 0. Interrupt or Trap Gates through conforming
segments, or through segments with DPL>0, will
raise a GP fault with the CS selector as the error
code.

3.6.6.1 TASK SWITCHES TO/FROM VIRTUAL
Ms8086 MODE

Tasks which can execute in virtual M8086 mode
must be described by a TSS with the new Military
Intel386 processor format (TYPE 9 or 11 descriptor).

A task switch out of virtual M8086 mode will operate
exactly the same as any other task switch out of a
task with a Military Intel386 processor TSS. All of the
programmer visible state, including the FLAGS reg-
ister with the VM bit set to 1, is stored in the TSS.
The segment registers in the TSS will contain
M8086 segment base values rather than selectors.

A task switch into a task described by a Military
Intel386 processor TSS will have an additional
check to determine if the incoming task should be
resumed in virtual M8086 mode. Tasks described by
286 format TSSs cannot be resumed in virtual
M8086 mode, so no check is required there (the

intgl.

FLAGS image in 286 format TSS has only the low
order 16 FLAGS bits). Before loading the segment
register images from a Military Intel386 processor
TSS, the FLAGS image is loaded, so that the seg-
ment registers are loaded from the TSS image as
M8086 segment base values. The task is now ready
to resume in virtual M8086 execution mode.

3.6.6.2 TRANSITIONS THROUGH TRAP AND
INTERRUPT GATES, AND IRET

A task switch is one way to enter or exit virtual
MB086 mode. The other method is to exit through a
Trap or Interrupt gate, as part of handling an inter-
rupt, and to enter as part of executing an IRET
instruction. The transition out must use a Military
Intel386 processor Trap Gate (Type 14), or Military
Intel386 processor interrupt Gate (Type 15), which
must point to a non-conforming level 0 segment
(DPL=0) in order to permit the trap handler to IRET
back to the Virtual M8086 program. The Gate must
point to a non-conforming level 0 segment to per-
form a level switch to level 0 so that the matching
IRET can change the VM bit. Military intel386 proc-
essor gates must be used, since 286 gates save
only the low 16 bits of the FLAGS register, so that
the VM bit will not be saved on transitions through
the 286 gates. Also, the 16-bit IRET (presumably)
used to terminate the 286 interrupt handler will pop
only the lower 16 bits from FLAGS, and will not af-
fect the VM bit. The action taken for a Military
Intel386 processor Trap or Interrupt gate if an inter-
rupt occurs while the task is executing in virtual
M8086 mode is given by the following sequence.
(1) Save the FLAGS register in a temp to push later.
Turn off the VM and TF bits, and if the interrupt is
serviced by an Interrupt Gate, turn off IF aiso.

(2) Interrupt and Trap gates must perform a level
switch from 3 (where the VM86 program exe-
cutes) to level 0 (so {RET can return). This pro-
cess involves a stack switch to the stack given in
the TSS for privilege level 0. Save the Virtual
M8086 Mode SS and ESP registers to push in a
later step. The segment register load of SS will
be done as a Protected Mode segment load,
since the VM bit was turned off above.

(3) Push the M8086 segment register values onto
the new stack, in the order: GS, FS, DS, ES.
These are pushed as 32-bit quantities, with unde-
fined values in the upper 16 bits. Then load these
4 registers with null selectors (0).

(4) Push the old M8086 stack pointer onto the new
stack by pushing the SS register (as 32-bits, high
bits undefined), then pushing the 32-bit ESP reg-
ister saved above.

(5) Push the 32-bit FLAGS register saved in step 1.

(6) Push the old M8086 instruction pointer onto the
new stack by pushing the CS register (as 32-bits,
high bits undefined), then pushing the 32-bit EIP
register.

11-60
- MW 4826175 0135L97 252 ERITLL

MILITARY Intel386™ MICROPROCESSOR

ROGRAM,

MBOSS
OPERATIRG .3

BO86 APPLICATION

ot P FAULT

YIRTUAL MB086
MODE MONITOR

i386™ APPLICATION
PROGRAM

»2

SYSTEM

1386 08
FILE OPEN
ROUTINES

M8086 Application makes “Open File Call” — causes
General Protection Fault (Arrow # 1)

M8086 OS returns control to application. (Arrow #4)
Transparent to Application

PRIVILEGE
LEVEL @
(HIGHEST)

MB0BE APPLICATION
PROGRAM

PRIVILEGE
LEVEL 3
{LOWEST)

Virtual M8086 Monitor intercepts call. Calls Military Intel386 processor OS (Arrow #2)
Military Intel386 processor OS opens file returns control to M80B6 OS (Arrow #3)

271052-70

Figure 4-25. Virtual M8086 Environment Interrupt and Cail Handling

(7) Load up the new CS:EIP value from the interrupt
gate, and begin execution of the interrupt routine
in protected Military intel386 processor mode.

The transition out of virtual MB086 mode performs a
level change and stack switch, in addition to chang-
ing back to protected mode. In addition, all of the
MB086 segment register images are stored on the
stack (behind the SS:ESP image), and then loaded
with null (0) selectors before entering the interrupt
handler. This will permit the handler to safely save
and restore the DS, ES, FS, and GS registers as 286
selectors. This is needed so that interrupt handlers
which don’t care about the mode of the interrupted
program can use the same proiog and epilog code
for state saving (i.e. push all registers in prolog, pop
all in epilog) regardiess of whether or not a “native’”
mode or Virtual M8086 mode program was interrupt-
ed. Restoring null selectors to these registers before
executing the IRET will not cause a trap in the inter-
rupt handler. Interrupt routines which expect values
in the segment registers, or return values in segment
registers will have to obtain/return valuss from the
M8086 register images pushed onto the new stack.
They will need to know the mode of the interrupted
program in order to know where to find/return seg-
ment registers, and also to know how to interpret
segment register values.

The IRET instruction will perform the inverse of the
above sequence. Only the extended Military Intel386
processor IRET instruction (operand size=32) can
be used, and must be executed at level 0 to change
the VM bit to 1.

(1) If the NT bit in the FLAGS register is on, an inter-
task return is performed. The current state is
stored in the current TSS, and the link field in the
current TSS is used to locate the TSS for the
interrupted task which is to be resumed.

Otherwise, continue with the following sequence.

(2) Read the FLAGS image from SS:8[ESP] into the
FLAGS register. This will set VM to the value ac-
tive in the interrupted routine.

(3) Pop off the instruction pointer CS:EIP. EIP is
popped first, then a 32-bit word is popped which
contains the CS value in the lower 16 bits. If
VM=0, this CS load is done as a protected

. mode segment load. if VM= 1, this will be done
as an M8086 segment load.

(4) Increment the ESP register by 4 to bypass the
FLAGS image which was “popped” in step 1.

(5) If VM=1, load segment registers ES, DS, FS,
and GS from memory locations SS:[ESP+ 8],
SS:[ESP+12], SS:[ESP+16], and
SS:[ESP + 20], respectively, where the new val-
ue of ESP stored in step 4 is used. Since VM =1,
these are done as M8086 segment register
loads.

Else if VM =0, check that the selectors in ES,
DS, FS, and GS are valid in the interrupted rou-
tine. Null out invalid selectors to trap if an at-
tempt is made to access through them.

11-61

B 442b175 0135698 199 EMITLL

i e ———

MILITARY Intel386™ MICROPROCESSOR

(6) If (RPL(CS) > CPL), pop the stack pointer
SS:ESP from the stack. The ESP register is
popped first, followed by 32-bits containing SS in
the lower 16 bits. If VM=0, SS is loaded as a
protected mode segment register load. If VM=1,
an M8086 segment register load is used.

(7) Resume execution of the interrupted routine. The
VM bit in the FLAGS register (restored from the
interrupt routine’s stack image in step 1) deter-
mines whether the processor resumes the inter-
rupted routine in Protected mode of Virtual
M8086 mode.

4.0 FUNCTIONAL DATA

4.1 INTRODUCTION

The Military Intel386 processor features a straight-
forward functional interface to the external hard-
ware. The Military Intel386 processor has separate,
parallel buses for data and address. The data bus is
32-bits in width, and bidirectional. The address bus
outputs 32-bit address values in the most directly
usable form for the high-speed local bus: 4 individual
byte enable signals, and the 30 upper-order bits as a
binary value. The data and address buses are inter-
preted and controlled with their associated control
signals.

A dynamic data bus sizing feature allows the proc-
essor to handle a mix of 32- and 16-bit external bus-
es on a cycle-by-cycle basis (see 4.3.4 Data Bus
Sizing). If 16-bit bus size is selected, the M80386
automatically makes any adjustment needed, even
performing another 16-bit bus cycle to complete the
transfer if that is necessary. 8-bit peripheral devices
may be connected to 32-bit or 16-bit buses with no
loss of performance. A new address pipelining op-
tion is provided and applies to 32-bit and 16-bit
buses for substantially improved memory utilization,
especially for the most heavily used memory re-
sources.

The address pipelining option, when selected, typ-
ically allows a given memory interface to operate
with one less wait state than would otherwise be
required (see 4.4.2 Address Pipelining). The pipe-
lined bus is also well suited to interleaved memory
designs. For 16 MHz interleaved memory designs
with 100 ns access time DRAMSs, zero wait states
can be achieved when pipelined addressing is se-
lected. When address pipelining is requested by the
external hardware, the Military Intel386 processor
will output the address and bus cycle definition of
the next bus cycle (if it is internally available) even
while waiting for the current cycle to be acknowl-
edged.

Non-pipelined address timing, however, is ideal for
external cache designs, since the cache memory will

-

intal.
typically be fast enough to allow non-pipelined cy-
cles. For maximum design flexibility, the address

pipelining option is selectable on a cycle-by-cycle
basis.

The processor's bus cycle is the basic mechanism
for information transfer, either from system to proc-
essor, or from processor to system. Military Intel386
processor bus cycles perform data transfer in a mini-
mum of only two clock periods. On a 32-bit data bus,
the maximum Military Intel386 processor transfer
bandwidth at 16 MHz is therefore 32 Mbytes/sec.
Any bus cycle will be extended for more than two
clock periods, however, if external hardware with-
holds acknowledgement of the cycle. At the appro-
priate time, acknowledgement is signalled by assert-
ing the Military Intel386 processor READY input.

The Military Intel386 processor can relinquish con-
trol of its local buses to allow mastership by other
devices, such as direct memory access channels.
When relinquished, HLDA is the only output pin driv-
en by the Military Intel386 processor, providing near-
complete isolation of the processor from its system.
The near-complete isolation characteristic is ideal
when driving the system from test equipment, and in
fault-tolerant applications.

Functional data covered in this chapter describes
the processor’s hardware interface. First, the set of
signals available at the processor pins is described
(see 4.2 Signal Description). Following that are the
signal waveforms occurring during bus cycles (see
4.3 Bus Transfer Mechanism, 4.4 Bus Functional
Description and 4.5 Other Functional Descrip-
tions).

4.2 SIGNAL DESCRIPTION

4.2.1 Introdu.ction

The signal descriptions sometimes refer to AC tim-
ing parameters, such as “ta5 Reset Setup Time” and
“tog Reset Hold Time.” The values of these parame-
ters can be found in Tables 7-4 and 7-5.

4.2.2 Clock (CLK2)

CLK2 provides the fundamental timing for the Mili-
tary Intel386 microprocessor. It is divided by two in-
ternally to generate the internal processor clock
used for instruction execution. The internal clock is
comprised of two phases, “phase one” and “phase
two.” Each CLK2 period is a phase of the internal
clock. Figure 5-2 illustrates the relationship. If de-
sired, the phase of the internal processor clock can
be synchronized to a known phase by ensuring the
RESET signal falling edge meets its applicable setup
and hold times, to5 and tog.

11-62 ‘
B 4826175 0135699 025 MEITLL

-
'nu o MILITARY Intel386™ MICROPROCESSOR

CLK2
—
2x CLock ADDRESS BUS _) A2-A31
BE3 >)
BE2 BYTE 32-8iT
32-BIT — ADDRESS
DATA [00-03 1 DATA BUS E ENABLES
‘ BEO I
——ADS 1 aLitary /R 1
ous NA 1386 D/C
BS16 PROCESSOR
CONTROL 5516, /10 ,. | BUS CYCLE DEFINITION
READY | LOCK '
-
HOLD PEREQ R
BUS ————
HLDA
ARBITRATION {4——- B | COPROCESSOR SIGNALLING
DT
INTR
——
INTERRUPTS Rl Yoo
—] —
RESET GND] POWER CONNECTIONS
—_— —_—
271052-1

Figure 5-1. Functional Signal Groups

PROCESSOR CLOCK PROCESSOR CLOCK
PERIOD PERIOD
CLK2 PERIOD | CLKZ PERIOD { CLK2 PERIOD | CLK2 PERIOD

¢ 1 $1 $2

N s W /o N

INTERNAL MBO386 _ |
PROCESSOR CLOCK [
(HALF THE FREQUENCY
OF CLK2)

62ns MIN |16 MHz i386™
{16 MHz MAX) |PROCESSOR |

83ns um]az MHz 1386

(42.5 MHz MAX) [PROCESSOR |
271052-2
Figure 5-2. CLK2 Signal and Internal Processor Clock
4.2.3 Data Bus (D0 through D31) 4.2.4 Address Bus (BEO through BE3,

These three-state bidirectional signals provide the A2 through A31)

general purpose data path between the M80386 and These three-state outputs provide physical memory
other devices. Data bus inputs and outputs indicate addresses or |/O port addresses. The address bus
“1" when HIGH. The data bus can transfer data on is capable of addressing 4 gigabytes of physical
32- and 16-bit buses using a data bus sizing feature memory space (00000000H through FFFFFFFFH),
controlled by the BS16 input. See Section 4.2.6 Bus and 64 kilobytes of I/0 address space (00000000H
Contol. Data bus reads require that read data setup through OO0OFFFFH) for programmed 1/0. 1/0
and hold times ta1 and too be met for correct opera- transfers automatically generated for Military
tion. During any write operation (and during halt cy- Intel386 processor-to-coprocessor communication
cles and shutdown cycles), the Military Intel386 use I/0 addresses 800000F8H through 800000FFH,
processor always drives all 32 signals of the data so A31 HIGH in conjunction with M/IO LOW allows
bus even if the current bus size is 16-bits. simple generation of the coprocessor selact signal.

» 11-63
BN 4826175 0135700 b7?7? EMEITLL

MILITARY Intel386™ MICROPROCESSOR

The Byte Enable outputs, BEO-BES, directly indi-
cate which bytes of the 32-bit data bus are involved
with the current transfer. This is most convenient for
external hardware.

BED applies to D0-D7
BET1 applies to D8-D15
BE2 applies to D16-D23
BE3 applies to D24-D31

The number of Byte Enables asserted indicates the
physical size of the operand being transferred (1, 2,
3, or 4 bytes). Refer to Section 4.3.6 Operand
Alignment.

When a memory write cycle or I/0 write cycle is in
progress, and the operand being transferred occu-
pies only the upper 16 bits of the data bus (D16-
D31), duplicate data is simultaneously presented on
the corresponding lower 16-bits of the data bus
(D0-D15). This duplication is performed for optimum
write performance on 16-bit buses. The pattern of
write data duplication is a function of the Byte En-
ables asserted during the write cycle. Table 5-1 lists
the write data present on D0-D31, as a function of
the asserted Byte Enable outputs BEO-BES.

intel.

4.2.5 Bus Cycle Definition Signals
(W/R, D/C, M/10, LOCK)

These three-state outputs define the type of bus
cycle being performed. W/R distinguishes between
write and read cycles. D/C distinguishes between
data and control cycles. M/iQ distinguishes between
memory and 1/0 cycles. LOCK distinguishes be-
tween locked and unlocked bus cycles.

The primary bus cycle definition signals are W/R,
D/C and M/10, since these are the signals driven
valid as the ADS (Address Status output) is driven
asserted. The LOCK is driven valid at the same time
as the first locked bus cycle begins, which due to
address pipelining, could be later than ADS is driven
asserted. See 4.4.3.4 Pipelined Address. The
LOCK is negated when the READY input terminates
the last bus cycle which was locked.

Exact bus cycle definitions, as a function of W/R,
D/C, and M/10, are given in Table 5-2. Note one
combination of W/R, D/C and M/10 is never given
when ADS is asserted (however, that combination,
which is listed as “does not occur,” will occur durin
idle bus states when ADS is not asserted). If M/TOg,
D/C, and W/R are qualified by ADS asserted, then a
decoding scheme may use the non-occurring combi-
nation to its best advantage.

Table 5-1. Write Data Duplication as a Function of BEO-BE3

Military Intel386 Military Intel386
Processor Byte Enables Processor Write Data Automatic

pm— — — — Dupfication?
BE3 BE2 BE1 BEO D24-D31 D16-D23 D8-D15 DO-D7

High High High Low undef undef undef A No
High High Low High undef undef B undef No
High Low High High undef c - undef C Yes
Low High High High D undef D undef Yes
High High Low Low undef undef B A No
High Low Low High undef C B undef No
Low Low High High D C D o] Yes
High Low Low Low undef C B8 A No
Low Low Low High D c B undef No
Low Low Low Low D Cc B A No

Key:
D = logical write data d24-d31
C = logical write data d16-d23
B = logical write data d8-d15
A = logical write data d0-d7

'

11-64
M 482L175 0135701 503 EEITLD I

MILITARY Intel386™ MICROPROCESSOR

Table 5-2. Bus Cycle Definition

M/10 b/C ‘W/R Bus Cycle Type Locked?
Low Low Low INTERRUPT ACKNOWLEDGE Yes
Low Low High does not occur —

Low High Low 170 DATA READ No
Low High High 1/0 DATA WRITE No
High Low Low MEMORY CODE READ : No
High Low High HALT: SHUTDOWN: No
Address = 2 Address = 0
(BED High (BED Low
BET High BET High
BE2 Low BE2 High
BE3 High BE3 High
A2-A31 Low) - A2-A31 Low)

High High Low MEMORY DATA READ Some Cycles

High High High MEMORY DATA WRITE Some Cycles

4.2.6 Bus Control Signals

4.2.6.1 INTRODUCTION

The following signals allow the processor to indicate
when a bus cycle has begun, and allow other system
hardware to control address pipelining, data bus
width and bus cycle termination.

4.2.6.2 ADDRESS STATUS (ADS)

This three-state output indicates that a valid bus cy-
cle definition, and address (W/R, D/C, M/10, BEO-
BE3, and A2-A31) is being driven at the Military
Intel386 processor pins. It is asserted during T1 and
T2P bus states (see 4.4.3.2 Non-pipelined Ad-
dress and 4.4.3.4 Pipelined Address for additional
information on bus states).

4.2.6.3 TRANSFER ACKNOWLEDGE (READY)

This input indicates the current bus cycle is com-
plete, and the active bytes indicated by BE0O-BE3
and BS16 are accepted or provided. When READY
is sampled asserted during a read cycle or interrupt
acknowledge cycle, the Military Intel386 processor
latches the input data and terminates the cycle.
When READY is sampled asserted during a write
cycle, the processor terminates the bus cycle.

READY is ignored on the first bus state of all bus
cycles, and sampled each bus state thereafter until
asserted. READY must eventually be asserted to ac-
knowledge every bus cycle, including Halt Indication
and Shutdown Indication bus cycles. When be-

ing sampled, READY must always mest setup and
hold times t1g and taqg for correct operation. See all
Sections of 4.4 Bus Functional Description.

4.2.6.4 NEXT ADDRESS REQUEST (NA)

This is used to request address pipelining. This input
indicates the system is prepared to accept new val-
ues of BEO-BE3, A2-A31, W/R, D/C and M/IO
from the Military Intel386 processor even if the end
of the current cycle is not being acknowledged on
READY. If this input is asserted when sampled, the
next address is driven onto the bus, provided the
next bus request is already pending. internally. See
4.4.2 Address Pipelining and 4.4.3 Read and
Write Cycles.

4.2.6.5 BUS SIZE 16 (BS16)

The BS16 feature allows the Military Intel386 proc-
essor to directly connect to 32-bit and 16-bit data
buses. Asserting this input constrains the current
bus cycle to use only the lower-order half (D0-D15)
of the data bus, comesponding to BED and BET. As-
serting BS16 has no additional effect if only BEO
and/or BE1 are asserted in the current cycle. How-
ever, during bus cycles asserting BE2 or BES3, as-
serting BS16 will automatically cause the Military
Intel386 processor to make adjustments for correct
transfer of the upper bytes(s) using only physical
data signals DO-D15.

If the_operand spans both halves of the data bus
and BS16 is asserted, the Military Intel386 proces-
sor will automatically perform another 16-bit bus cy-
cle. BS16 must always meet setup and hold times
t47 and tyg for correct operation.

11-65

B 4826175 0135702 uuT EEITLL

e e ———

MILITARY Intel386™ MICROPROCESSOR

Military Intel386 processor I/O cycles are automati-
cally generated for coprocessor communication.
Since the Military Intei386 processor must transfer
32.bit quantities between itself and the M387 NPX,
BS16 must not be asserted dunng M387 NPX com-
munication cycles.

4.2.7 Bus Arbitration Signals

4.2.7.1 INTRODUCTION

This section describes the mechanism by which the
processor relinquishes control of its local buses
when requested by another bus master device. See
4.5.1 Entering and Exiting Hold Acknowledge for
additional information.

4.2.7.2 BUS HOLD REQUEST (HOLD)

This input indicates some device other than the Mili-
tary Intel386 processor requires bus mastership.

HOLD must remain asserted as long as any other
device is a local bus master. HOLD is not recognized
while RESET is asserted. If RESET is asserted while
HOLD is asserted, RESET has. priority and places
the bus into an idle state, rather than the hold ac-
knowledge (high impedance) state.

HOLD is level-sensitive and is a synchronous input.
HOLD signals must always meet setup and hold
times t23 and to4 for-correct operation.

4.2.7.3 BUS HOLD ACKNOWLEDGE (HLDA)

Assertion of this output indicates the Military
Intel386 processor has relinquished control of its lo-
cal bus in response to HOLD asserted, and is in the
bus Hold Acknowledge state.

The Hold Acknowledge state offers near-complete
signal isolation. In the Hold Acknowledge state,
HLDA is the only signal being driven by the Military
386 processor. The other output signals or bidirec-
tional signals (D0-D31, BEO-BES, A2-A31, W/R,
D/C, M/10, LOCK and ADS) are in a high-imped-
ance state so the requesting bus master may control
them. Pullup resistors may be desired on several sig-
nals to avoid spurious activity when no bus master is
driving them. See 6.2.3 Resistor Recommenda-
tions. Also, one rising edge occuring on the NMI
input during Hold Acknowledge is remembered, for
processing after the HOLD input is negated.

In addition to the normal usage of Hold Acknowl-
edge with DMA controliers or master peripherals,
the near-complete isolation has particular attractive-

intal.

. ness during system test when test equipment drives

the system, and in hardware-fault-tolerant applica-
tions.

4.2.8 Coprocessor Interface Signals

4.2.8.1 INTRODUCTION

In the following sections are descriptions of signals
dedicated to the numeric coprocessor interface. In
addition to the data bus, address bus, and bus cycle
definition signals, these following signals control
communication between the Military Intel386 micro-
processor and its M387 processor extension.

4.2.8.2 COPROCESSOR REQUEST (PEREQ)

When asserted, this input signal indicates a coproc-
essor request for a data operand to be transferred
to/from memory by the Military Intel386 processor.
In response, the Military Intel386 processor trans-
fers information between the coprocessor and mem-
ory. Because the Military Intel386 processor has in-
ternally stored the coprocessor opcode being exe-
cuted, it performs the requested data transfer with
the correct direction and memory address.

PEREQ is level-sensitive and is allowed to be asyn-
chronous to the CLK2 signal.

4.2.8.3 COPROCESSOR BUSY (BUSY)

When asserted, this input indicates the coprocessor
is still executing an instruction, and is not yet able to
accept another. When the Military Intel386 proces-
sor encounters any coprocessor instruction which
operates on the numeric stack (e.g. load, pop, or
arithmetic operation), or the WAIT instruction, this
input is first automatically sampled until it is seen to
be negated. This sampling of the BUSY input pre-
vents overrunning the execution of a previous co-
processor instruction.

The FNINIT and FNCLEX coprocessor instructions
are allowed to execute even if BUSY is asserted,
since these instructions are used for coprocessor
initialization and exception-clearing.

BUSY is level-sensitive and is allowed to be asyn-
chronous to the CLK2 signal.

‘BUSY serves an additional function. If BUSY is sam-

pled LOW at the falling edge of RESET, the Military
Intei386 processor performs an internal self-test
(see 4.5.3 Bus Activity During and Foliowing Re-
set). If BUSY is sampled HIGH, no self-test is per-
formed.

11-66
' B 4826175 0135703 36L MBITLL I

intgl.

4.2.8.4 COPROCESSOR ERROR (ERROR)

This input signal indicates that the previous coproc-
essor instruction generated a coprocessor error of a
type not masked by the coprocessor’s control regis-
ter. This input is automatically sampled by the Mili-
tary Intel386 processor when a coprocessor instruc-
tion is encountered, and if asserted, the Military
Intel386 processor generates exception 16 to ac-
cess the error-handling software.

Several coprocessor instructions, generally those
which clear the numeric error flags in the coproces-
sor or save coprocessor state, do execute without
the Military Intel386 processor generating exception
16 even if ERROR is asserted. These instructions
are FNINIT, FNCLEX, FSTSW, FSTSWAX, FSTCW,
FSTENV, FSAVE, FESTENV and FESAVE.

ERROR is level-sensitive and is allowed to be asyn-
chronous to the CLK2 signal.

ERROR serves an additional function. If ERROR is
LOW no later than 20 CLK2 periods after the falling
edge of RESET and remains LOW at least until the
Military Intel386 processor begins its first bus cycle,
a Military i387 NPX is assumed to be present (ET bit
in CRO automatically gets set to 1). Otherwise, an
M80287 (or no coprocessor) is assumed to be pres-
ent (ET bit in CRO-automatically is reset to 0). See
4.5.3 Bus Activity During and After Reset. Only
the ET bit is set by this ERROR pin test. Software
must set the EM and MP bits in CRO as needed.
Therefore, distinguishing M80287 presence from no
coprocessor requires a software test and appropri-
ately resetting or setting the EM bit of CRO (set
EM = 1 when no coprocessor is present). If ERROR
is sampled LOW after reset (indicating Military i387
NPX) but software later sets EM = 1, the Military
Intel386 processor will behave as if no coprocessor
is present.

4.2.9 Interrupt Signals
4.2.9.1 INTRODUCTION

The following descriptions cover inputs that can in-
terrupt or suspend execution of the processor’s cur-
rent instruction stream.

4.2.9.2 MASKABLE INTERRUPT REQUEST (INTR)

When asserted, this input indicates a request for in-
terrupt service, which can be masked by the Military
Intel386 processor Flag Register IF bit. When the
Military Intel386 processor responds to the INTR in-
put, it performs two interrupt acknowledge bus cy-
cles, and at the end of the second, latches an 8-bit
interrupt vector on D0-D7 to identify the source of
the interrupt.

INTR is level-sensitive and is allowed to be asyn-
chronous to the CLK2 signal. To assure recognition

MILITARY Intel386™ MICROPROCESSOR

of an INTR request, INTR should remain asserted
until the first interrupt acknowledge bus cycle be-
gins.

4.2.9.3 NON-MASKABLE INTERRUPT REQUEST
(NMI)

This input indicates a request for interrupt service,
which cannot be masked by software. The non-
maskable interrupt request is always processed ac-
cording to the pointer or gate in slot 2 of the interrupt
table. Because of the fixed NMI slot assignment, no
interrupt acknowledge cycles are perfomed when
processing NMI.

NMI is rising edge-sensitive and is allowed to be
asynchronous to the CLK2 signal. To assure recog-
nition of NMI, it must be negated for at least sight
CLK2 periods, and then be asserted for at least
eight CLK2 periods.

Once NMI processing has begun, no additional
NMI's are processed until after the next IRET in-
struction, which is typically the end of the NMI serv-
ice routine. If NMI is re-asserted prior to that time,
however, one rising edge on NM! will be remem-
bered for processing after executing the next IRET
instruction.

4.2.9.4 RESET (RESET)

This input signal suspends any operation in progress
and places the Military Intel386 processor in a
known reset state. The Military Intel386 processor is
reset by asserting RESET for 15 or more CLK2 peri-
ods (80 or more CLK2 periods before requesting self
test). When RESET is asserted, all other input pins
are ignored, and all other bus pins are driven to an
idle bus state as shown in Table 5-3. If RESET and
HOLD are both asserted at a point in time, RESET
takes priority even if the Military Intel386 processor
was in a Hold Acknowledge state prior to RESET
asserted.

RESET is level-sensitive and must be synchronous
to the CLK2 signal. If desired, the phase of the inter-
nal processor clock, and the entire Military Intel386
processor state can be completely synchronized to
external circuitry by ensuring the RESET signal fall-
ing edge meets its applicable setup and hold times,
to5 and tpg.
Table 5-3. Pin State (Bus Idle) During Reset

Pin Name Signal Level During Reset
ADS High

D0-D31 High Impedance
BEO-BE3 Low

A2-A31 High

W/R Low

D/C High

M/10 Low

LOCK High

HLDA Low

11-67

B 4826175 0135704 212 WEITLL

MILITARY Intel386™ MICROPROCESSOR

4.2.10 Signal Summary

intel.

Table 5-4 summarizes the characteristics of all Military Intel386 processor signals.

Table 5-4. Military Intel386™ Processor Signal Summary

Input tput
Signal Name Signal Function ‘;‘::;’: g:ﬂ::"t SAV:;"“C"’" Hl;gh?r:;dance
to CLK2 uring HLDA?

CLK2 Clock — | — -—
DO0-D31 Data Bus - High 110 S Yes
BEO-BE3 Byte Enables Low (o] — Yes
A2-A31 Address Bus High o] - Yes
W/R Write-Read Indication High o] — Yes
D/C Data-Control Indication High (o] — Yes
M/10 Memory-1/0 Indication High o] — Yes
LOCK Bus Lock Indication Low o — Yes
ADS Address Status Low 0 - Yes
NA Next Address Request Low]] —
BS16 Bus Size 16 Low I S —
READY Transfer Acknowledge Low | S -
HOLD Bus Hold Request High | s —
HLDA Bus Hold Acknowledge High o — No
PEREQ Coprocessor Request High | A —_
BUSY Coprocessor Busy Low | A —
ERROR Coprocessor Error Low | A —_
INTR Maskable interrupt Request High | A —
NMI Non-Maskable Intrpt Request High | A —
RESET Reset High | s —

4.3 BUS TRANSFER MECHANISM

4.3.1 Introduction

All data transfers occur as a result of one or more
bus cycles. Logical data operands of byte, word and
double-word lengths may be transferred without re-
strictions on physical address alignment. Any byte
boundary may be used, although two or even three
physical bus cycles are performed as required for
unaligned operand transfers. See 4.3.4 Dynamic
Data Bus Sizing and 4.3.6 Operand Alignment.

11-68

The Military Intel386 microprocessor address sig-
nals are designed to simplify external system hard-
ware. Higher-order address bits are provided by A2
A31. Lower-order address in the form of BEO-BE3
directly provides linear selects for the four bytes of
the 32-bit data bus. Physical operand size informa-
tion is thereby implicitly provided each bus cycle in
the most usable form.

Byte Enable outputs BEO-BE3 are asserted when
their associated data bus bytes are involved with the
present bus cycle, as listed in Table 5-5. During a
bus cycle, any possible pattern of contiguous, as-
serted Byte Enable outputs can occur, but never pat-
terns having a negated Byte Enable separating two
or three asserted Enables.

M 432b175 0135705 159 EEITLL

intgl.

Address bits A and A1 of the physical operand’s
base address can be created when necessary (for
instance, for Multibus | or Multibus Il interface), as a

MILITARY Intel386™ MICROPROCESSOR

Table 5-6. Generating A0-A31 from
BEO-BE3 and A2-A31

function of the lowest-order asserted Byte Enable. M80386 Address Signals
This is shown by Table 5-6. Logic to generate AQ A3l ... A2 BE3 | BE2 | BET | BED
and At is given by Figure 5-3.
Physical Base
Table 5-5. Byte Enables and Assoclated e rens
Data and Operand Bytes
A3t A2 [A1]| AO
Byte Enable Signal Associated Data Bus Signals
p— — A3t A2{ 00| X X X | Low
BEO DO-D7 (byte 0—least significant) -
J— A31| ..ol A2l 0| 1 X X | Low | High
BE1 D8-D15 (byte 1)
— A3 ... A2 1|0 Low | High | High
BE2 D16-D23 (byte 2}
p— N A3t .. A2} 1 | 1 [Low [High | High | High
BE3 D24-D31 (byte 3—most significant)
BEO
L H
JOE YL L _ .
- BEO
. L H]L —
BE2 . LR Al
" LILxyL ——y
x| x @ x|L
L} H |t
BEY 271052-3
K - Map for A1 Signal
BEO
L H
L Lix]LiH
— Lix|Lfn
BEZ -
LiL|xtH
H ot
x { x \H] X
L]l H L
BE 271052-4

K - Map for AG Signal

Figure 5-3. Logic to Generate A0, A1 from BEO-BE3

Each bus cycle is composed of at least two bus
states. Each bus state requires one processor clock
period. Additional bus states added to a single bus
cycle are called wait states. See 4.4 Bus Functional
Description.

Since a bus cycle requires a minimum of two bus
states (equal to two processor clock periods), data
can be transferred between external devices and
the Military Intel386 processor at a maximum rate of
one 4-byte Dword every two processor clock peri-
ods, for a maximum bus bandwidth of 32 megaby-
tes/second (16 MHz Military Intel386 processor
clock rate).

4.3.2 Memory and I/0 Spaces

Bus cycles may access physical memory space or
I/0 space. Peripheral devices in the system may ei-
ther be memory-mapped, or |/O-mapped, or both.
As shown in Figure 5-4, physical memory addresses
range from 00000000H to FFFFFFFFH (4 gigabytes)
and 1/0 addresses from 00000000H to 0000FFFFH
(64 kilobytes) for programmed 1/0. Note the 1/0 ad-
dresses used by the automatic 170 cycles for co-
processor communication are 800000F8H to
800000FFH, beyond the address range of pro-
grammed1/O, to allow easy generation of a coproc-
essor chip select signal using the A31 and M/IO sig-
nals.

11-69

BN 4425175 0L3570kL 095 EMITLL

e

MILITARY Intel386™ MICROPROCESSOR

FFFFFFFFH

PHYSICAL

MEMORY 800000FFH

B800000FBH
4 GBYTE

0QOOFFFFH

00000000H OOOH

7

4

COPROCESSOR
s (i387™ NPX OR MB0287)

~NOT
ACCESSIBLI

A
Et

ACCESSIBLE
PROGRAMMED
1/0 SPACE

64 KBYTE

Physical Memory Space
NOTE:

generate a coprocessor select signal.

Since A31 is HIGH during automatic communication with coprocessor, A31 HIGH and M/I0 LOW can be used to easily

]

170 Space

271052-5

Figure 5-4. Physical Memory and 1/0 Spaces

4.3.3 Memory and 1/0 Organization

The Military Intel386 processor datapath to memory
and /O spaces can be 32 bits wide or 16 bits wide.
When 32-bits wide, memory and 170 spaces are or-
ganized naturally as arrays of physical 32-bit
Dwords. Each memory or I/0 Dword has four indi-
vidually addressable bytes at consecutive byte ad-
dresses. The lowest-addressed byte is associated
with data signals DO-D7; the highest-addressed
byte with D24-D31.

The Military Intel386 processor includes a bus con-
trol input, BS16, that also allows direct connection to
16-bit memory or 1/O spaces organized as a se-
quence of 16-bit words. Cycles to 32-bit and 16-bit
memory or |/Q devices may occur in any sequence,
since the BS16 control is sampled during sach bus
cycle. See 4.3.4 Dynamic Data Bus Sizing. The
Byte Enable signals, BEO-BES, allow byte granutari-
ty when addressing any memory or /O structure,
whether 32 or 16 bits wide.

4.3.4 Dynamic Data Bus Sizing

Dynamic data bus sizing is a feature allowing direct
processor connection to 32-bit or 16-bit data buses
tor memory or 1/0. A single processor may connect
to both size buses. Transfers to or from 32- or 16-bit
ports are supported by dynamically determining the
bus width during each bus cycle. During each bus
cycle an address decoding circuit or the slave de-

11-70

B y22bL?5 0135707

vice itself may assert BS16 for 16-bit ports, or ne-
gate BST6 for 32-bit ports.

with BS16 asserted, the processor automatically
converts operand transfers larger than 16 bits, or
misaligned 16-bit transfers, into two or three trans-
fers as required. All operand transfers physically oc-
cur on D0-D15 when BS16 is asserted. Therefore,
16-bit memories or I/O devices only connect on
data signals DO-D15. No extra transceivers are re-
quired.

Asserting BS16 only affects the processor when
BE2 and/or BES are asserted during the current cy-
cle. If only DO-D15 are involved with the transfer,
asserting BS16 has no affect since the transfer can
proceed normally over a 16-bit bus whether BST6 is
asserted or not. In other words, asserting BS16 has
no effect when only the lower half of the bus is in-
volved with the current cycle.

There are two types of situations where the proces-
sor is affected by asserting BS16, depending on
which Byte Enables are asserted during the current
bus cycle: :

Upper Half Only:
Only BE2 and/or BE3 asserted.

Upper and Lower Half:

At least BET, BEZ asserted {and perhaps also
BEO and/or BE3).

Tel IITLY

intgl.

Effect of asserting BS16 during “upper half only”

read cycles:
Asserting BS16 during “upper half only” reads
causes the Military Intel386 processor to read
data on the lower 16 bits of the data bus and ig-
nore data on the upper 16 bits of the data bus.
Data that would have been read from D16-D31
(as indicated by BE2 and BE3) will instead be read
from DO-D15 respectively.

Effect of asserting BS16 during “upper half only”

write cycles:
Asserting BS16 during “upper half only” writes
does not affect the Military Intel386 processor.
When only BE2 and/or BES are asserted during a
write cycle the Military Intel386 processor always
duplicates data signals D16-D31 onto DO-D15
(see Table 5-1). Therefore, no further Military

Intel386 processor action is required to perform

these writes on 32-bit or 16-bit buses.

Effect of asserting BS16 during “upper and lower

half” read cycles:
Asserting BS16 during “upper and lower half”
reads causes the processor to perform two 16-bit
read cycles for complete physical operand trans-
fer. Bytes 0 and 1 (as indicated by BEO and BE1)
are read on the first cycle using DO-D15. Bytes 2
and 3 (as indicated by BE2 and BE3) are read
during the second cycle, again using DO-D15.
D16-D31_are ignored during both 16-bit cycles.
BEO and BE1 are always negated during the sec-
ond 16-bit cycle (See Figure 5-14, cycles 2 and
2a).

MILITARY intel386™ MICROPROCESSOR

Effect of asserting BS16 during “upper and lower

half” write cycles:
Asserting BS16 during “upper and lower half”
writes causes the Military Intel386 processor to
perform two 16-bit write cycles for complete physi-
cal operand transfer. All bytes are available the
first write cycle allowing external hardware to re-
ceive Bytes 0 and 1 (as indicated by BEO and
BE1) using DO-D15. On the second cycle the Mili-
tary intel386 processor duplicates Bytes 2 and 3
on DO-D15 and Bytes 2 and 3 (as indicated by
BE2 and BEB3) are written using DO-D15. BED and
BE1 are always negated during the second 16-bit
cycle. BS16 must be asserted during the second
16-bit cycle. See Figure 5-14, cycles 1 and 1ta.

4.3.5 Interfacing with 32- and 16-Bit
Memories

In 32-bit-wide physical memories such as Figure 5-5,
each physical Dword begins at a byte address that is
a multiple of 4. A2—-A31 are directly used as a Dword
select and BEO-BE3 as byte selects. BS16 is negat-
ed for all bus cycles involving the 32-bit array.

When 16-bit-wide physical arrays are included in the
system, as in Figure 5-6, each 16-bit physical word
begins at a address that is a multiple of 2. Note the
address is decoded, to assert BS16 only during bus
cycles involving the 16-bit array. (If desiring, to use

32, DATA BUS (D0-D31)

;

7

ADDRESS BUS (BEO-BE3,A2-A31) | MEMORY

| 32-ei7

271052-6

Figure 5-5. Military Intel386™ Processor with 32-Bit Memory

32, DATA BUS (D0-D31)
i386™™ ’ 7| 32-m17
PROCESSOR ADDRESS BUS | MEMORY
- (BEO-BE3, A2-A31)
3
8516
ADDRESS
DECODER 16; DATA BUS (DO-D15) >
ADDRESS BUS (A2-A31) |} 16-BIT
(BEG—BES) f———) (BHEBLEA1) ~ | MEMORY

271052-7

Figure 5-6. Military Intel386™ Processor with 32-Bit and 16-Bit Memory

11-71

B 48625175 0135708 964 EEITLL

~—|

MILITARY Intel386™ MICROPROCESSOR

pipelined address with 16-bit memories then BEO-
BE3 and W/R are also decoded to determine when
BS16 should be asserted. See 4.4.3.7 Maximum
Pipelined Address Usage with 16-Bit Bus Size.)

A2-A31 are directly usable for addressing 32-bit
and 16-bit devices. To address 16-bit devices, A1
and two byte enable signals are also needed.

To generate an A1 signal and two Byte Enable sig-
nals for 16-bit access, BEO-BE3 should be decoded
as in Table 5-7. Note certain combinations of BEO-
BE3 are never generated by the Military Intel386
processor, leading to “don’t care” conditions in the
decoder. Any BEO-BE3 decoder, such as Figure
5-7, may use the non-occurring BEO-BE3 combina-
tions to its best advantage.

4.3.6 Operand Alignment

With the flexibility of memory addressing on the Mili-
tary Intei386 processor, it is possible to transfer a
logical operand that spans more than one physical
Dword or word of memory or /0. Examples are 32-
bit Dword operands beginning at addresses not

intel.

evenly divisible by 4, or a 16-bit word operand split
between two physical Dwords of the memory array.

Operand alignment and data bus size dictate when
multiple bus cycles are required. Table 5-8 describes
the transfer cycles generated for all combinations of
logical operand lengths, alignment, and data bus siz-
ing. When multiple bus cycles are required to trans-
fer a multi-byte logical operand, the highest-order
bytes are transferred first (but if BS16 asserted re-
quires two 16-bit cycles be performed, that part of
the transfer is low-order first).

4.4 BUS FUNCTIONAL DESCRIPTION

4.4.1 Introduction

The Military Intel386 processor has separate, paral-
lel buses for data and address. The data bus is 32-
bits in width, and bidirectional. The address bus pro-
vides a 32-bit value using 30 signals for the 30 up-
per-order address bits and 4 Byte Enable signals to
directly indicate the active bytes. These buses are
interpreted and controlled via several associated
definition or control signals. .

Table 5-7. Generating A1, BHE and BLE for Addressing 16-Bit Devices

M80386 Signals 16-Bit Bus Signals Comments
BE3 BE2 BE1 BEO A1l BHE BLE (A0)
H* H* H* H* X X X X—no active bytes
H H H L L H L
H H L H L L H
H H L L L L L
H . L H H H. H L
H* L* H* L* X X X x—not contiguous bytes
H L L H L L H
H L L L L L L
L H H H H L H
L* H* H* L* X X X x—not contiguous bytes
L* H* L* H* X X X x—not contiguous bytes
L* H* L* L* X X X x—not contiguous bytes
L L H H H L L
L* L H* L* X X X x—not continguous bytes
L L L H L L H
L L L L L L L

BLE asserted when DO-D7 of 16-bit bus is active.
BHE asserted when D8-D15 of 16-bit bus is active.
A1 low for all even words; A1 high for all odd words.

Key:
X = don't care
H = high voltage level
L = low voltage level

* = anon-occurring pattern of Byte Enables; either none are asserted,

or the pattern has Byte Enables asserted for non-contiguous bytes

11-72 |
B 4826175 0135709 8Ty EEITLL I

Intd o MILITARY Intel386™ MICROPROCESSOR

BEO
L H
LLx’_ﬁ?LL -
BE2 Lx%H%LHBﬁB—E,
(LB
x| x H] x| L
L] H L
BE

|)UV D o' Al

271052-8
K-map for A1 signal (same as Figure 5-3)
BEO
L H
LlxjLiL]tL —
L N BE1 -
Bﬁ i) e —
] _L__H_x,] L H BE3 BES
xIx|L{x]|L
L| H L
BET
271052-9
K-map for 16-bit BHE signal
BEO
L H BED
L] ()
m{h
H S b
x| x H_x
L| H |L
BE1 271052-10
K-map for 16-bit BLE signal (same as A0 signal in Figure 5-3)
Figure 5-7. Logic to Generate A1, BHE and BLE for 16-Bit Buses
Table 5-8. Transfer Bus Cycles for Bytes, Words and Dwords
Byte-Length of Logical Operand
1 2 4
Physical Byte Address XX 00 01 10 11 00 01 10 11
in Memory (low-order bits)
Transfer Cycles over b w w w hb,* d hb hw, h3,
32-Bit Data Bus Ib 13 Iw b
Transfer Cycles over b w w hb,
16-Bit Data Bus Ib

Key: b = byte transfer
w = word transfer
| low-order portion
m = mid-order portion
x ='don’tcare

{iti= BST6 asserted causes second bus cycle
*For this case, M8086, 88, 186, 188, 286 transfer Ib first, then hb.

3 = 3-byte transfer
d = Dword transfer
h = high-order portion

-

B 4A2L175 0135710 516 EMITLYL

11-73

MILITARY Intel386™ MICROPROCESSOR

The definition of each bus cycle is given by three
definition signals: M/10, W/R and D7C. At the same
time, a valid address is present on the byte enable
signals BEO-BE3 and other address signals A2-
A31. A status signal, ADS, indicates when the
M80386 issues a new bus cycle definition and ad-
dress.

Collectively, the address bus, data bus and all asso-
ciated control signals are referred to simply as “the
bus".

When active, the bus performs one of the bus cycles
below:

1) read from memory space

2) locked read from memory space

3) write to memory space

4) locked write to memory space

5) read from I/O space (or coprocessor)
6) write to 1/0 space (or coprocessor)
7) interrupt acknowledge

8) indicate halt, or indicate shutdown

intel.

Table 5-2 shows the encoding of the bus cycle defi-
nition signals for each bus cycle. See Section 4.2.5
Bus Cycle Definition.

The data bus has a dynamic sizing feature support-
ing 32- and 16-bit bus size. Data bus size is indicated
to the Military Intel386 processor using its Bus Size
16 (BS16) input. All bus functions can be performed
with either data bus size.

When the Military Intei386 processor bus is not per-
forming one of the activities listed above, it is either
Idle or in the Hold Acknowledge state, which may be
detected by external circuitry. The idle state can be
identified by the Military Intel386 processor giving no
further assertions on its address strobe output (ADS)
since the beginning of its most recent bus cycle, and
the most recent bus cycle has been terminated. The
hold acknowledge state is identified by the Military
Intei386 processor asserting its hold acknowledge
(HLDA) output.

The shortest time unit of bus activity is a bus state. A
bus state is one processor clock period (two CLK2
periods) in duration. A complete data transfer occurs
during a bus cycle, composed of two or more bus
states.

CYCLE 1

cuez |

(INPUT)

NON=PIPELINED

CYCLE 2
NON=PIPELINED
(READ)

CYCLE 3
NON=PIPELINED
(READ)

BEO=-BES, A2-A31,
M/10,0/C, W/R

VALID 2 VALID 3

(oUTPUTS)

ADS
(outpuT)

\ T N\~

NA
(INPUT)

(NPT N\

(INPUT DURING READ)

LOCK[VALID 1 VALID 2 VALID 3
(ouTPUT)
DO=-D31 IN ceson ectoce{ N2 yeoataaa{ IN3 J=-

Fastest non-pipelined bus cycles consist of T1 and T2

271052-11

Figure 5-8. Fastest Read Cycles with Non-Pipelined Address Timing

11-74
B 4826175 0135711 us52 MRITLY

a

integl.

The fastest Military intel386 processor bus cycle re-
quires only two bus states. For example, three con-
secutive bus read cycles, each consisting of two bus
states, are shown by Figure 5-8. The bus states in
" each cycle are named T1 and T2. Any memory or
|/0 address may be accessed by such a two-state
bus cycle, if the external hardware is fast enough.
The high-bandwidth, two-clock bus cycle realizes

the full potential of fast main memory, or cache
memory.

Every bus cycle continues until it is acknowledged
by the external system hardware, using the Military
Intel386 processor READY input. Acknowledging
the bus cycle at the end of the first T2 results in the
shortest bus cycle, requiring only T1 and T2. If
READY is not immediately asserted, however, T2
states are repeated indefinitely untii the READY in-
put is sampled asserted.

4.4.2 Address Pipelining

The address pipelining option provides a choice of
bus cycle timings. Pipelined or non-pipelined ad-
dress timing is selectable on a cycle-by-cycle basis
with the Next Address (NA) input.

MILITARY Intei386™ MICROPROCESSOR

When address pipelining is not selected, the current
address and bus cycle definition remain stable
throughout the bus cycle.

When address pipelining is selected, the address
(BEO-BES, A2-A31) and definition (W/R, D/C and
M/10) of the next cycle are available before the end
of the current cycle. To signal their availability, the
Military Intel386 processor address status output
(ADS) is also asserted. Figure 5-9 illustrates the fast-
est read cycles with pipelined address timing.

Note from Figure 5-9 the fastest bus cycles using
pipelined address require only two bus states,
named T1P and T2P. Therefore cycles with pipe-
lined address timing allow the same data bandwidth
as non-pipelined cycles, but address-to-data access
time is increased compared to that of a non-pipe-
lined cycle.

By increasing the address-to-data access time, pipe-
lined address timing reduces wait state require-
ments. For example, if one wait state is required with
non-pipelined address timing, no wait states would
be required with pipelined address.

CYCLE 1
PIPELINED
(READ)

TP
o102

weonl S

T2p
o1]2

CYCLE 2 CYCLE 3
PIPELINED PIPELINED
(READ) (READ)
e | 2P | TIP 2P

o1le2ie1]e2|01 |02 01|02

BEO-BES, A2-A31,
[VALID 1

M/I0,D/C,W/R

VALID 3 VALID 4

(OUTPUTS)

ADS
outrun L

\—g /

NA
(INPUT)

READY

(INPUT) _—/

LOCK

(oUTPUT) YALD 1

YALID 2 VALID 3

DO=-D31 [~ =
(INPUT DURING READ) [_:D ittt Ml

Fastest pipelined bus cycles consist of T1P and T2P

N1 ------@3..;..-@.

271052-12

Figure 5-9. Fastest Read Cycles with Pipelined Address Timing

11-75

B 4826175 0135712 399 EEITL]

MILITARY intel386™ MICROPROCESSOR

Pipelined address timing is useful in typical systems
having address latches. In those systems, once an
address has been latched, pipelined availability of
the next address allows decoding circuitry to gener-
ate chip selects (and other necessary select signals)
in advance, so selected devices are accessed im-
mediately when the next cycle begins. In other
words, the decode time for the next cycle can be
overlapped with the end of the current cycle.

If a system contains a memory structure of two or
more interleaved memory banks, pipslined address
timing potentially allows even more overlap of activi-
ty. This is true when the interleaved memory control-
ler is designed to allow the next memory operation

-

intgl.
to begin in one memory bank while the current bus
cycle is still activating another memory bank. Figure
5-10 shows the general structure of the Military
Intel386 processor with 2-bank and 4-bank inter-
leaved memory. Note each memory bank of the in-
terleaved memory has full data bus width (32-bit
data width typically, unless 16-bit bus size is select-
ed).

Further details of pipelined address timing are given
in 4.4.3.4 Pipelined Address, 4.4.3.5 Initiating and
Maintaining Pipelined Address, 4.4.3.6 Pipelined
Address with Dynamic Bus Sizing, and 4.4.3.7
Maximum Pipelined Address Usage with 16-Bit
Bus Size.

TWO-BANK INTERLEAVED MEMORY
a) Address signal A2 selects bank
b) 32-bit datapath to each bank
. 32, paTA BUS
PROSESSOR ADDRESS BUS \
a2 A2
7] 32 32
INTERLEAVE
CONTROLLER |—=f ORAM F=—] DRAM
BANK 0 BANK 1
271052-13
FOUR-BANK INTERLEAVED MEMORY
a) Address signals A3 and A2 select bank
b) 32-bit datapath to each bank
. 32, pata BUS
prad or |~ AODRESS BUS \ N\ \ N
A3 az |) aslazl \ a3 Az \ a3 | [az
“ ly l “
132 A32 32 As2
INTERLEAVE | | l
CONTROLLER DRAM DRAM DRAM DRAM
BANK 0 BANK 1 BANK 2 BANK 3
271052-14

Figure 5-10. 2-Bank and 4-Bank Interleaved Memory Structure

11-76’

B 4326175 0135713 225 MEITL]

intal.

4.4.3 Read and Write Cycles

4.4.3.1 INTRODUCTION

Data transfers occur as a result of bus cycles, classi-
fied as read or write cycles. During read cycles, data
is transferred from an external device to the proces-
sor. During write cycles data is transferred in the oth-
er direction, from the processor to an external de-
vice.

Two choices of address timing are dynamically se-
lectable: non-pipelined, or pipelined. After a bus idle
state, the processor always uses_non-pipelined ad-
dress timing. However, the NA (Next Address)
input may be asserted to select pipelined address
timing for the next bus cycle. When pipelining is se-
lected and the Military Intel386 processor has a bus
request pending internally, the address and defini-
tion of the next cycle is made available even before

the current bus cycle is acknowledged by READY.
- Generally, the NA input is sampled each bus cycle to
select the desired address timing for the next bus
cycle.

MILITARY Intel386™ MICROPROCESSOR

Two choices of physical data bus width are dynami-
cally selectable: 32 bits, or 16 bits. Generally, the
BS16 (Bus Size 16) input is sampled near the end of
the bus cycle to confirm the physical data bus size
applicable to the current cycle. Negation of BS16
indicates a 32-bit size, and assertion indicates a 16-
bit bus size.

If 16-bit bus size is indicated, the Military Intel386
processor automatically responds as required to
complete the transfer on a 16-bit data bus. Depend-
ing on the size and alignment of the operand, anoth-
er 16-bit bus cycle may be required. Table 5-7 pro-
vides all details. When necessary, the Military In-
tel386 processor performs an additional 16-bit bus
cycle, using DO-D15 in place of D16-D31.

Terminating a read cycle or write cycle, like any bus
cycle, requires acknowledging the cycle by asserting
the READY input. Until acknowledged, the proces-
sor inserts wait states into the bus cycle, to allow
adjustment for the speed of any external device. Ex-
ternal hardware, which has decoded the address
and bus cycle type asserts the READY input at the
appropriate time.

IDLE CYCLE 1 CYCLE 2 CYCLE 3 IDLE CYCLE 4 IDLE
NON=-PIPELINED | NON-PIPELINED | NON—PIPELINED NON=PIPELINED
(WRITE) (READ) (WRITE) (READ)
T T T2 m T2 ! T2 T Tt T2 T
CLK2 [U L
(M82384 cu()[_/-
BEO-BE3 ‘ . . .
A2=A31, VALID 1 VALID 2 VALID 3 VALID 4
M/i0,D/C
w/R [
ADS [\ / \ /
w [
32-BIT 32-8iT 32-BIT 32817
BUS SIZE BUS SIZE BUS SIZE BUS SIZE
8sTe
ReaoY [
END CYCLE 1 END CYCLE 2 END CYCLE 3 END CYCLE 4
LOCK [VALID 1 VA:LID 2 VALID 3 VALID 4
00.031[eqmeas --(ouT).4..-< IN >-(ouT)- ----- ---< IN >...
271052-15
Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus cycle can immediately
follow the write cycle.

Figure 5-11. Various Bus Cycles and Idle States with Non-Pipelined Address (zero walit states)

11-77

M 4825175 0135714 1bl EEITLL

MILITARY Intel386™ MICROPROCESSOR

At the end of the second bus state within the bus
cycle, READY is sampled. At that time, if external
hardware acknowledges the bus cycle by asserting
READY, the bus cycle terminates as shown in Figure
5-11. If READY is negated as in Figure 5-12, the
cycle continues another bus state (a wait state) and
READY is sampled again at the end of that state.
This continues indefinitely until the cycle is acknow!-
edged by READY asserted.

When the current cycle is acknowledged, the Military
Intel386 processor terminates it. When a read cycle
is acknowiedged, the Military Intel386 processor
latches the information present at its data pins.
When a write cycle is acknowledged, the Military
Intel386 processor write data remains valid through-
out phase one of the next bus state, to provide write
data hold time.

4.4.3.2 NON-PIPELINED ADDRESS
Any bus cycle may be performed with non-pipelined

address timing. For example, Figure 5-11 shows a
mixture of read and write cycles with non-pipelined

[

intal.
address timing. Figure 5-11 shows the fastest possi-
ble cycles with non-pipelined address have two bus
states per bus cycle. The states are named T1 and
T2. In phase one of the T1, the address signals and
bus cycle definition signals are driven valid, and to

signal their availability, address status (ADS) is
simultaneously asserted.

During read or write cycles, the data bus behaves as
follows. If the cycle is a read, the Military Intel386
processor floats its data signals to allow driving by
the external device being addressed. If the cycle is a
write, data signals are driven by the Military intel386
processor beginning in phase two of T1 until phase
one of the bus state following cycle acknowledg-
ment.

Figure 5-12 illustrates non-pipelined bus cycles with
one wait added to cycles 2 and 3. READY is sam-
pled negated at the end of the first T2 in cycles 2
and 3. Therefore cycles 2 and 3 have T2 repeated.
At the end of the second T2, READY is sampled
asserted.

IDLE CYCLE 1 -CYCLE 2 IDLE CYCLE 3 IDLE
NON=PIPELINED NON-PIPELINED NON=PIPELINED
(READ) (WRITE) (READ)
n n 7] T 2 2 n a8 7] T2 T
cwez [U uyuy UL UL
(w2384 e[_/-_/__/- AYAYa
BEO-BE1 4
A2-A31, VALID 1 VALID 2 VALID 3
M/i0,0/C
w/i [
ADS [/ _/ /
w[
32-BIT 32-BIT 32=BIT
BUS SIZE BUS S1ZE BUS SIZE
BS16 [
READY [_K_ _Q\
END CYCLE 1 END CYCLE 2 END CYCLE 3
LOCK [VALID 1 VALID 2 VALID 3
00-031[cdecncaleccns p--< N >(OUT | = pececcjecccchecas .--< IN >...
|
271052-16
Idle states are shown here for diagram variety only. Write cycles are not always foliowed by an idle state. An active bus cycle can immadiately
follow the write qycle. .

Figure 5-12. Various Bus Cycles and Idie States with Non-Pipelined Address

(variousthumber of wait states)

11-78

B 4825175 0135715 0T3 EEITLL

MILITARY Intel386™ MICROPROCESSOR

RESET
ASSERTED

HOLD NEGATED ¢
NO REQUEST

REQUEST PENDING ¢
HOLD NEGATED

Bus States:

HOLD ASSERTED

REQUEST PENDING

ALWAYS

READY ASSERTED *

HOLD NEGATE!
REQUEST PENDING

READY NEGATED *
NA NEGATED

Tt—first clock of a non-pipelined bus cycle (Military Intsl386 processor drives new address and asserts ADS) 271052-17

T2—subsequent clocks of a bus cycle when NA has not been sampled asserted in the current bus cycle

Ti— idle state

Th—hold acknowledge state (Military intel386 processor asserts HLDA)

The fastest bus cycle consists of two states: T1 and T2.

Four basic bus states describe bus operation when not using pipelined address. These states do include BST6 usage for 32-bit and 16-bit bus
size. If asserting BS16 requires a second 16-bit bus cycle to be performed, it is performed before HOLD asserted is acknowledged.

Figure 5-13. Military Intel386™ Processor Bus States (not using pipelined address)

When address pipelining is not used, the address
and bus cycle definition remain valid during all wait
states. When wait states are added and you desire
to maintain non-pipelined address timing, it is neces-
sary to negate NA during each T2 state except the
last one, as shown in Figure 5-12 cycles 2 and 3. If
NA is sampled asserted during a T2 other than the
last one, the next state would be T2| (for pipelined
address) or T2P (for pipelined address) instead of
another T2 (for non-pipelined address).

When address pipelining is not used, the bus states
and transitions are completely illustrated by Figure
5-13. The bus transitions between four possible
states: T1, T2, Ti, and Th. Bus cycles consist of T1
and T2, with T2 being repeated for wait states. Oth-
erwise, the bus may be idle, in the Ti state, or in hold
acknowledge, the Th state.

When address pipelining is not used, the bus state

diagram is as shown in Figure 5-13. When the bus is
idle it is in state Ti. Bus cycles always begin with T1.

T1 always leads to T2. If a bus cycle is not acknowl-
edged during T2 and NA is negated, T2 is repeated.
When a cycle is acknowledged during T2, the follow-
ing state will be T1 of the next bus cycle if a bus
request is pending internally, or Ti if thers is no bus
request pending, or Th if the HOLD input is being
asserted.

The bus state diagram in Figure 5-13 also applies to
the use of BS16. If the Military Intel386 processor
makes internal adjustments for 16-bit bus size, the
adjustments do not affect the external bus states. If
an additional 16-bit bus cycle is required to complete
a transfer on a 16-bit bus, it also follows the state
transitions shown in Figure 5-13.

Use of pipslined address allows the Military Intel386
processor to enter three additional bus states not
shown in Figure 5-13. Figure 5-20 in 4.4.3.4 Pipe-
lined Address is the complete bus state diagram,
including pipelined address cycles.

11-79

B 482b175 0135716 T34 EEITLL

B R R R R RRRRRRRBRBRBEEEEEEEPPEEEEEE—EEEE—ZGBBEEEEBb

MILITARY Intei386™ MICROPROCESSOR

4.4.3.3 NON-PIPELINED ADDRESS WITH
DYNAMIC DATA BUS SIZING

The physical data bus width for any non-pipelined
bus cycle can be either 32-bits or 16-bits. At the
beginning of the bus cycle, the processor behaves
as if the data bus Iis 32-bits wide. When the bus cy-
cle Is acknowledged, by asserting READY at the end
of a T2 state, the most recent sampling of BS18
determines the data bus size for the cycle being ac-
knowledged. If BST6 was most recently negated, the
physical data bus size is defined as 32 bits.

intel.

If BS16 was most recently asserted, the size Is de-
fined as 16 bits.

When BS16 is asserted and two 16-bit bus cycles
are required to complete the transfer, B376 must be
asserted during the second cycle; 16-bit bus size is
not assumed. Like any bus cycle, the second 16-bit
cycle must be acknowledged by asserting

When a second 16-bit bus cycle is required to com-
plete the transfer over a 16-bit bus, the addresses

A TRANSFER REQUIRING TWO A TRANSFER REQUIRING TWO
CYCLES ON 16=BIT DATA BUS CYCLES ON 16=BIT DATA BUS

2’4

CYCLE 2A IDLE

IDLE CYCLE 1 CYCLE 1A CYCLE 2
NON=FIPELINED | NON=PIPELINED | NON=PIPELINED | NON=PIPELINED
(WRITE ——= WRITE) (READ ——= READ)
PART ONE PART TWO PART ONE PART TWO
m T 72 8 2 T 2 i T2 m
cLK2 [| | | |
(MB2384 CLK) [_/-
ALWAYS |
BEG , BEA [NEGATED N\ NEGATED
YALID 1 DURING PART TWO Nt A0 2 /ounmc PART TWO
8E2,BE3
az-a31, | X VALID 1 X VALID 2)@
M/i0, D/C
w/R [X
A0S [\ /
w [RDPCRX: B (XOOO(X S BH
8576 [)<
16=BIT 16=BIT 16=BIT 16=BIT
8US SIZE BUS SIZE BUS SIZE BUS SIZE
mr [XO000000C0O | A0\ | AR | AKX | AX
[ocK t VALID 1 VALID 2
do-d15 d16=d31 d0-d15 d16=d31
DO- D15 [.- --(out X ouT)-----@------@.---
d16=d31 IGNORED IGNORED
D16= D31 [.q------.(ouT).-- ccoens ce=d
| I I

Key: Dn = physical data pin n
dn = logical data bit n

271052-18

Figure 5-14. Asserting BS16 (zero wait states, non-pipelined address)

11-80 |
B 4826175 01357147 970 EEITLL I

MILITARY Intel386™ MICROPROCESSOR

A TRANSFER REQUIRING TWO
CYCLES ON 16-BIT DATA BUS

1L
Va

IDLE CYCLE 1 CYCLE 1A CYCLE 2
NON=-PIPELINED NON=~PIPELINED NON=-PIPELINED
(READ j———— READ, (WRITE)
PART ONE PART TWO
Ti T T ™ T2 T2 T2 T2

1L
\/]

(cLk) [\/-
566, BE7 NEGATED DURING
BED,BET | X VALID 1 ATED DUR VALID 2
o e |
BEZ, BES
A2-A31, VALID 1 VALID 2

M/, D/C
w/R

ADS

/

NOTE: NA MUST BE NEGATED
HERE TO ALLOW RECOG
OF ASSERTED BS16# |

NITION
N FINAL T2

/

Key: Dn = physical data pin n
dn = logical data bit n

—_ J N'T
L e y Ore
NOTE: BS16 MUST BE STABLE DURING 32-8IT
THIS TIME (DEFINED BY T17 AND T18,
B516 SETUP AND HOLD TIMINGS) BUS SIZE
_16-BIT 16-BIT
BUS SIZE BUS SIZE
READY [? “ “_
ToCK [VALID 1 X VALID 2
d0-d15 d16-d31 do-d15
DO-D15 [..------------.--@--.---.--@.(ouT
IGNORED IGNORED d16-d31
D16-D31 [..--------._-..--@--.---.--.@(ouT

271052-19

Figure 5-15. Asserting BS16 (one wait state, non-pipelined address)

generated for the two 16-bit bus cycles are closely
related to each other. The addresses are the same
except BEO and BE1 are always negated for the
second cycle. This is because data on D0-D15 was
already transferred during the first 16-bit cycle.

Figures 5-14 and 5-15 show cases where assertion

of BS16 requires a second 16-bit cycle for complete
operand transfer. Figure 5-14 illustrates cycles with-

out wait states. Figure 5-15 illustrates cycles with
one wait state. In Figure 5-15 cycle 1, the bus cycle
during which BS16 is asserted, note that NA must be
negated in the T2 state(s) prior to the last T2 state.
This is to allow the recognition of BS16 asserted in
the final T2 state. The relation of NA and BS16 is
given fully in 4.4.3.4 Pipelined Address, but Figure
5-15 illustrates this only precaution you need to
know when using BS16 with non-pipelined address.

11-81

W 482bk17?5 0135718 807 EMITLL

R R R E————————————

MILITARY iIntel386T™ MICROPROCESSOR

4.4.3.4 PIPELINED ADDRESS

Address pipelining is the option of requesting the
address and the bus cycle definition of the next, in-
ternally pending bus cycle before the current bus
cycle is acknowledged with READY asserted. ADS
is asserted by the Military Intel386 processor when
the next address is issued. The address pipelining
option_is controlled on a cycle-by-cycle basis with
the NA input signal. '

Once a bus cycle is in progress and the current ad-
dress has_been valid for at least one entire bus
state, the NA input is sampled at the end of every
phase one until the bus cycle is acknowledged. Dur-
ing non-pipelined bus cycles, therefore, NA is sam-
pled at the end of phase one in every T2. An exam-
ple is Cycle 2 in Figure 5-16, during which NA is
sampled at the end of phase one of every T2 (it was
asserted once during the first T2 and has no further
effect during that bus cycle).

n

intel.
If NA is sampled asserted, the Military Intel386 proc-
essor is free to drive the address and bus cycle defi-
nition of the next bus cycle, and assert ADS, as soon
as it has a bus request internally pending. It may
drive the next address as early as the next bus state,

whether the current bus cycle is acknowledged at
that time or not.

Regarding the details of address pipelining, the Mili-
tary Intel386 processor has the following character-
istics:

1) For NA to be sampled asserted, BS16 must be
negated at that sampling window (see Figure 5-16
Cycles 3 and 4, and Figure 5-17 Cycles 2 through
4). If NA and BS16 are both sampled asserted
during the last T2 period of a bus cycle, BS16
asserted has priority. Therefore, if both are as-
serted, the current bus size is taken to be 16 bits
and the next address is not pipelined. Conceptu-
ally, Figure 5-18 shows the internal M80386 logic
providing these characteristics.

IDLE | CYCLE 1 CYCLE 2 CYCLE 3 crclE4 | e
NON-PIPELINED | NON-PIPELINED PIPELINED | PIPELINED
(WRITE) (READ) (WRITE) (READ)
| |
no,T (T2 | M T2 [TP TP TP, TP T2 | T
we [T LU
(we2384 k) | _/_ \/-_/_
BEO - BE3
AZ=A31, VALID 1 VALID 2 VALID 3 VALID 4
M/0, D/C / /
w/R [X
[/1
o L
wl X '
TO ALLOW T0 ALLOW |\ 10 ALLOW
RECOGNIZING | RECOGNIZING | RECOGNIZING
NAZ NA# | NA#
asts [XXX] KRXY e B
o [B ™ ooy
|
ek [VALID 1 VALID 2 VALID 3 VALID 4

DO~ D31 [...-.-..-(our)-----...-@(out)----@--.

Following any idle bus state (Ti), addresses are non-pipelined. Within non-pipelined bus cycies, NA is only sampled during wait states.

271052-20

Therefore, to begin address pipslining during a group of non-pipeli
(Cycle 2 above). '

d bus cycles requi

a non-pipelined cycle with at least one wait state

Figure 5-16. Transitioning to Pipelined Address During Burst of Bus Cycles

11-82

@& 4826175 0135719 743 EEITLL

intel.

MILITARY Intel386™ MICROPROCESSOR

IDLE CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4 IDLE
NON=-PIPELINED PIPELINED PIPELINED PIPELINED
{WRITE) (READ) (WRITE) (READ)
[I | |
T T T2 T2P TP T2P TiP T2P TP T21 T21 Ti
CLK2 [l l | I I I | I |
I VaVaVa
BEO - BES,
A2=- Al’}1_, VALID 1 VALID 2 VALID 3 VALID 4
M/i0, D/C / /
w/R [X
s [\ N\ _/
e L -
ww [)
\
TO ALLOW TO ALLOW TO ALLOW TO ALLOW
RECOGNIZING RECOGNIZING RECOGNIZING RECOGNIZING
NA# | NA# | NA# NA #

557 | T XY KR)
oo TR L N
LOCK [X VYALID 1 VALID 2 VALID 3 VALID 4

DO- D31 [edavess .-(ouT >--.. IN (ouT).---.-- NP ==

271052-21

Foliowing any idie bus state (Ti) the address is always non-pipelined and NA is only sampled during wait states. To start address pipelining
after an idle state requires a non-pipelined cycle with at least ane wait state (cycle 1 above).
The pipsfined cycles (2, 3, 4 above) are shown with various numbers of wait states.

Figure 5-17. Fastest Transition to Pipelined Address Following Idle Bus State

2) The next address may appear as early as the bus
state after NA was sampled asserted (see Fig-
ures 5-16 or 5-17). In that case, state T2P is en-
tered immediately. However, when there is not an
internal bus request already pending, the next ad-
dress will not be available immediatsly after NA is
asserted and T2| is entered instead of T2P (see
Figure 5-19 Cycle 3). Provided the current bus cy-

ternally, so thereafter must assume the current
bus size is 32 bits. Therefore if NA is sampled
asserted within a bus cycle, BS16 must be negat-
ed thereafter in that bus cycle (ses Figures 5-16,
5-17, 5-19). Consequently, do not assert NA dur-
ing bus cycles which must have BS16 driven as-
serted. See 4.4.3.6 Dynamic Bus Sizing with
Pipelined Address.

cle isn’t yet acknowledged by READY asserted, 4) Any address which is validated by a pulse on the

T2P will be entered as soon as the M80386 does
drive the next address. External hardware should
therefore observe the ADS output as confirmation
the next address is actually being driven on the
bus.

3)Once NA is sampled asserted, the Military

Military Intel386 processor ADS output will remain
stable on the address pins for at least two proces-
sor clock periods. The Military Intel386 processor
cannot produce a new address more frequently
than every two processor clock periods (see Fig-
ures 5-16, 5-17, 5-19).

Intel386 processor commits itself to the highest 5) Only the address and bus cycle definition of the

priority bus request that is pending internally. It
can no longer perform another 16-bit transfer to
the same address should BS16 be asserted ex-

very next bus cycle is available. The pipelining ca-
pability cannot look further than one bus cycle
ahead (see Figure 5-19 Cycle 1).

11-83

B8 4826175 0135720 465 EEITLYL

——',

MILITARY Intel386™ MICROPROCESSOR

NA

NA
(PN D13) (INTERNAL)
8516 8516
(PIN C14) (INTERNAL)
i386™ cHip

271052-22

Figure 5-18. Military intel386™ Processor
Internal Logic on NA and BS16

The complete bus state transition diagram, including
operation with pipelined address is given by Figure
5-20. Note it is a superset of the diagram for non-
pipelined address only, and the three additional bus
states for pipelined address are drawn in bold.

The fastest bus cycle with pipelined address con-
sists of just two bus states, T1P and T2P (recall for
non-pipelined address it is T1 and T2). T1P is the
first bus state of a pipelined cycle.

4.4.3.5 INITIATING AND MAINTAINING
PIPELINED ADDRESS

Using the state diagram Figure 5-20, observe the
transitions from an idle state, Ti, to the beginning of
a pipelined bus cycle, T1P. From an idle state Ti, the
first bus cycle must begin with T1, and is therefore a
non-pipelined bus cycle. The next bus cycle will be
pipelined, however, provided NA is asserted and the
first bus cycle ends in a T2P state (the address for
the next bus cycle is driven during T2P). The fastest
path from an idie state to a bus cycle with pipelined
address is shown in bold below:

Ti, Ti, Ti

, T1-T2-T2P,, T1P-T2P,
e Y
idle non-pipelined pipelined
states cycle cycle

T1-T2-T2P are the states of the bus cycle that es-
tablishes address pipelining for the next bus cycle,
which begins with T1P. The same is true after a bus
hold state, shown below:

TIP-T2P

Th, Th, Th,, T1-T2-T2P, \
— I
hold non-pipelined pipelined
acknowledge cycle cycle
states

]

intgl.
The transition to pipelined address is shown func-
tionally by Figure 5-17 Cycle 1. Note that Cycle 1 is
used to transition into pipelined address timing for
the subsequent Cycles 2, 3 and 4, which are pipe-
lined. The NA input is asserted at the appropriate

time to select address pipelining for Cycles 2, 3 and
4,

Once a bus cycle is in progress and the current ad-
dress has been valid for one entire bus state, the NA
input is sampled at the end of every phase one until
the bus cycle is acknowledged. During Figure 5-17
Cycle 1 therefore, sampling begins in T2. Once NA
is sampled asserted during the current cycle, the
Military Intel386 processor is free to drive a new ad-
dress and bus cycle definition on the bus as early as
the next bus state. In Figure 5-16 Cycle 1 for exam-
ple, the next address is driven during state T2P.
Thus Cycle 1 makes the transition to pipelined ad-
dress timing, since it begins with T1 but ends with
T2P. Because the address for Cycle 2 is available
before Cycle 2 begins, Cycle 2 is called a pipslined
bus cycle, and it begins with T1P. Cycle 2 begins as
soon as READY asserted terminates Cycle 1.

Example transition bus cycles are Figure 5-17 Cycle

1 and Figure 5-16 Cycle 2. Figure 5-17 shows tran-

sition during the very first cycle after an idle bus
state, which is the fastest possible transition into ad-
dress pipelining. Figure 5-16 Cycle 2 shows a tran-
sition cycle occurring during a burst of bus cycles. in
any case, a transition cycle is the same whenever it
occurs: it consists at least of T1, T2 (you assert NA
at that time), and T2P (provided the Military intei386
processor has an internal bus request already pend-
ing, which it almost always has). T2P states are re-
peated if wait states are added to the cycle.

Note three states (T1, T2 and T2P) are only required
in a bus cycle performing a transition from non-
pipelined address into pipelined address timing, for
example Figure 5-17 Cycle 1. Figure 5-17 Cycles 2,
3 and 4 show that address pipelining can be main-
tained with two-state bus cycles consisting only of
T1P and T2P.

Once a pipelined bus cycle is in progress, pipelined
timing is maintained for the next cycle by asserting
NA and detecting that the Military Intel386 proces-
sor enters T2P during the current bus cycle. The cur-
rent bus cycle must end in state T2P for pipelining to
be maintained in the next cycle. T2P is identified by
the assertion of ADS. Figures 5-16 and 5-17 howev-
er, sach show pipelining ending after Cycle 4 be-
cause Cycle 4 ends in T2I. This indicates the Military
Intel386 processor didn’t have an internal bus re-
quest prior to the acknowledgement of Cycle 4. If a
cycle ends with a T2 or T2l, the next cycle will not be
pipelined.

11-84 ‘
B 482L175 0135721 3T EEITLL |

|n MILITARY Intel386™ MICROPROCESSOR

CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4
PIPELINED PIPELINED PIPELINED PIPELINED
(WRITE) (READ) (WRITE) (READ)
TP T2P | T2P TP T2 2P | TIP T21 T2P TP
CLK2 [I I | r
(M82384 CLK) [_/- \
BEO - BET,
A2- A3Y, VALID 1 VALID 2 VALID 3 VALID 4
M/10, D/C 7 g
]
| ADS IS ASSERTED AS
SOON AS i386™ PROCESSOR HAS
ANOTHER BUS CYCLE TO PERFORM,
WHICH IS NOT ALWAYS
IMMEDIATELY AFTER NA
IS ASSERTED
w/R [)
s [/ N_V/
M ——
NOTE ADS IS AS LONG AS i386 PROCESSOR
ASSERTED IN ENTERS THE T2P STATE DURING CYCLE 3,
EVERY T2P STATE ADDRESS PIPELINING 1S
—_— : MAINTAINED IN CYCLE 4
]
NA [2

ASSERTING NA MORE NA COULD HAVE

THAN ONCE DURING BEEN ASSERTED
ANY CYCLE HAS NO IN T1P IF DESIRED.
ADDITIONAL EFFECTS ASSERTION NOW IS
THE LATEST TiME
POSSIBLE TO ALLOW
i386 PROCESSOR TO ENTER
T2P STATE TO MAINTAIN

PIPELINING IN CYCLE 3

e [N ™ A [4XX

LOCK [VALID 1 VALID 2 VALID 3 VALID 4
' |

DO-D.‘S1[our X " out P L T (T { out »4--
| | ‘ |

271052-23

Figure 5-19. Details of Address Pipelining During Cycles with Wait States

M 4826175 0135722 238 MRITLL :

el ————

11-85

MILITARY Intei386™ MICROPROCESSOR

HOLD ASSERTED

RESET
ASSERTED

RIED " HOLD NEGATED »

/1 asSERTE

HOLD NEGATED »
NO REQUEST

READY ASSERTED *
HOLD ASSERTED

HOLD NEGATED®
REQUEST PENDING

&4.42‘ /?b

20 Requesy

ALWAYS NA NEGATED

‘0 oo FENmNG. ° R : e : T1 P
HOLO NEGA' READY ASSERTED ¢
HOLD NEGATED f}gﬁ\
REQUEST PENDING &ex
READY ASSERTED o @?p 4
HOLD NEGATED» 8
REQUEST PENDING . z
5
ata® By E
g B3 5 "]
gbsz asf |12
WHTn e -
ZRZ, >
T21 z4af 28] &
B2 =3 I8
READY ASSERTED + Wwz2o © i«
HOLD NEGATED ¢ Ve & =
Bus States: MO REQUEST ggn 3
Ti-first clock of a non-pipslined bus cycle (Military Intel386 processor 3gl‘-' z
drives new address and assarts ADS). 2 '&‘é
T2—subsaquent clocks of a bus cycle when NA has not been sampled :'ﬁz
asserted in the cumrent bus cycle. _ F:SDJESE%FE ¢ S§§ |
T2l—subsequent clocks of a bus cycle when NA has been sampled assert- HOLD ASSERTED) flewnT :
ed in the current bus cycle but there is not yet an internal bus request ;
pending (Military Intsl386 processor will not drive new address or assert ‘
ADS). .
T2P—subsequent clocks of a bus cycle when NA has been sampled as- T 2 P
serted in the current bus cycle and there is an internat bus request pending
(Military Intel386 processor drives new address and asserts ADS).
T1P—first clock of a pipslined bus cycie.
Ti—idle state.
Th—hold acknowledge state (Military inteld86 processor asserts HLDA).
Asserting NA for pipelined address gives access to three more bus states:
T2l, T2P and T1P. READY NEGATED
Using pipelined address, the fastest bus cycle consists of T1P and T2P. 271052-24

Figure 5-20. Military Intei386 T Processor Complete Bus States (including pipelined address)

Realistically, address pipelining is almost always
maintained as long as NA is sampled asserted. This
is so because in the absence of any other request, a
code prefetch request is always internally pending
until the instruction decoder and code prefetch
queue are completely full. Therefore address pipelin-
ing is maintained for long bursts of bus cycles, if the
bus is available (i.e., HOLD negated) and NA is sam-
pled asserted in each of the bus cycles.

4.4.3.6 PIPELINED ADDRESS WITH DYNAMIC
DATA BUS SIZING

The BS16 feature allows easy interface to 16-bit
data buses. When asserted, the Military Intel386
processor bus interface hardware performs appro-

11-86

B 4826175 0135723 174 MEITLL

priate action to make the transfer using a 16-bit data
bus connected on DO-D15.

There is a degree of interaction, however, between
the use of Address Pipelining and the use of Bus
Size 16. The interaction resuits from the multiple bus
cycles required when transferring 32-bit operands
over a 16-bit bus. If the operand requires both 16-bit
halves of the 32-bit bus, the appropriate Military
Intel386 processor action is a second bus cycle to
complete the operand’s transfer. It is this necessity
that conflicts with NA usage.

When NA is sampled asserted, the Military Intel386
processor commits itself to perform the next inter-
nally pending bus request, and is allowed to drive

L]
lntd ® MILITARY Intei386™ MICROPROCESSOR

the next internally pending address onto the bus. As- asserted, the current data bus size is assumed to
serting NA therefore makes it impossible for the next be 32 bits.

bus cycle to again access the current address on 2) To also avoid conflict, if NA and BS16 are both
A2-A31, such as may be required when BST6 is asserted during the same sampling window, BS16
asserted by the external hardware. asserted has priority and the Military Intel386
processor acts as if NA was negated at that time.
Internal Military Intel386 processor circuitry,
shown conceptually in Figure 5-18, assures that

To avoid conflict, the Military Intel386 processor is
designed with the following two provisions:

1) To avoid confiict, BS16 must be negated in the BS16 is sampled asserted and NA is sampled
current bus cycle if NA has already been sampled negated if both inputs are externally asserted at
asserted in the current cycle. If NA is sampled the same sampling window.

A TRANSFER REQUIRING TWO
CYCLES ON 16=BIT BUS

PREVIOUS CYCLE 1 CYCLE 1A CYCLE 2
CYCLE PIPELINED NON=-PIPELINED NON=-PIPELINED
(WRITE ——= WRITE) (READ)
PART ONE PART TWO
T2P TP T2 ™ T2 T2 T T2 T2P

CLK2 [_1

[Uy [
(MB2384 CLK)[_/- _/_

Uy
/NS NSNS

_ ALWAYS
BE0, a_m[VALID 1 NEGATED DURING VALID 2 VALID 3
- PART TWO |
BE2,BE3, = =
A2, A31, VALID 1 VALD 2 VALID3
M/i0,D/CY =

/ /

NOTE: NA MUST BE NEGATED IN THESE T'S TO ALLOW
!

RECOGNITION OF ASSERTED BS16 IN FINAL T2's.
w[A DON'T CARE T CA
32-BIT
BUS SIZE]
B 16[
16=8iT 16=8IT
BUS SIZE| BUS SIZE|
o XX | R N RN
LOCK[VALID 1 VALID 2
d0=~di5 d0=d15 d16=-d31 d0=d15
DO-DIS[-----@o(out X ouT)-- ----- 4 --@
d16-d31 d16=d31 d16=d31
015-031[JR P, -(ouT)."---.T.-<IN
Key: Dn = physical data pin n 271052-25

dn = logical data bit n
Cycles 1 and 2 are pipelined. Cycle 1a cannot be pipelined, but its address can be inferred from that of Cycle 1, to externally simulate address
pipelining during Cycle 1a.

Figure 5-21. Using NA and BS16

[] 11.87
B 4826175 0135724 D00 EEITL

. R R

MILITARY Intel386™ MICROPROCESSOR

Certain types of 16-bit or 8-bit operands require no
adjustment for correct transfer on a 16-bit bus.
Those are read or write operands using only the low-
er half of the data bus, and write operands using
only the upper half of the bus since the Military
Intel386 processor simultaneously duplicates the
write data on the lower half of the data bus. For
these patterns of Byte Enables and the R/W signals,
BS76 need not be asserted at the Military Intel386
processor, allowing NA to be asserted during the
bus cycle if desired.

4.4.4 Interrupt Acknowledge (INTA)
Cycles

In response to an interrupt request on the INTR in-
put when interrupts are enabled, the Military Intei386

intel.

processor performs two interrupt acknowledge cy-
cles. These bus cycles are similar to read cycles in
that bus definition signals define the type of bus ac-
tivity taking place, and each cycle continues until ac-
knowledged by READY sampled asserted.

The state of A2 distinguishes the first and second
interrupt acknowledge cycles. The byte address
driven during the first interrg_Etgacknowledge cycle is
4 (A31-A3 low, A2 high, BE3-BET high, and BED
low). The address driven during the second Interé_ur:g
acknowledge cycle is 0 (A31-A2 low, BE3-BET
high, BED low).

INTERRUPT
ACKNOWLEDGE
CYCLE 1

T T2

It

IDLE '

T T

L
/NS
p

BED, A3-A31,
M/1, D/T, W/R

XXXXX
]

INTERRUPT
ACKNOWLEDGE
CYCLE 2

T2 T2 Ti

IDLE IDLE
(4 BUS STATES)

Ti Ti T T

XXX
LA

XIXXXX

VVVVYV
A"AA’AA

FIOEKOZOZ X

BS16 [IGNORED

IGNORED

IGNORED

which is simplest for your system hardware design.

oo-n7[ci=mmedecccdencas ----(z)---

Interrupt Vector (0-255) is read on DO-D7 at end of second Interrupt Acknowledge bus cycle.
Because each Interrupt Acknowledge bus cycle is followed by idie bus states, asserting NA has no practical effect. Choose the approach

271052-26

Figure 5-22. Interrupt Acknowledge Cycles

11-88

B 482b175 0135725 Tu? EMITL]

intel.

MILITARY Intei386™ MICROPROCESSOR

CYCLE 1 CYCLE 2 DLE
NON-PIPELINED | NON-PIPELINED
(WRITE) (HALT)
T ‘T2 T T2 Ti l | T
cu<2|: _J
——
(a2384 c1i) [
BEG, BET, BES, ‘ = 1386™ PROCESSOR REMAINS
W/10. W/R VALID 9 | | HALTED UNTIL INTR, NM) OR
| . RESET IS ASSERTED,
m' A2-A31, BE2 1S LOW -
o/% VALID 1 FOR HALT CYCLE
b= 1386 PROCESSOR RESPONDS
- TO HOLD INPUT WHILE IN
A_DSE \ \ THE HALT STATE.
ml
CT |: IGNORED
READY |:
NOTE: HALT CYCLE MUST BE
ACKNOWLEDGED BY READY
ASSERTED. WAIT STATES MAY
BE ADDED TO THE CYCLE IF
DESIRED.
Locxl: VALID 1 VALID 2
Do-D31 |: ouT X | ouT 1 [X UNDEFINED) (FLOATING) wmmm g m m = m 4
! I I
271052-27

Figure 5-23. Halt Indication Cycie

The LOCK output is asserted from the beginning of
the first interrupt acknowledge cycle until the end of
the second interrupt acknowledge cycle. Four idle
bus states, Ti, are inserted by the Military Intel386
processor between the two interrupt acknowledge
cycles, allowing at least 160 ns of locked idle time
for future Military Intel386 processor speed selec-
tions up to 256 MHz (CLK2 up to 50 MHz), for com-
patibility with spec TRHRL of the 8259A Interrupt
Controller.

During both interrupt acknowledge cycles, D0O-D31
float. No data is read at the end of the first interrupt
acknowledge cycle. At the end of the second inter-
rupt acknowledge cycle, the Military Intel386 proces-
sor will read an external interrupt vector from DO-D7
of the data bus. The vector indicates the specific
interrupt number (from 0-255) requiring service.

M 4326175 0135726 963 MEITLL

4.4.,5 Halt Indication Cycle

The Military Intel386 processor halts as a result of
executing a HALT instruction. Signaling its entrance
into the halt state, a halt indication cycle is per-
formed. The halt indication cycle is identified by the
state of the bus definition signals shown in 4.2.5 Bus
Cycle Definition and a byte address of 2. BEO and
BE2 are the only signals distinguishing halt indica-
tion from shutdown indication, which drives an ad-
dress of 0. During the halt cycle undefined data is
driven on DO-D31. The halt indication cycle must be
acknowledged by READY asserted.

A halted Military Intel386 processor resumes execu-
tion when INTR (if interrupts are enabled) or NMi or
RESET is asserted.

11-89

MILITARY Intel386™ MICROPROCESSOR |nte| o

4.4.6 Shutdown Indication Cycle BEO and BEZ are the only signals distinguishing
shutdown indication from halt indication, which
The Military Intel386 processor shuts down as a re- drives an address of 2. During the shutdown cycle

sult of a protection fault while attempting to process ~ undefined data is driven on D0-D31. The shutdown
a double fault. Signaling its entrance into the shut- indication cycle must be acknowledged by READY
down state, a shutdown indication cycle is per- asserted. .

formed. The shutdown indication cycle is identified

by the state of the bus definition signals shown in A shutdown Military Intel386 processor resumes ex-
4.2.5 Bus Cycle Definition and a byte address of 0. ecution when NMI or RESET is asserted.

CYCLE 1 CYCLE 2 IDLE
PIPELINED PIPELINED
(READ) (SHUTDOWN)
TIP T2P TP T21 Ti Ti Ti Ti
CLK2 [J l I |
—
(M82384 CLK)[\f
BET, BEZ, BES, - 1386™ PROCESSOR REMAINS
M/10, W /-RI: VALID 1 | | SHUTDOWN UNTIL NM! OR
L 556 1S LOW FOR RESET IS ASSERTED.
BED, AZ-A31, VALID 1\SHUTDOWN CYCLE
D/C = 386 PROCESSOR RESPONDS
TO HOLD INPUT WHILE IN
A_DS[/ THE SHUTDOWN STATE.
w[
as1s|: +f BARE IGNORED
READY [

NOTE: SHUTDOWN CYCLE MUST BE
ACKNOWLEDGED BY READY
ASSERTED. WAIT STATES MAY
BE ADDED TO THE CYCLE IF
DESIRED.

LOCK[VALID 1 VALID 2

DO-D31 |:< N >------< N1 >---(_ UNDEFINED >---(FLOATING) cmmmnhenaa;
271052-28

Figure 5-24. Shutdown indication Cycle

11-9C
M 482L175 0135727 A1T EEITLL I

intgl.

4.5 OTHER FUNCTIONAL
DESCRIPTIONS

4.5.1 Entering and Exiting Hold
Acknowledge

The bus hold acknowledge state, Th, is entered in
response to the HOLD input being asserted. In the
bus hold acknowledge state, the Military Intel386
processor fioats all output or bidirectional signals,
except for HLDA. HLDA is asserted as long as the
Military Intel386 processor remains in the bus hold
acknowledge state. In the bus hold acknowledge
state, all inputs except HOLD, RESET, BUSY,
ERROR, and PEREQ are ignored (also up to one
rising edge on NMI is remembered for processing
when HOLD is no longer asserted).

e]

wel AUAUYUUUU
PP e Ve Ve Wa Wa Wa
w4

woo[_| AN
Huoa [
BE0-8E5_
a2k W%IOI: (FLOATITG) m
—

ADS ['-_---'(FLOATING)“"

READY [
LocK [=w==q(FLOATING)> ===
po- 031[edemaadaao o firOaTNG L.
271052-29

NOTE:

For maximum design flexibility the Military Intel386™™
processor has no internal pullup resistors on its out-
puts. Your design may require an external pullup on
ADS and other Military Intel386 processor outputs to
keep them negated during float periods.

Figure 5-25. Requesting Hold from Idle Bus

Th may be entered from a bus idle state as in Figure
5-25 or after the acknowledgement of the current
physical bus cycle if the LOCK signal is not asserted,
as in Figures 5-26 and 5-27. If asserting BS16 re-
quires a second 16-bit bus cycle to complete a phys-
ical operand transfer, it is performed before HOLD

MILITARY Intei386™ MICROPROCESSOR

is acknowledged, although the bus state diagrams in
Figures 5-13 and 5-20 do not indicate that detail.

Th is exited in response to the HOLD input being
negated. The following state will be Ti as in Figure
5-25 if no bus request is pending. The following bus
state will be T1 if a bus request is internally pending,
as in Figures 5-26 and 5-27.

This also exited in response to RESET being assert-
ed.

If a rising edge occurs on the edge-triggered NMI
input while in Th, the event is remembered as a non-
maskable interrupt 2 and is serviced when Th is exit-
ed, unless of course, the Military Intel386 processor
is reset before Th is exited.

4.5.2 Reset During Hold Acknowledge

RESET being asserted takes priority over HOLD be-
ing asserted. Therefore, Th is exited in reponse to
the RESET input being asserted. If RESET is assert-
ed while HOLD remains asserted, the Military
Intel386 processor drives its pins to defined states
during reset, as in Table 5-3 Pin State During Re-
set, and performs internal reset activity as usual.

If HOLD remains asserted when RESET is negated,
the M80386 enters the hold acknowledge state be-
fore performing its first bus cycle, provided HOLD is
still asserted when the Military Intel386 processor
would otherwise perform its first bus cycle. if HOLD
remains asserted when RESET is negated, the
BUSY input is still sampled as usual to determine
whether a self test is being requested, and ERROR
is still sampled as usual to determine whether an
M387 NPX vs. an M80287 (or none) is present.

4.5.3 Bus Activity During and
Following Reset

RESET is the highest priority input signal, capable of
interrupting any processor activity when it is assert-
ed. A bus cycle in progress can be aborted at any
stage, or idle states or bus hold acknowledge states
discontinued so that the reset state is established.

RESET should remain asserted for at least 15 CLK2
periods to ensurs it is recognized throughout the Mil-
itary Intel386 processor, and at least 80 CLK2 peri-
ods if Military Intel386 processor self-test is going to
be requested at the falling edge. RESET asserted
pulses less than 15 CLK2 periods may not be recog-
nized. RESET pulses lsss than 80 CLK2 periods fol-
lowed by a self-test may cause the self-test to report
a failure when no true failure exists. The additional
RESET pulse width is required to clear additional
state prior t0 a valid self-test.

11-91
B 482bL175 0135728 755 EEITLI :

MILITARY Intel386™ MICROPROCESSOR

CYCLE 1
(READ)

wal TLIULIL
Vava

(MB2384 CLK) [

HOLD [

=

NON=PIPELINED

HOLD CYCLE 2
ACKNOWLEDGE | NON-PIPELINED
» (WRITE)

T2 Th T T2

=L

HLDA [

HOLD ASSERTED !
NO LATER THAN READY ASSERTED

BEO-BE3, A2-A31, [—x

M/i0,D/C, W/R VALID 1

. (FLOATING) (

VALID 2

(FLOATING)

s N/

K S

mL

o
g
m

THE SECOND CYCLE IS
PERFORMED BEFORE
HOLD ACKNOWLEDGE

KXXXXXXXXY

NOTE: IF ASSERTING BS16
REQUIRES A SECOND BUS
CYCLE TO BE PERFORMED,

/

(NEGATED, OR LAST LOCKED CYG

rock[_ VALID 1

LE
N)(FLOATlNG)
e by T (VALID 2

1
(FLOATING)

NOTE:

D0-D31 [.---.--r---- .-..GD-.(}L‘.)A.TPE). e T our

HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (to3. and to4) require-
ments are met. This waveform is useful for determining Hold Acknowledge latency.

271052-30

Figure 5-26. Requesting Hold from Active Bus (NA negated)

Provided the RESET falling edge meets setup and
hold times to5 and tog, the internal processor clock
phase is defined at that time, as illustrated by Figure
5-28 and Figure 7-7.

A Military Intel386 processor self-test may be re-

uested at the time RESET is negated by having the
BUSY input at a LOW level, as shown in Figure 5-28.
The self-test requires (220) + approximately 60
CLK2 periods to complete. The self-test duration is
not affected by the test results. Even if the self-test
indicates a problem, the Military Intel386 processor
attempts to proceed with the reset sequence after-
wards.

11-92

After the RESET falling edge (and after the self-test
if it was requested) the Military Intel386 processor
performs an internal initialization sequence for ap-
proximately 350 to 450 CLK2 periods. Also during
the initialization, between the 20th CLK2 period and
the first bus cycle, the ERROR input is sampled to
determine the presence of a Military i387 coproces-
sor versus the presence of an M80287 (or no co-
processor). To distinguish between an M80287 be-
ing present and no.coprocessor being present re-
quires a software test.

B 4826175 0135729 bA92 EMITLY

MILITARY Intel386 ™ MICROPROCESSOR

CYCLE 1
PIPELINED
(WRITE)

CLK2 [

(M82384 CLK) [

HOLD CYCLE 2
ACKNOWLEDGE | NON=PIPELINED
(READ)

™

L
va

NEL

HOLD [

N 1 ™\
HOLD ASSERTED IN SAME BUS ~
STATE AS NA ASSERTED

NOTE:

HLDA [- \
BEO-BE3, A2-A31, (FLOATING)
M/I_C_),D/E,W/ﬁ[VALID {1 >--.- Jpp— VALID 2
_ . (FLOATING) |
ADS [LR Y Y 1. r
i
esTe[_ DONT CAF
READY[_
(NEGATED, OR LAST LOCKED CYCLE)
(FLOATING)
LOCK[VALID 1| |[peeecpeada VALID 2
(FLOATING)
DO-DS1[our X ouT)-T----.I---.- --{E
| |

HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold (tp3 and tp4) require-
ments are met. This waveform is useful for determining Hold Acknowledge latency.

271052-31

Figure 5-27. Requesting Hold from Active Bus (NA asserted)

4.6 SELF-TEST SIGNATURE

Upon completion of self-test, (if self-test was re-
quested by holding BUSY LOW at least eight CLK2
periods before and after the falling edge of RESET),
the EAX register will contain a signature of
00000000h indicating the Military Intel386 processor
passed its self-test of microcode and major PLA
contents with no problems detected. The passing
signature in EAX, 00000000h, applies to all Military
Intel386 processor revision levels. Any non-zero sig-
nature indicates the Military Intel386 processor unit
is faulty. :

4.7 COMPONENT AND REVISION
IDENTIFIERS

To assist Military Intel386 processor users, the Mili-
tary intel386 processor after reset holds a compo-

M 4426175 0135730 304 EEITL]
——n

nent identifier and a revision identifier in its DX regis-
ter. The upper 8 bits of DX hold 03h as identification
of the Military Intel386 component. The lower 8 bits
of DX hold an 8-bit unsigned binary number refated
to the component revision level. The revision identifi-
er begins chronologically with a value zero and is
subject to change (typically it will be incremented)
with component steppings intended to have certain
improvements or distinctions from previous step-
pings.

These features are intended to assist Military
Intel386 microprocessor users to a practical extent.
However, the revision identifier value is not guaran-
teed to change with every stepping revision, or to
follow a completely uniform numerical sequence, de-
pending on the type or intention of revision, or man-
ufacturing materials required to be changed. Intel
has sole discretion over these characteristics of the
component.

11-83

MILITARY Intel386™ MICROPROCESSOR

intgl.

(FROM M82384) —

CLK(INTERNAL)[x X:m:
(uazsucu()[x

INTERNAL

SELF-TEST.

SELF-TEST.

S nnhil

RESET

2 15 CLK2 DURATION IF
NOT GOING TO REQUEST

280 CLK2 DURATION
BEFORE REQUESTING

INITIALIZATION

IF SELF=-TEST IS PERFORMED,
ADD (2°20)+60°* T0 THESE
NUMBERS

1t 2 3

LEpEpEpapEpnigt

RESET /

\

CYCLE 1

NON=-PIPELINED
(READ)

Tt T2

*| * . »
17 18] 19|[395/396 397|398

*APPROXIMATELY

l¢ 216 1|02

VAVAWVA WS

NO SELF-TEST

NOTE 1
LOW TO BEGIN SELF-TEST (NOTE 2)

SENSING COPROCESSOR TYPE

d2|e 102

o 1]e2|e1

NEGATED TO ALLOW

M80287 (OR NONE)

KXXXXXXXXXXXXXXN

PRESENT
M np

[XXXXXXXHIXRA
s [XXXEXXXRX
ey XXX

o551 FRXRXXR -1

HE0-BE3 UP TO 50 CLK2 = 1387™ NPX PRESENT
W/R, M/10, Lov ||DURING RESET m YALD T
A
HLD UP TO 30 CLK2 —»]
A2-A31
AL HIGH || DURING RESET
0/%, LOCK XXX XX VALID 1
UP TO 30 CLK2 —= —
ADS [HIGH || DURING RESET /_

e = (FLOATING) m e s e e c ===

XXXXX

XX

271052-32
NOTES:
1. BUSY should be held stable for 8 CLK2 periods before and after the CLK2 period in which RESET falling edge
occurs.
2. If self-test is requested the Military Intel386™ processor outputs remain in their reset state, as shown here and in
Table 5-3.
Figure 5-28. Bus Activity from Reset Untll First Code Fetch
11-94

B 482b175 0135731 240 EEITLY

intgl.

4.8 COPROCESSOR INTERFACING

The Military Intel386 processor provides an auto-
matic interface for the Intel i387 numeric floating-
point coprocessor. The i387 coprocessor uses an
I/0-mapped interface driven automatically by the
Military Intel386 processor and assisted by three
dedicated signals: BUSY, ERROR, and PEREQ.

As the Military Intel386 processor begins supporting
a_coprocessor instruction, it tests the BUSY and
ERROR signals to determine if the coprocessor can
accept its next instruction. Thus, the BUSY and
ERROR inputs eliminate the need for any “pream-
ble” bus cycles for communication between proces-
sor and coprocessor. The Military i387 NPX can be
given its command opcode immediately. The dedi-
cated signals provide instruction synchronization,
and eliminate the need of using the Military intel386
processor WAIT opcode (9Bh) for Military i387 NPX
instruction synchronization (the WAIT opcode was
required when M8086 or MB088 was used with the
M8087 coprocessor).

Custom coprocessors can be included in systems
based on the Military Intel386 processor, via memo-
ry-mapped or 1/0-mapped interfaces. Such coproc-
essor interfaces allow a completely custom protocol,
and are not limited to a set of coprocessor protocol
“primitives”. Instead, memory-mapped or 1/0-
mapped interfaces may use all applicable Military In-
tel386 processor instructions for high-speed coproc-
essor communication. The BUSY and ERROR in-
puts of the Military Intel386 processor may also be
used for the custom coprocessor interface, if such
hardware assist is desired. These signals can be
tested by the Military Intel386 processor WAIT op-
code (9Bh). The WAIT instruction will wait until the
BUSY input is negated (interruptable by an NMI or
enabled INTR input), but generates an exception 16
fault if the ERROR pin is in the asserted state when
the BUSY goes (or is) negated. If the custom co-
processor interface is memory-mapped, protection
of the addresses used for the interface can be pro-

MILITARY Intel386™ MICROPROCESSOR

vided with the Military Intel386 processor on-chip
paging or segmentation mechanisms. If the custom
interface is I/0-mapped, protection of the interface
can be provided with the Military Intel386 processor
I0OPL (I/0O Privilege Level) mechanism.

The Military i387 numeric coprocessor interface is
1/0 mapped as shown in Table 5-10. Note that the
Military i387 coprocessor interface addresses are
beyond the Oh-FFFFh range for programmed 1/0.
When the Military Intel386 processor supports the
Military i387 coprocessor, the Military Intel386 proc-
essor automatically generates bus cycles to the co-
processor interface addresses.

Table 5-10. Numeric Coprocessor

Port Addresses
Address in Ma87
Military Intel386 Processor Coprocessor
1/0 Space Register
800000F8h Opcode Register
(32-bit port)
800000FCh Operand Register
(32-bit port)

To correctly map the Military i387 NPX registers to
the appropriate 1/0 addresses, connect the Military
i387 NPX CMDQO pin directly to the A2 output of the
Military Intel386 processor.

4.8.1 Software Testing for
Coprocessor Presence

When software is used to test for coprocessor
(M387 NPX) presence, it should use only the follow-
ing coprocessor opcodes: FINIT, FNINIT, FSTCW
mem, FSTSW mem, FSTSW AX. To use other co-
processor opcodes when a coprocessor is known to
be not present, first set EM = 1 in Military Intel386
processor CRO.

11-95

B 44826175 0135732 187 EEITLL

I R EIIEIIIh@—BBBBBR

MILITARY Intei386™ MICROPROCESSOR

5.0 MECHANICAL DATA

5.1 INTRODUCTION

“In this section, the physical packaging and its con-
nections are described in detail.

5.2 PIN ASSIGNMENT

The Military Intei386 processor pinout as viewed
from the top side of the PGA component is shown
by Figure 6-1. Its pinout as viewed from the Pin side
of the component is Figure 6-2.

intgl.

The Military Intel386 processor pinout for the CQFP
is shown in Figure 6-3.

Vcc and GND connections must be made to multi-
ple Vcc and Vgg (GND) pins. Each Vge and Vsg
must be connected to the appropriate voltage level.
The circuit board should include Vg and GND
planes for power distribution and all Vgg and Vg
pins must be connected to the appropriate plane.

NOTE:
Pins identified as “N.C.” should remain completely
unconnected.

P N M L K J H 6 F E D € B A
1 ~ ~~ ”~ ~ ~ ~ ~ ”~ ”~ ”~ -~ ”~~ ~ -~ 1
- - - - A4 A A4 A4 - ~ A4 -~ ~ A4
A30 A27 A26 A23 A2 A20 A17 A16 A1S Al4 At AB Ve Vee
2 ”~ fa) ~ -~ ~ ”~ ~ ~ ”~ ”~ ”~ ”~ ~ ”~ 2
- -~ ~ A4 -~ A A4 A d - - - - -
Voo A31 A29 A24 A22 Vgg A1B Voo Vgs A13 A0 A7 A5 Vgg
3 ”~ ~~ ”~ ”~ ~ ~ ”~~ ”~ ”~ ”~ ”~ o~ ”~ ~ 3
- A4 ~ ~ L A4 A - A d A d - A4 ~ ~
D30 Vgs Voo A28 A25 Vgg AI9 Voo Vgg AI2 A9 A6 A4 A3
4 ~ ~ ~ ~ ~ ' 4
- - ~ L A4 -
D29 Vo Vss A2 NC NC
5 ~ ”~ ~ ”~ ”~ ”~ 5
- - A4 - A4
026 D27 D31 Voo Vss VYeo
6 c C C cC T C 6
Ves D25 D28 NC NC Vg
7 ~ ”~ ”~ ~ ”~~ ”~ 7
A ot ~ - - -
D24 Vo Voo NC INTR Vg
8 ”~ ~ ”~ ~ [a) ”~ 8
A4 - A4 A4 A
Yoo D23 Vgg PEREQ NMI ERROR
9 ”~ ”~ ~ ~ ”~ ”~ 9
A4 - A4 So? A4
p22 D21 D20 RESET BUSY Vgg
10 C C < c C 10
D19 D17 Vgg oK W/R Ve
11 z o o -~ ~ ~ 1
A4 - .t A4 -
D18 D16 D1S Vss Vss D/C
~ ~ - - ~ et ~ ~ L N ~ ~ ~ ~
D14 D12 DI0 Vog D7 Vgs DO Voo CLK2 BEO Voo Vo NC M/IO
~ o ~ ~ ~ ~ o o ~ ~ ™ M N S
DI3 DIt Vo D8 D5 Vgg DI READY NC NC NA BEI BE2Z BES
~ ' A4 A ~ - A d o A & - ~ - -
\ Vgg D9 HLDA D6 D4 D3 D2 Voo Vs ADS HOLD BSTE Vgg Ve /
P N M L K J H G F E D Cc B A
271052-33
NOTE:
NC pins should always remain unconnected.

Figure 6-1. Military Intel386™ Processor PGA Pinout—View from Top Side

M 4426175 0135733 013 EMITLL

»
InU o MILITARY Intel386™ MICROPROCESSOR

A B €C D E F GG H J K L M N P
1/0000000000000 1
Vec Vss A8 A1l A14 AI5 AIE A17 A20 A21 A23 A26 A27 A30
2 O OO0 0 0O 0O 0 0O 0O 0O 0 OO OO O 2
Vss A5 A7 A10 AI3 Vg Voo A1B Vgg A22 A24 A29 A1 Vg
3 O O O O o 0 O 0 O O 0O O 3
A3 A4 A6 A9 AI2 Vg5 Voo AI9 Vgg A25 A28 Voo Vss D30
4 O O O - 0 O O 4
NC NC A2 Vss Voo D29
5 O O N o O O 5
Vee Vss Veo D31 D27 D26
METAL LID
6 O O O O O O 6
Vgs NC NC D28 025 Vg
7 o O O O O 7
Yec INTR NC Yoo Yoo D24
8 O O O O O 8
ERROR NMI PEREQ Vgg D23 Vee
] 0 0 O O 0 O |o
Vgs BUSY RESET D20 D21 D22
10 O 0 O 0 10
Voo W/R LOCK Vgs D17 D19
1" o O O o O O 1"
D/C Vgg Vgs D15 Di6 D18
12 O O 00 0 O 0 0O 0O 0O 0 0 0 0 12
M/I0 NC Vee Voo BEG CLK2 Vge DO Vgg D7 Vo DIO D12 D14
13 O 0 O 0 O O 0O 0O O O 0O O 13
BE3 BEZ BET MNA NC NC READY DI Vg D5 D8 Vg DIt D13
14 O 00 OO0 O O O OO0OO0OO0OO0 14
\vcc Vss BST6 HOLD ADS Vgg Voo D2 D3 D4 D6 HLDA D9 Vg /

A B c D E F G H J K L M N P

271052-34
NOTE:
NC pins should always remain unconnected.

Figure 6-2. Military Intel386™ Processor PGA Pinout—Vlew from Pin Side

11-97
I B 4325175 0135734 TST EEITLI

L
MILITARY Intel386™ MICROPROCESSOR Inu ®

Table 6-1. Military Intel386™ Processor PGA Pinout—Functional Grouping

Pin Signal Pin Signal Pin Signal Pin Signal
N2 A31 M5 D31 A1 Vee A2 Vss
P1 A30 P3 D30 A5 Ve A6 Vsg
M2 A29 P4 D29 A7 Vee A9 Vss
L3 A28 M6 D28 A10 Ve B1 Vss
N1 A27 N5 D27 Al4 Vee BS Vss
M1 A26 P5 D26 B11 Vsg
K3 A25 N6 D25 C5 Vee B14 Vss
L2 A24 P7 D24 c12 Voo c11 Vss
L1 A23 N8 D23 D12 Vee F2 Vss
K2 A22 P9 D22 G2 Vee F3 Vss
K1 A21 N9 D21 G3 Vee F14 Vss
H “A20 M9 D20 G12 Voo J2 Vss
“H3 A19 P10 D19 G4 Vee J3 Vgs
H2 A18 P11 D18 L12 Veo J12 Vss
H1 A7 N10 D17 J13 Vss
G1 Al6 N1 D16 M3 Vee M4 Vss
F1 A15 M11 D15 M7 Vee M8 Vss
E1 Al4 P12 D14 Mi3 Voo M10 Vss
E2 A13 P13 D13 N4 Vee N3 Vss
€3 Al2 N12 D12 N7 Vee P6 Vss
D1 Al N13 D11 P2 Vee P14 Vss
D2 - A10 M12 D10 P8 Vee

D3 A9 "N14 D9 A4 N.C.
Ct A8 L13 D8 F12 CLK2 B4 N.C.
C2 A7 K12 D7 B6 N.C.
Cc3 A6 L14 D6 E14 ADS B12 N.C.
B2 A5 K13 D5 c6 N.C.
B3 A4 K14 D4 810 W/R C7 N.C.
A3 A3 J14 D3 A1l D/C E13 - N.C.
C4 A2 H14 D2 A12 M/10 F13 N.C.
A13 BES H13 D1 c10 LOCK

B13 BEZ2 H12 DO c8 PEREQ
c13 BET D13 NA B9 BUSY
E12 BEO G13 READY A8 ERROR

D14 HOLD (L BS16
co RESET M14 HLDA B7 INTR B8 NMI

11-98
B 4826175 0135735 990 EEITLY

a
|nte| R MILITARY Intel386™ MICROPROCESSOR

] 7] MmN oo oY © 0o ® O
3229392337223 3989 2928
NC D
= D31 30
A2 Vss
cc D28
= D29
NC Vss
= Vee
NC D37 D26
Vss 7 NC
Vee T D23
NC “=yer NC
NC =024 D21
NC NG NC
PEREQ D19
E—D22
Ve = Vss
RESET D18 D17
NC vV Vss
Vee cc D16
L= D15
Vee =513 NC
Vee B Ves D14
Vee Vee
D11
Vee NG D12
W/R Do NC
Vece D10
271052-35
(Staggered pin arrangement is shown for clarity only. Actual package has pins of equal length.)
NOTE:
NC pins should always remain unconnected.
Figure 6-3. Military Intel386™ Processor CQFP Pinout—View from Top Side
1 11-99

B 442b1l7?5 013573L 422 MRITLL
R RO RRRRRREEEERRRRRRRRRRERREEREREEEEREREREREEEEEEEESSESSSEIEEIEIEIIE—SSSSS

.
MILITARY Intel386™ MICROPROCESSOR |n‘te| o

Table 6-2. Military Intel386T™ Microprocessor CQFP Pin Cross-Reference

Pin Signal Pin Signal Pin Signal Pin Signal
1 A16 42 PEREQ - 83 READY 124 D19
2 Al7 43 Vss 84 NC 125 NC
3 A15 44 Vee 85 D1 126 NC
4 Al4 45 ERROR 86 NC 127 D24
5 A13 46 RESET 87 D2 128 D21
6 A12 47 NC 88 NC 129 NC
7 A1 48 NC 89 D4 130 NC
8 NC 49 BUSY 90 Do 131 D25
9 A9 50 Voo 91 Vee 132 D23
10 A10 51 Vss 92 Vss 133 NC
1 Vss 52 Vee 93 D6 134 NC
12 A7 53 Vss 94 D3 135 D27
13 A8 54 Veo 95 Vss 136 D26
14 Veo 55 Vss 96 Voo 137 Vco
15 Vss 56 Veo 97 D8 138 |. Vss
16 A5 57 Vss 98 D5 139 D29
17 A6 58 Voo 99 Voo 140 | D28
18 NC 59 LOCK 100 Vss 141 Vee
19 NC 60 W/R . 101 HLDA 142 Vss
20 A3 61 Vss 102 D7 143 D31
21 A4 62 Voo 103 NG 144 D30
22 NC 63 M/10 104 D10 145 NC
23 NC 64 D/C 105 D9 146 A31
24 A2 65 NC 106 NC 147 A30
25 NC 66 NC 107 NC 148 A29
26 Vco 67 BEZ 108 Di2 149 A28
27 Vss 68 NC 109 D11 150 Vee
28 NC 69 Vee 110 Voo 151 Vss
29 NC 70 Vss 11 - Vss 152 A27
30 NC 71 BEO 112 D14 153 A26
31 Vee 72 BE3 113 D13 154 A25
32 Vss 73 NC 114 NC 155 NC
33 NC 74 BE1 115 D15 156 A23
34 Voo 75 NA 116 D16 157 A24
35 Vss ' 76 NC 117 Veo 158 A21
36 NC 77 NC 118 Vss 159 A22
37 INTR 78 BS16 119 D18 160 NC
38 NC 79 HOLD 120 D17 161 A20
39 NC 80 CLK2 121 D20 162 A19
40 NC 81 ADS 122 Vss 163 A18
41 NMI 82 | NC 123 D22 164 NC
11-100

B 4825175 0135737 769 EEITLL

|
Inu o MILITARY Intel386™ MICROPROCESSOR

Table 6-3. Military Intel386T™ Processor PGA Package Thermal Characteristics

Thermal Resistance — °C/Watt 40
Airflow — ft./min (m/sec) Ja
Parameter 0 50 100 200 400 800 800 4+
0) | (025) | (0.50) | (1.01) | (2.03) | (3.04) | (4.06) 8 oin 8,

8 Junction-to-Case 2 2 2 2 2 2 2 TSR]

(case measured ()

as Fig. 6-4) . W o cap

Casa-lo-Ambient | 19 18 17 15 12 10 9 | N

{no heatsink)
NOTES:
1. Table 6-3 applies to Military intel386 3. 8).cap = 4°C/w (approx.) 271052-72
PGA plugged into socket or soldered di- 8y.piN = 4°C/w (inner pins) (approx.)
rectly into board. 8,.piIN = B°C/w (outer pins) (approx.)
2.8)p = 0)c + Oca.

] 11-101

M 44826175 0135738 LTS MRITLY
d—l

-

MILITARY Intel386™ MICROPROCESSOR

6.0 ELECTRICAL DATA

6.1 INTRODUCTION

The following sections describe recommended elec-
trical connections for the Military Intel386 processor,
and its electrical specifications.

6.2 POWER AND GROUNDING

6.2.1 Power Connections

The Military Intel386 processor is implemented in
CHMOS Il technology and has modest power re-
quirements. However, its high clock frequency and
72 output buffers (address, data, control, and HLDA)
can cause power surges as multiple output buffers
drive new signal levels simultaneously. For clean on-
chip power distribution at high frequency, 20 Voo
and 21 Vgg pins separately feed functional units of
the Military Intel386 processor.

Power and ground connections must be made to all
external Vo and GND pins of the Military Intel386
processor. On the circuit board, all Vcg pins must be
connected on a Vgg plane. All Vgg pins must be
likewise connected on a GND plane.

6.2.2 Power Decoupling
Recommendations

Liberal decoupling capacitance should be placed
near the Military Intel386 processor. The Military
Intel386 processor driving its 32-bit parallel address
and data buses at high frequencies can cause tran-
sient power surges, particularly when driving large
capacitive loads.

Low inductance capacitors and interconnects are
recommended for best high frequency electrical per-
formance. inductance can be reduced by shortening
circuit board traces between the Military Intel386
processor and decoupling capacitors as much as
possible. :

intel.

Capacitors specifically for PGA packages are also

commercially available, for the lowest possible in-

ductance.

6.2.3 Resistor Recommendations

The ERROR and BUSY inputs have resistor pullups
of approximately 20 KQ built-sin to the Military
Intel386 processor to keep these signals negated
when neither MB0287 or Military i387 NPX are pres-
ent in the system (or temporarily removed from its
socket). The BS16 input also has an internal pullup
resistor of approximately 20 K}, and the PEREQ
input has an internal pulldown resistor of approxi-
mately 20 KQ.

In typical designs, the external pullup resistors
shown in Table 7-1 are recommended. However, a
particular design may have reason to adjust the re-
sistor values recommended here, or alter the use of
pullup resistors in other ways.

6.2.4 Other Connection
Recommendations

For reliable operation, always connect unused in-
puts to an appropriate signal level. N.C. pins should
always remain unconnected.

Particularly when not using interrupts or bus hold,
(as when first prototyping, perhaps) prevent any
chance of spurious activity by connecting these as-
sociated inputs to GND:

Pin Signal
B7 INTR
B8 NMI
D14 HOLD

If not using address pipelining, pullup D13 NA to
Veo.

If not using 16-bit bus size, pullup C14 BS16 to Ve

Pullups in the range of 20 KO are recommended.

Table 7-1. Recommended Resistor Pullups to Ve

Pin and Signal Pullup Value Purpose
E14 ADS 20K £10% Lightly Pull ADS Negated during Military Intel386
Processor Hold Acknowledge States
c10 L[OCK 20 KL £10% Lightly Pull COCK Negated during Military Intel386
Processor Hold Acknowledge States
11-102

B 4325175 0135739 531 I

ITLY

.
Intd o MILITARY intel386™ MICROPROCESSOR

6.3 MAXIMUM RATINGS Table 7-2 is & stress rating only, and functional oper-
ation at the maximums is not guaranteed. Functional
Table 7-2. Maximum Ratings operating conditions are given in 7.4 DC Specifica-
tions and 7.5 AC Specifications. ’
Military Intel386
Parameter Processor Extended exposure to the Maximum Ratings may af-
Maximum Rating fect device reliability. Furthermore, although the Mili-
Storage Temperature _65°Cto +150°C tary Iqtel386 processor con_talns prpteqtlve circuitry
Gase Temperature Under Bias _E5'C o +125°C to resist damage from static electric dlspharge. al-
) ways take precautions to avoid high static voltages
Supply Voltage with Respect to Vgg| —0.5V to +6.5V or alectric fields.
Voltage on Other Pins —0.5Vto Ve + 0.5V

6.4 OPERATING CONDITIONS

MIL-STD-883
Symbol Description Min Max Units
Tc Case Temperature (Instant On) —55 +125 ‘C
Vce Digital Supply Voltage 4.75 5.25 ’ v

Extended Temperature

Symbol Description Min Max Units
Te Case Temperature (Instant On) —40 +110 °C
Vce Digital Supply Voltage 475 5.25 \

Military Temperature Only (MTO)

Symbol Description Min Max Units
T Case Temperature (instant On) -55 +125 °C
Voo Digital Supply Voltage 4.75 5.25 v

11-103
B 44626175 0135740 253 EEITLY

]
MILITARY Intel386™ MICROPROCESSOR | ntel o

6.5 DC SPECIFICATIONS (Over Specified Operating Conditions)
Table 7-3. Military Intel386™ Processor DC Characteristics

Symbol Parameter Min Max Unit ' Notes
Vi Input Low Voltage -03 0.8 v
ViH input High Voltage 20 Ve + 0.3 v
ViLe CLK2 Input Low Voltage -0.3 0.8 \
ViHe CLK2 Input High Voltage Vog — 08 | Voo + 0.3 \
Voo Output Low Voltage
loL = 4 mA: A2-A31, D0-D31 0.45 \
loL = 5mA: BEO-BES, W/R, 0.45 v
D/T, M/NO, LOCK,
ADS, HLDA
VoH Qutput High Voltage
loy = —1mA: A2-A31,D0-D31 24 \
lon = —0.9mA: BEO-BE3, W/R, 24 \Y
D/C, M/10, LOCK,
ADS, HLDA
Iu Input Leakage Current (for all pins
except BS16, PEREQ, BUSY, and +15 pA | OV < VN < Voo
RROR)
v Input Leakage Current (PEREQ pin) 200 pA | Viy = 2.4V (Note 1)
i Input Leakage Current — 400 pA | V)L = 0.45V (Note 2)
(BST6, BUSY, and ERROR pins)
Lo Output Leakage Current +15 pA | 0.45V < Vour € Veo
lcc Supply Current
CLK2 = 32 MHz: with 16 MHz 460 mA | lgctyp. = 370 mA
Military Intel386 Processor
CLK2 = 40 MHz: with 20 MHz 550 mA | Icctyp. = 460 mA
Military Intel386 Processor
CLK2 = 50 MHz; with 25 MHz 680 mA | Igc typ. = 580 mA
Military Intel386 Processor
Cin Input Capacitance . 20 pF | Fe = 1 MHz
Cout Output or I/0 Capacitance 25 pF | Fc = 1 MHz
Colk CLK2 Capacitance 20 pF | Fe = 1 MHz
NOTES:

1. PEREQ input has an internal pulldown resistor.
2. BS16, BUSY and ERROR inputs each have an internal pullup resistor.

11-104 ’
B 4826175 0135741 19T EEITLL I

intgl.
6.6 AC SPECIFICATIONS

6.6.1 AC Specification Definitions

The AC specifications, given in Tables 7-4 and 7-5
consist of output delays, input setup requirements
and input hold requirements. All AC specifications
are relative to the CLK2 rising edge crossing the
2.0V level.

AC spec measurement for a 12 MHz Military
Intel386 processor is defined by Figure 7-1. Inputs
must be driven to the voltage levels indicated by Fig-
ure 7-1 when AC specifications are measured. Mili-
tary Intel386 processor output delays are specified

MILITARY Intel386™ MICROPROCESSOR

with minimum and maximum limits, measured as
shown. The minimum Military Intel386 processor de-
lay times are hold times provided to external circuit-
ry. Military Intel386 processor input setup and hold
times are specified as minimums, defining the smalil-
est acceptable sampling window. Within the sam-
pling window, a synchronous input signal must be
stable for correct Military Intel386 processor opera-
tion.

Outputs NA, W/R, D/C, M/i0, LOCK, BEO-BES,
A2-A31 and HLDA only change at the beginning of
phase one. DO-D31 (write cycles) only change at
the beginning of phase two. The READY, HOLD,
BUSY, ERRgR, PEREQ and DO-D31 (read cycles)
inputs are sampled at the beginning of phase one.
The NA, BS76, INTR and NMI inputs are sampled at
the beginning of phase two.

cikz [

_ outRuTs
__ (A2-A31,D/T, BEO-BES,

1.5V

RED

Tx

VALID OUTPUT n+1

. ADS,M/i0, W/R, LOCK, HLDA)

OUTPUTS
(D0-D31)

VALID OUTPUT n 1.5V, 1.5V YALID OUTPUT n+)

_INPUTS
WA, BST8,
¢ L ov

3.0v m@ -;I
1

INTR, NMI)

INPUTS
(READY, HoLD, BUSY, |
ERROR, PEREQ, DO-D31)

LEGEND:

.5v1 VALID INPUT 1.5V 0NN
T

@ = MAXIMUM OUTPUT DELAY SPEC.
@ = MINIMUM OUTPUT DELAY SPEC.
© = MINIMUM NPUT SETUP SPEC.
@- MINIMUM INPUT HOLD SPEC.

30v nl -;I
ov NN\ VALIDIINPUT 1.5V AN

271062-37

Figure 7-1. Drive Levels and Measurement Points for
12 MHz Military Intel386™ Processor AC Specifications

11-105

M 4326175 0135742 02b EEITLL

e ——

MILITARY Intel386™ MICROPROCESSOR

6.6.2 AC Specification Tables (Over Specified Operating Conditions)

Output Trip Level: 1.5V

Table 7-4. Military Intel386™ Processor AC Characteristics

16 MHz 20 MHz 25 MHz
Military Military Military Ret
5ymb°| Parameter intel386 Intel386 Intel386 Unit Fi et. Notes
- Processor | Processor | Processor gure
Min | Max | Min | Max | Min | Max
Operating Frequency 4 16 4 20 MHz —_ Half of CLK2
Frequency

ty CLK2 Period 31 126 | 25 125 20 125 | ns 7-3
toa CLK2 High Time 9 8 7 ns 7-3 |at2v
top CLK2 High Time 5 5 4 ns 7-3 | at(Vgc — 0.8V)
t3a CLK2 Low Time 9 8 7 ns 7-3 |ata2v
tap CLK2 Low Time 7 6 5 ns 7-3 | at0.8v
tq CLK2 Fall Time 7 ns 7-3 | (Vo — 0.8V) t0 0.8V
ts CLK2 Rise Time ns 7-3 | 0.8Vto (Vg — 0.8V)
ts A2-A31 Valid Delay 4 36 4 27 4 20 ns 75 | CL=120pF*
t; A2-A31 Float Delay 4 40 4 32 4 30 ns 7-6 | (Note 1)
tg BEO-BE3 Valid Delay | 4 36 4 27 4 24 | ns 75 | CL = 75pF*
to BEO-BE3, LOCK 4 40 4 32 4 30 | ns 7-6 | (Note 1)

Float Delay
to W/R, M/10, D/T, 6 33 6 28 4 19 | ns 7-6 | CL = 75pF*

ADS Valid Delay
t4 W/R, M/10, D/C, 6 35 6 30 4 30 ns 7-6 | (Note 1)

ADS Float Delay
ty2 D0-D31 Write Data 4 | 48 6 38| 8 27 | ns 75 | CL = 120pF*

Valid Delay
tis DO0-D31 Write Data 4 35 4 27 4 22 ns 7-6 (Note 1)

Float Delay
t1a HLDA Valid Delay 6 33 28 4 22 ns 76 {C_=T75pF*
ti5 NA Setup Time 1 7 ns 7-4
t16 NA Hold Time 14 14 3 ns 7-4
ty7 BS16 Setup Time 13 13 7 ns 7-4
ti1s BS16 Hold Time 21 21 3 ns 7-4
tio READY Setup Time 21 12 8 ns 7-4
tao READY Hold Time 4 4 4 ns 7-4
124 D0-D31 Read 1 1" 6 ns | 7-4

Setup Time

*CL = 50 pF for 25 MMz.

11-106

B 432b175 0135743 The EEITLD

intal.

6.6.2 AC Specification Tables (Over Specified Operating Conditions) (Continued)

Output Trip Level: 1.5V

MILITARY Intei386™ MICROPROCESSOR

Table 7-4. Military Intel386 Processor AC Characteristics (Continued)

16 MHz 20 MHz 25 MHz
Military Military Military
Symbol Parameter Intel386 Intei386 intei386 | unit | " | Notes
Processor | Processor | Processor Figure
Min | Max | Min | Max | Min | Max
tan D0-D31 Read 6 6 5 ns 7-4
Hold Time
tog HOLD Setup Time 26 17 15 ns 7-4
to4 HOLD Hold Time 5 5 3 ns 7-4
tas RESET Setup Time 13 12 10 ns 7-7
toe RESET Hold Time 4 4 3 ns 77
toy NMI, INTR Setup Time 16 16 6 ns 7-4 (Note 2)
tos NM|, INTR Hold Time 16 16 6 ns 7-4 {Note 2)
t29 PEREQ, ERROR, BUSY 16 14 6 ns 7-4 (Note 2)
Setup Time
t30 PEREQ, ERROR, BUSY 5 5 5 ns 7-4 (Note 2)
Hold Time :
NOTES:

1. Float condition occurs when maximum output current becomes less than I g in magnitude.

2. These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing purposes,

to assure recognition within a specific CLK2 period.

6.6.3 AC Test Loads

6.6.4 AC Timing Waveforms

i386

PROCESSOR
OUTPUT
g :
CL = 120 pF* on A2-A31, DO-D31

CL = 75 pF* on BEO-BES, W/R, M/10, D/T, ADS, LOTK, HLDA
Cy includes all parasitic capacitances.

*CL = 50 pF for 25 MHz.

271052-38

271052-39

Figure 7-2. AC Test Load

B 482L175 0135744 9T9 EEITLL
. T R R R R R R R R R R R R R R R R BB EEEBBEESES

Figure 7-3. CLK2 Timing

11-107

MILITARY Intel386™ MICROPROCESSOR

™

™

2
CLK2 |: _*——\ 7

A
SN 7
7N
e
S
AT;

19
e [TN _$§
B
HOLD [m) NN
._@_-.
(RPUT) [K\K\& TR
®

I

N

PEREQ

NN

N -
N a——
]‘—@—':ﬂ -

INTR,
Nl
271062-40
Figure 7-4. Input Setup and Hold Timing
Tx
2 ¢1 2 1
oz [N/ S/ \ \ *
o O —tum {ax
BE°1%% VALID n VALID n+1
o 1_® T | ax
w{;}'gf% |: VALID n VALID n#1
Ot —tum {MAx
A2-A31 [VALID n VALID né1
E i i T
(0?107;337'; vaLID n NN VALID ne 1
HLDA |:

271052-41

Figure 7-5. Output Valid Delay Timing

\
!
1

11-108 ' I |
B y82L17?5 D1357u5 835 EEITLY

L]
Intd o MILITARY Intel386™ MICROPROCESSOR

Th TiOR T1
2 ¢l 2 ” [¥
o [TN o\
e s MIN MAX 8 MIN MAX
550'&[N R + - — 1]
LoCK (HIGH Z)
_ _ @ MIN MAX 19 MIN MAX
W/R'_N&-[I N S N A R
D/C,ADS (HIGH Z)
@ MIN MAX J ﬁI_N MAX
A2=A31 I: L=~ I T ey |~ =1
@ MIN MAX @ MIN MAX
DO-D31 F—— 1T+ — ===+ - — — — 1
I: (HIGH Z)
ALSO APPLIES TO DATA FLOAT WHEN WRITE
CYCLE IS FOLLOWED BY READ OR IDLE
4 IMIN #Ax 4 MIN MAX
woa [A : LMY
271052-42
Figure 7-6. Output Float Delay and HLDA Valid Delay Timing
RESET INITIALIZATION SEQUENCE —~—~
$2 OR ¢1 $2 OR &1 2 1
CLK2 I:
ReseT | N\
~ 271052-43
The second internal processor phase follawing RESET high-to-low transition (provided tos and tzg are met) is ¢2.
Figure 7-7. RESET Setup and Hold Timing, and Internal Phase
- 11-109

B 4826175 013574k 771 EEITLL
R R A R R R BRSSP I~

MILITARY Intei386™ MICROPROCESSOR

6.7 DESIGNING FOR ICE™-386 USE

The Military Intel386 processor in-circuit emulator
product is ICE™-386. Because of the high operating
frequency of Military Intel386 processor systems
and ICE-386, there is no cable separating the ICE-
386 probe module from the target system. The ICE-
386 probe module has several electrical and me-
chanical characteristics that should be taken into
consideration when designing the hardware.

Capacitive loading: ICE-386 adds up to 25 pF to
each line.

Drive requirement: ICE-386 adds one standard
TTL load on the CLK2 line, up to one advanced low-
power Schottky TTL load per control signal line, and
one advanced low-power Schottky TTL load per ad-
dress, byte enable, and data line. These loads are
within the probe module and are driven by the
probe’s M80386, which has standard drive and load-
ing capability listed in Tables 7-3 and 7-4.

Power requirement. For noise immunity the
ICE-386 probe is powered by the user system. The
high-speed probe circuitry draws up to 0.7A plus the
maximum Military Intel386 processor Igc from the
user Military Intel386 processor socket.

Military Intel386 processor location and orienta-
tion: The ICE-386 Processor Module (PM), and the
Optional Isolation Board (OIB) used for extra electri-

"

intel.
cal buffering of the ICE initially, require clearance as
illustrated in Figures 7-8 and 7-9, respectively. Fig-
ures 7-8 and 7-9 also illustrate the via holes in these
modules for recommended orientation of a screw-
actuated ZIF sockst. Figure 7-10 illustrates the rec-

ommended orientation for a lever-actuated ZIF
socket.

READY drive: The ICE-386 system may be able to
clear a user system ﬁEAE% hang if the users
READY driver is implemented with an open-collector
or tri-state device.

Optional Interface Board (OIB) and CLK2 speed
reduction; When the ICE-386 processor probe is
first attached to an unverified user system, the OIB
helps ICE-386 function in user systems with bus
faults (shorted signals, etc.). After electrical verifica-
tion it may be removed. Only when the OIB is in-
stalled, the user system must have a reduced CLK2
frequency of 16 MHz maximum.

Cache coherence: ICE-386 loads user memory by
performing Military Intel386 processor write cycles.
Note that if the user system is not designed to up-
date or invalidate its cache (if it has a cache) upon
processor writes to memory, the cache could con-
tain stale instruction code and/or data. For best use
of ICE-386, the user should consider designing the
cache (if any) to update itseif automatically when
processor writes occur, or find another method of
maintaining cache data coherence with main user
memory.

§.100

T
e L
¥ —
o o)
L
I -
- i 7|
o]

7 pr A5
0.187 80
2PL

271052-75

Figure 7-8. ICETM-386 Processor Module Clearance Requirements (Ipches)

11-110
B 4326175 0135747 L0& EMITLL |

]
Intd o MILITARY Intel386™ MICROPROCESSOR

v
i 1 r———
SomAx L 1 .GQ:EF
- 5.100
(o] 0 fe) O
u E
.200
& ¥
PIN1
3.800 1.700
PIN 1
i 2.360
] =
1.440 "\
a
0 o o 0 4: N v
1so—>| _’Inso-» B_
-80 0.168
2 271052-76

Figure 7-9. ICETM-386 Optional Interface Module Clearance Requirements (inches)

PIN1
LEVER OF ZIF SOCKET

COMPONENT SIDE
PROCESSOR MODULE

271052-74
Figure 7-10. Recommended Orientation of Lever-Actuated ZIF Socket for ICET™™-386 Use

= 11-111
I 482b175 0135748 544 EEITLL '
.,

MILITARY Intel386™ MICROPROCESSOR

7.0 INSTRUCTION SET

This section describes the Military Intel386 proces-
sor instruction set. A table lists all instructions along
with instruction encoding diagrams and clock
counts. Further details of the instruction encoding
are then provided in the following sections, which
completely describe the encoding structure and the
definition of all fields occurring within Military
Intel386 processor instructions.

7.1 MILITARY Intel386™
PROCESSOR INSTRUCTION
ENCODING AND CLOCK COUNT
SUMMARY

To calculate elapsed time for an instruction, multiply
the instruction clock count, as listed in Table 8-1
below, by the procsssor clock period (e.g. 62.5 ns
for a Military Intel386 processor operating at 16 MHz
(32 MHz CLK2 signal)). The actual clock count of a
Military Intel386 processor program will average 5%
more than the calculated clock count duse to instruc-
tion sequences which execute faster than they can
be fetched from memory.

For more detailed information on the encodings of
instructions refer to Section 7.2 Instruction Encod-
ings. Section 7.2 explains the general structure of
instruction encodings, and defines exactly the en-
codings of all fields contained within the instruction.

11-112

intel.

Instruction Clock Count Assumptions

1. The instruction has been prefetched, decoded,
and is ready for exacution.

2. Bus cycles do not require wait states.

3. There are no local bus HOLD requests delaying
processor access to the bus.

4, No exceptions are detected during instruction ex-
ecution.

5. If an effective address is calculated, it does not
use two general register components. One regis-
ter, scaling and displacement can be used within
the clock counts shown. However, if the effective
address calculation uses two general register
components, add 1 clock to the clock count
shown.

Instruction Clock Count Notation

1. If two clock counts are given, the smaller refers to
a register operand and the larger refers to a mem-
ory operand.

2. n = number of times repeated.

3. m = number of components in the next instruc-
tion executed, where the entire displacement (if
any) counts as one component, the entire imme-
diate data (if any) counts as one component, and
all other bytes of the instruction and prefix(es)
each count as one component.

Wait States

Add 1 clock per wait state to instruction execution
for each data access.

M 4826175 0135749 u4a0 BITLL

In ®

MILITARY Intel386™ MICROPROCESSOR

Table 8-1. Military Intel386™ Processor Instruction Set Clock Count Summary

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | Protected | Address | Protected
Mode or Virtuat Mode or Virtual
Virtual Address Virtual Address
8088 Mode 8086 Mode
Mode Mode

GENERAL DATA TRANSFER

MOV = Move:

Register to Register/Memory l 1000100w I madreg r/m I 2/2 212 b h

Register/Memory to Register I 1000101w l mod reg r/m I 2/4 2/4 b h

Immediate to Register/Memory L 1100011 w l mod000 r/m I immediate data 2/2 2/2 b h

immediate to Register (short form) immediate data 2 2

Memory to Accumulator (short form) 1010000w | fultdisplacomant 4 4 b h

Accumulator to Memory (short form) 1010001 w | full displacemant 2 2 b h

Register Memory 1o Segment Register I 10001110 [mod sregd r/m I 2/5 18/19 b hij
! Segment Register to Register/Memory [10001100 I mod sreg3 r/m | 2/2 2/2 b h

MOVSX = Move With Sign Extension

Register From Register/Memory | 00001111 [1011111w] mod reg r/ml 3/6 3/6 b h

MOVZX = Move With Zero Extension

Register From Register/Memory [00001111 | 1011011w |modreg r/m| 8/8 are b h

PUSH = Push:

Register/Memory | 11111111 Imod110 r/ml 5 5 b h

Register (short form) a1010 reg 2 2 b h

Segment Register (ES, CS, $S or DS) 000seg2110 2 2 b h

Segment Register (FS or GS) [00001111 | 10smg30a0 2 2 b h

Immediate 01101050 | immediate data 2 2 b h

PUSHA = Push All 01100000 18 18 b h

POP = Pop

Register/Memory | 10001111 |mod000 r/m 5 5 b h

Register (short form) 4 4 b h

Segment Register (ES, SS or DS) 000sreg2111 7 21 b nii

Segmant Register (FS or GS) [00001111 [10sregaoas 7 21 b hij

POPA = Pop All 01100001 24 24 b h

XCHG = Exchange

Register/Memory With Register [1000011w I modreg t/m 3/5 3/5 b, fh

Register With Accumulator (short form) 10010 reg Clk Count 3 3

Virtual

IN = Input trom: 8086 Mode

Fixed Port I 1110010w l port number 126 12 6*/26*% m

Variable Port 1110110w a7 13 727 m

OUT = Output to:

Fixed Port l 1110011w l port number 124 10 4%/24* m

LEA = Load EA to Regl [10001101 [modreg r/m 2 2

*If CPL < IOPL ** If CPL > 10PL

a 11-113

B 4826175 0135750 1Te MAITLL
I R R R R RN EEEREEEEE———————..

MILITARY Intei386™ MICROPROCESSOR |nte| o

Table 8-1. Military Intel386™ Processor Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | P d Adds F

Mode or Virtual Mode or Virtual
Virtual Address Virtual Address

8086 | Mode 8038 Mode
Mode Mode
SEGMENT CONTROL
LDS = Load Pointer to DS [11000101 lmodreg r/ml 7 22 b hi
LES = Load Pointer 10 ES [11000100 [modreg wm]} 7 2 b hij
LFS = Load Pointer to FS [00001111 [10110100 [modreg 1/m] 7 2 v M
LGS = Load Poliiter to GS [00001111 | 10110101 {modreg r/m| 7 25 b nij
LSS = Load Pointer to S [00001111 [10110010 {modreg vm| 7 22 b M
FLAG CONTROL

CLC = Clear Carry Flag
CLD = Clear Direction Fiag

n
n

CLi1 = Clear Interrupt Enable Fiag 11111010 8 8 m

CLTS = Clear Task Switched Flag l 00001111 00000‘10J] 6 < I

CMC = Complement Carry Flag
LAHF = Load AH into Flag 10011111 2 2
POPF = Pop Fiags 10011101 5 5 b hn
PUSHF = Push Flags 10011100 4 4 b h
SAHF = Store AH into Flags

w
w

STC = Set Carry Flag 2 2

STD = Set Direction Flag 11111101 ' 2 2 |
STI = Set interrupt Enable Fiag 11111011 8 8 m

ARITHMETIC !

ADD = Add

Register to Register) I 000000dw lmodrog r/ml 2 2

Register to Memory I 0000000w lmodreg r/ml 7 7 b h

Memory to Register ﬁ000001w !modreg r/ml 6 6 b h

Immediate to Aegister/Memory I 100000sw I mod000 r/ml immediate data 217 27 b h

Immediate to Accumulator (short form) immediate data : 2 2

ADC = Add With Carry

Register to Register | 000100dw l mod reg r/mJ 2 2

Register to Memory | 0001000w |modreg r/m| 7 7 b h

Memory to Register | 0001001w Imodrog r/ml 6 6 b h

immediate 10 Register/Memory I 100000sw l mod010 r/m | immediate data 217 277 b h

immediate to Accumulator (short form) immediate data 2 2

INC = Increment

Register/Memory l 1111111w ImodOOO rlﬂ 2/6 2/6 [} h |

Register (short form) 01000 reg 2 2 ‘

SUB = Subtract i

Register from Register I 001010dw l mod reg r/mJ 2 2 ;
|

11-114 |

B 4826175 0135751 039 EMITL]

In ®

MILITARY Intel386™ MICROPROCESSOR

Table 8-1. Military Intel386™™ Processor Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES
Reat Reat
INSTRUCTION FORMAT Address Protected Address | Protected
Mode or Virtual Mode or Virtusl
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode
ARITHMETIC (Continued)
IRegister from Memory [0010100w lmod rog r/ml 7 7 b h
Memory from Register l 0010101w lmodreg r/mI 6 (] b h
immediate from Register/Memory I 100000sw |mod 101 r/ml immediate data. 217 2/7 b h
Immediate from Accumulator (short form) 0010110w immediate data 2 2
SBB = Subtract with Borrow
Register from Register I 000110dw lmod reg r/ml 2 2
Register from Memory l 0001100w lmod reg r/ml 7 7 b h
Memory fram Registar I 0001101w lmod reg r/ml 6 6 b h
immediate from Register/Memory r1 00000sw Imod 011 r/ml immediate data 2/7 217 b h
limmediate from Accumulator (short form) 0001110w immediate data 2 2
DEC = Decrement
Register/Memory I 1111111w lregoo1 r/m| 2/6 2/6 b h
Register (short form) 01001 reg 2 2
CMP = Compare
Register with Register I 001110dw |mod reg r/ml 2 2
Memory with Register I 0011100w |modreg r/m] 5 5 b h
Ragister with Memary I 0011101tw lmod reg r/ml 6 6 b h
immediate with Register/Memory [100000sw Imod 111 r/ml immediate data 2/5 2/8 b h
Immediate with Accumutator (short form) 0011110w immediate data 2 2
NEG = Change Sign [1111011w |modo11 r/m] 2/6 2/6 b h
AAA = ASCIl Adjust for Add 4 4
AAS = ASCI| Adjust for Subtract | 001t1111 4 4
DAA = Decimat Adjust for Add 00100111 4 4
DAS = Decimal Adjust for Subtract 4 4
MUL = Multiply (unsigned)
Accumulator with Register/Memory l 1111011w Imod 100 r/m
Multiplier-Byte 12-17/16-20 [12-17/15-20 b,d dh
-Word 12-25/15-28 [12-25/15-28 b.d dh
-Doubleword 12-41/15-44 (12-41/15-44 b, d d,h
IMUL. = integer Multiply
‘Accumula'tor with Register/Memory [1111011w lmod 101 ©/m
Multiplier-Byte 12-17/15-20 | 12-17/15-20 b, d d,h
-Word 12-25/15-28 | 12-25/15-28 b,d d,h
-Doubleward 12-41/15-44 [12-41/15-44 b, d dh
Register with Register/Memory I 00001111 I 10101111 Imod reg r/m
Multiplier-Byte 12-17/15-20 { 12-17/15-20 b,d d,h
-Word 12-25/15-28 | 12-25/15-28 b.d d.h
-Doubleword 12-41/15-44 | 12-41/15-44 b, d d.h
Registar/Mamory with Immediate to Regis(erl 01101081 lmod reg r/m| immediate data
-Word 13-26/14-27 (13-26/14-27 b, d dh
-Doubleword 13-42/14-43 [13-42/14-43 b,d d,h
[|

M 482bL175 0135752 T?5 EMITLI

2

11-115

MILITARY Intel386™ MICROPROCESSOR |n‘te| R

Table 8-1. Military Intel386™ Processor Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | P d| Address | Pt d

Modeor| Virtual | Modeor| Virtual
Virtual | Address | Virtual | Address
8086 Mode 8086 Mode

Mode Mode
JARITHMETIC (Continued)
DIV = Divide (Unsigned)
Accumulator by Register/Memory 111101 1w]mod1 10 ¢/m|
Divisor—Byte 14/17 14/17 b.e 8,h
—Word 22/25 22/25 be e,h
—Doubleword 38/41 38/41 be eh
IDIV = Integer Divide (Signed) '
Accumulator By Register/Memory 1111011w {mod111 r/m
Divisor—Byte 19/22 19/22 be e,h
—Word 27/30 27/30 be e,h
—Doubleword 43/46 43/46 be eh
AAD = ASCII Adjust for Divide I11010101I00001010] 19 19
[AAM = ASCII Adjust for Multiply [11010100]00001010] 17 17

[CBW = Convert Byte to Word 10011000 3 3
ICWD = Convert Word to Double Word| 10011001 2 2

LOGIC

Shift Rotate instructions
Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR)

Register/Memory by 1 l 1101000w lmodTTT r/ml 7 3/7 b h . ‘
|
|

Register/Memory by CL l 1101001w lmod 7 r/ml a7 3/7 b h i

Register/Memory by Immediate Count [1100000w lmodTTT r/mlimmed 8-bit data 3/7 3/7 b h 1

[Through Carry {(RCL and RCR) !
|

Register/Memory by 1 I 1101000w ImodTTT r/m] 9/10 9/10 b h |

Register/Memory by CL. [1 101001w ImodTTT r/m] 9/10 9/10 b h ‘

Register/Memory by Immediate Count I 1100000w IrnodTTT r/mlimmed 8-bit data. 8/10 9/10 b h

TTT Instruction
000 ROL
001 ROR
010 RCL
011 RCR
100 SHL/SAL
101 SHR
111 SAR
SHLD = Shift Lett Double
Register/Memory by Immediate I 00001111 I 10100100 Imod reg r/m]immed 8-bit data 3/7 3/7
Register/Memory by CL | 00001111 | 10100101 lmodreg r/mI 37 3/7

[SHRD = Shift Right Double

Register/Memory by Immediate I 00001111 | 10101100 lmod reg v/mlimmsd 8-bit data 3/7 3/7

Register/Memory by CL I 00001111 I 10101101 lmodreg v/m' 37 3/7
AND = And |
Register to Register l 001000dw Imod reg r/ml 2 2
11-116

M 4826175 0135753 901 MEITLL

iN . MILITARY Intel386™ MICROPROCESSOR
Table 8-1. Military Intel386™ Processor instruction Set Clock Count Summary (Continued)
' CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | Protected | Address | Protected
Modeor | Virtual | Modeor | Virtual
Virtual | Addvess | Virtual | Address
8086 Mode 8086 Mode
Mode Mode
LOGIC (Continued)
Register 1o Memory l0010000w Imodreg r/ml 7 7 b h
Memory to Register I 0010001w [mod rog rlm] 6 6 b h
Immediate to Aegister/Memory I 100000sw lmod 100 r/m| immediate data 2/7 2/7 b h
Immediate to Accumutator (Short Form) immediate data 2 2
TEST = And Function to Flags, No Result
Register/Memory and Register I 1000010w I mod reg r/ml 2/5 2/5 b h
[diate Data and Register/Memory r1111011w lmodDOO rlnﬂ immediate data 2/5 2/8 b h
I diate Data and Accumulat .
(Short Form} 1010100w | immediate data 2 2
OR = Or
Register to Register l 000010dw]modreg r/nl] 2 2
Register to Memory I 0000100wlmodreg /m 7 7 b h
Memory to Register [0000101w [modreg /m| 6 6 b h
Immediate to Register/Memory r1 00000sw Imodom r/ml immediate data 217 2/7 b h
Immediate to Accumulator (Short Form) immediate date 2 2 i
XOR = Exclusive Or
Register to Register l 001100dw lmod rog r/ml 2 2
Register to Memory | 0011000w lmodrog r/m 7 7 b h
Memory to Register l 0011001w Imodreg r/ml] 6 b h
1o Register/Memory l 100000sw lmod 110 r/ml immediate data 2/7 2/7 b h
tmmediate to Accumulator (Short Form) immediate data 2 2
NOT = Invert Register/Memory IT1 110t1w Imod 010 r/m] o 2/6 2/6 b h
Count
STRING MANIPULATION Virtusl
CMPS = Compare Byte Word Mode 10 10 b h
INS = input Byte/Word from DX Port 129 15 9*/20 b h,m
LODS = Load Byte/Word to AL/AX/EAX{ 1010110w 5 5 b h
MOVS = Move Byte Word 8 8 b h
OUTS = Output Byte/Word to DX Port 128 14 8r/28* b h,m
SCAS = Scan Byte Word 1010111w 8 8 b h
STOS = Store Byte/Word from
AL/AX/EX 5 5 b h
XLAT = Translate String 5 5 h
REPEATED STRING MANIPULATION
Repeated by Count in CX or ECX
REPE CMPS = Compare String
(Find Non-Match) . 11110011 1010011wl 5+9n 5+9n b h
* if CPL < IOPL ** If CPL > 10PL
| 11-117

B 4y82b17?5 0135754 A48 EEITLL

R

MILITARY Intel386T™M MICROPROCESSOR

intgl.

Table 8-1. Military Intel386T™ Processor Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address| Protected Address | Protected
Mode or Virtual Modeor| Virtual
Virtual Address Virtual | Address
8088 Mode 2088 Mode
Mode Mode
REPEATED STRING MANIPULATION (Continued) ’
REPNE CMPS = Compare String Clk Count
{Find Match) l11110010|1010011w| Bﬂ‘lnﬁlod. 5+9n 5+8n b h
REP INS = Input String [11110010 l 01101 1oﬂ 128+ 6n 14+6n {8+6n*/28+6n""* b h,m
REP LODS = Load String |1‘111oo10l1o10110w| 5+6n 5+6n b h
REP MOVS = Move String b1110010] 1010010w] 8+4n 8+4n b h
REP OUTS = Output String I 11110010 I0110111w—l l 126+5n 12+5n |6+5n*/26+5n** b h,m
REPE SCAS = Scan String
(Find Non-AL/AX/EAX) b1 110011 | 1010111w ' 5+8n §+8n b h
REPNE SCAS = Scan String
{Find AL/AX/EAX) I11110010l1010111w| 5+8n 5+8n b h
REP STOS = Store String 11110010 1010101w] 5+5n 5+56n b h
BIT MANIPULATION
BSF = Scan Bit Forward l00001111 I 10111100[modreg r/mI 11+3n 11+3n b h
BSR = Scan Bit Reverse L00001111 l 10111101 lmodrag r/n;l 9+3n 9+3n b h
BT = Test Bit
Register/Memory, Immediate | 00001111 10111010 [mod100 _r/mimmed 8.6t date|| 3/6 6 b h
Register/Memory, Register I 00001111 l 10100011 |modreg r/n'] 3/12 32 b h
BTC = Test Bit and Complement
Register/Memory, Immediate | 00001111] 10111010 Jmod 111 _r/mlimmed s-bitdatal| /8 o) b h
Register/Memory, Register [00001111 I 10111011 Imod reg r/mI 6/13 6/13 b h
BTR = Test Bit and Reset
Register/Memory, Immediate | 00001111 | 10111010 Imod1 10 r/ ! a—bitda\al /8 6/8 b . h
Register/Memory, Registar 00001111 I 10110011 lmod reg rlml 6/13 6/13 b h
BTS = Test Bit and Set
Register/Memory, Immediate I 00001111 I 10111010 ImodI 01 r/mlimmed 8-bit dat;] 6/8 6/8 b h
Register/Memory, Register l 00001111 l 10101011 lmodreg r;tl 6/13 6/13 b h
CONTROL TRANSFER
CALL = Calt
Direct Within Segment 11101000 | full displacemant 7+m 7+m b r
Register/Memory '
. . 7+m/ 7+m/
Indirect Within Segment l 111111114 Imod01 0 r/m| 10+m 10+m b hr
Direct Intersegment 13011010 |unsigned full offset, selector 17+m 34+m b jk.r

NOTES:

T Clock count shown applies if I/0 permission allows /O to the port in virtual 8086 mode. If 1/0 bit map denies permission
exception 13 fault occurs; refer to clock counts for INT 3 instruction.

* If CPL < IOPL

11-118

** If CPL > IOPL

B 4326175 0135755 784 EEITLI

In o _ MILITARY Intel386™ MICROPROCESSOR

Table 8-1. Military Intel386™ Processor Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES

Real Real .

INSTRUCTION FORMAT Address | Protected | Address | Protected

or{ Virtusl | Modeor| Virtual

Address | Virtual | Address

Mode 006 Mode
Mode

fai

CONTROL TRANSFER (Continued)
Protected Mode Only (Direct Intersegment)

Via Call Gate to Same Privilege Level 52+m hik,r
Via Call Gate to Different Privilege Leve!,

(No Parameters) 86+m hjkr
Via Call Gate to Different Privilege Level,

(x Paramaters) 94+4x+m hjkr
From 80286 Task to 80286 TSS 273 ’ hi ks
From 80286 Task to Intel386™ DX TSS 298 hijks
From 80286 Task to Virtual 8086 Task (Intal3gé DX TSS) 218 hijk.r
From Intel386 DX Task to 80286 TSS 273 hijk.r
From Intei386 DX Task to Intei386 DX TSS 300 hik,r
From Intei386 DX Task to Virtual 8086 Task (intel386 DX TSS) 218 hik,t

Indirect intersegment r1 1111111 |[mod0 11 r/m) 22+m 38+m b hjkr
Protected Mode Only (Indirect Intersegment)
Via Call Gate to Same Privilege Level 56+m hjk.r
Via Call Gate to Different Privilege Level,

(No Parameters) 90+m hijkr
Via Call Gate to Different Privilege Level,

(x Parameters) 98 + 4x+m| hjkr
From 80286 Task to 80286 TSS) 278 hikr
From 80286 Task to Intel386 DX TSS 303 hjkr
From 80266 Task to Virtual 8086 Task (intel386 DX TSS) 222 hijk.r
From intel386 DX Task to 80286 TSS 278 hjk.r
From Intet386 DX Task to Intel386 DX TSS 305 hijkr
From Intel386 DX Task to Virtual BO86 Task (Intel386 DX TSS) 222 hjkr

JMP = Unconditional Jump

Short IT1 01011 le-bit displaoemegntl 7+m 7+m r
Direct within Segment full displacemant 74+m 7+m r
Register/Memory Indirect within Seg [11111111 [mod100 wm Thm | Ty m b e

Dirgct Intersegment 11101010 |unsigned full offset, selector 12+m 27+m jok.r

Protected Mode Only (Direct Intersegment)

Via Call Gate to Same Privilege Level 45+m hijk,r
From 80286 Task to 80286 TSS 274 hjik,r
From 80286 Task to Intel386 DX TSS . 301 hjkr
From B0286 Task to Virtual 8086 Task (Intel386 DX TSS) 219 hjk.r
From Intel386 DX Task to 80286 TSS . 270 hjk.r
From intel386 DX Task to intel386 DX TSS 303 hjkr
From Intel386 DX Task to Virtual 8086 Task {Intel386 DX TSS) 221 hijkr
indirect intersegment r1 1111111 [med101 r/my 17+m 31+m b hjkr
Protected Mode Only {Indirect Intersegment) .
Via Call Gate 1o Same Privilege Level 49+m hijk,r
From 80286 Task to 80286 TSS 279 hijk.r
From 80286 Task to Intel386 DX TSS 306 hijkr
From 80286 Task to Virtual 8086 Task (intel386 DX TSS) 223 hjkr
From Intel386 DX Task to 80286 TSS 275 hj.k.r
From Intei386 DX Task to Intel386 DX TSS 308 hjk.r
From Intel386 DX Task to Virtual 8086 Task (Intel386 DX TSS) 225 h,jkr
i 11-119

B u482L17?5 0135756 bl0 MEITLL

e ——

MILITARY Intei386™ MICROPROCESSOR |nte| o

Table 8-1. Military Intel386™ Processor Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | Protected | Address | Protected

Mode or Virtual Mods or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode

Mode Mode

CONTROL TRANSFER (Continued)
RET = Return from CALL:

Within Segment 11000011 10+m 10+m b g.hr

Within Segment Adding Immediate to SP UI 000010 | 16-bit displ . | 10+m 10+m b g.hr
Intersagment 11001011 18+m 32+m b g.hjkr
Ir 9 Adding ate to SP I 11001010 I 16-bit displ | 18+m 32+m b g.hikr
Protected Mode Only (RET):
to Difterent Privilege Level .
Intersegment 69 hjkr
ir 9 Adding | diate to SP 69 bk r
CONDITIONAL JUMPS

NOTE: Times Are Jump “Taken or Not Taken"
JO = Jump on Overfiow

8-Bit Displacement |01110000l 8-bit displ I 7+mor3) 7+ mor3 4
Full Displacement [00001111 | 10000000 Ilulldisplacement 7+mor3| 7+mor3 r
JNO = Jump on Not Overtiow

8-Bit Displacement li1110001] 8-bit displ | 7+ mor3| 7+ mor3 r
Full Displacement 00001111 l 10000001]lull" li 7+mor3| 7+ mor3 r
JB/JNAE = Jump on Beiow/Not Above or Equal

8-Bit Displacement |D1110010 8-bit displ l 7+mor3| 7+ mor3 r
Full Displacement | 00001111 10000010 Ifu!ldisplaoamem 7+mor3| 7+ mor3 r
JNB/JAE = Jump on Not Below/Above or Equal

8-Bit Displacement |01110011[8-bit disp! I 7+mor3| 7+ mor3 r
Full Displacement I 000017111] 10000011 |1u||displacsmant 7+mor3| 7+mor3 r

JE/JZ = Jump on Equal/Zero
8-Bit Displacement l 01110100 [e-bi!displ—l 7+mor3| 7+ mor3 r

Fult Displacement I 00001111 | 10000100 |1u||displacement 7+mor3] 7+ mor3 . 4

JNE/UNZ = Jump on Not Equal/Not Zero
8-Bit Displacement I 01110101 I 8-bit displ l 7+mor3| 7+mord r

Full Displacement [00001111 l 100001011fu|ldisplacement 7+mor3| 7+mor3 r

JBE/JNA = Jump on Below or Equal/Not Above
8-Bit Displacement I 01110110 I 8-bit disp!] 7+mor3|{ 7+ mor3 r

Fuli Digplacement . I 000011411 I 10000110 ltulldisplacernent 7T+mor3| 7+mor3 r

JNBE/JA = Jump on Not Below or Equai/Above

8-Bit Displacement | 01110111 I 8-bit displ | 7+mor3|7+mor3 r

Full Displacement I 00001111 l 10000111]1u|| i 7+mor3| 7+ mor3 r
JS = Jump on Sign

8-Bit Displacement |01111000I 8-bit displ l 7+mor3f 7+ mor3 r

Full Displacement | 00001111 | 10001000]fulldisplacemem 7+mor3| 7+ mor3 r
11-120

B 482L175 0135757 557 EEITLL

ln MILITARY Intel386™ MICROPROCESSOR

Table 8-1. Military intel386™ Processor Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | Protected | Address | Protected
Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode
CONDITIONAL JUMPS (Continued)
JNS = Jump on Not Sign *
8-Bit Disptacement l 01111001 I 8-bit displ I 7+mor3| 7+ mor3 r
Full Displacement | 00001111 I 10001001 Ifulldisplacsmant 7+mor3| 7+ mor3 r
JP/JPE = Jump on Parity/Parity Even
&-Bit Displacement l 01111010 l 8-bit displ I 7+mor3| 7+ mor3 r
Full Displacement I 00001111] 10001010 Ifu||displacemen\ 7+mor3| 7+ mor3 r
JNP/JPO = Jump on Not Parity/Parity Odd
8-Bit Displacement [01111011 l 8-bit displ l 7+mor3| 7+ mord r
Full Displacement I 00001111 l 10001011]fulldisplacemem 7+mor3| 7 +mor3 r
JL/JNGE = Jump on Less/Not Greater or Equal
8-Bit Displacement [01111100] 8-bit displ I 7+mor3| 7+ mor3 r
Full Displacement I 00001111 l 10001100qul|displacement 7+mor3| 7+ mor3 4
JNL/JGE = Jump on Not Less/Greater or Equal
8-Bit Displacement l 01111101 I B-bitdispi - I 7+mor3| 7+ mor3 r
Fult Displacement I 00001111 l 10001101 Iiull-" | 7+mor3| 7+mor3d r
JLE/JNG = Jump on Less or Equal/Not Greater
8-Bit Displacement I 01111110 I 8-bit displ | 7+mord| 7+ mord r
Fult Displacement I 00001111 I 10001110 I full displacement 7+ mor3| 7+ mor3 T
JNLE/JG = Jump on Not Less or Equal/Greater
8-Bit Displacement I 01111111 I 8-bit displ | 7+mor3] 7+ mor3 T
Full Displacement [00001111 l 10001111 | full displacemant 7+mor3| 7+ mor3 r
JCXZ = Jump on CX Zero | 11100011 l s-bitdisp\ l 9+morS| 9+mors 4
JECXZ = Jump on ECX Zero [11100011 | sbitaspt | 9+mors| 9+ mors '
(Address Size Prefix Ditferentiates JCXZ from JECXZ)
LOOP = Loop CX Times I 11100010 I 8-bit displ | MN+m | 11+m r
LOOPZ/LOOPE = Loop with
Zero/Equal I 11100001 | 8-bit displ I 1+m 11+m r
LOOPNZ/LOOPNE = Loop While
Not Zero l 11100000—[8-bit displ l HH+m 11 +m r
CONDITIONAL BYTE SET
NOTE: Times Are Register/Memory
SETO = Set Byte on Overflow
To Register/Memory l 00001111] 10010000 Imodooo r/m] 4/5 4/5 h
SETNO = Set Byte on Not Overflow
To Register/Memary | 00001111 I 10010001 lmodDDO r/ml 4/5 4/5 h
SETB/SETNAE = Set Byte on Below/Not Above or Equal
Tongis!er/Memoryl 00001111 l 10010010 Imodl)oo r/m] 4/5 4/5 h
11-121

B 4826175 0135758 493 ERMITLL
——1

MILITARY Intel386™ MICROPROCESSOR Intd °

Tabie 8-1. Military Intel386™ Processor Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | Protected Address Protected
Mode or Virtual Mode or Virtual
Virtual Address Virtual Address
8086 Mode 8088 Mode
Mode Mode
CONDITIONAL BYTE SET (Continued)
SETNB = Set Byte on Not Below/Above or Equal
To Register/Memory [00001111 [10010011 [modooo em] 4/5 4/5 h
SETE/SETZ = Set Byte on Equat/Zero
To Register/Memory I 00001111 I 10010100 |mod000 r/ml 4/5 4/5 h
SETNE/SETNZ = Set Byte on Not Equal/Not Zero
To Register/Memory I 00001111 I 10010101 ImodOOO r/ml 4/5 4/5 h
SETBE/SETNA = Set Byte on Below or Equal/Not Above
ToRagisler/Memofyl 00001111 I 10010110 ImodOOO r/ml 4/5 4/5 h
SETNBE/SETA = Set Byte on Not Below or Equal/Above
ToRegisler/Memoryl Q0001111 I 10010111 Imodooo r/ml 4/5 4/8 h
SETS = Set Byte on Sign
To Register/Memory | 00001111 l 10011000]modOOO r/ml 4/5 4/8 h
SETNS = Set Byte on Not Sign
To Register/Memory | 00001111 I 10011001 ImodOOO r/ml 4/5 4/5 h
SETP/SETPE = Set Byte on Parity/Parity Even
To Register/Memory | 00001111 I 10011010 Imodooo rlmJ 475 4/5 h
SETNP/SETPO = Set Byte on Not Parity/Parity Odd
ToRegister/MemoryI 00001111 I 10011011 ImodOOO rImI 4/5 4/5 h
SETL/SETNGE = Set Byte on Less/Not Greater or Equal
To Register/Memory | 00001111 | 10011100 | mod000 r/m| 4s5 ass h
SETNL/SETGE = Set Byte onh Not Less/Greater or Equal
ToFIegismr/Memoryl 00001111 I 01111101 [modooo r/ml a/5 4/6 h
SETLE/SETNG = Set Byte on Less or Equal/Not Greater
To Register/Memory [00001111 l 10011110 ImodOOO r/ml 4/5 4/5 h
SETNLE/SETG = Set Byte on Not Less or Equal/Greater
To Register/Memory | 00001111 | 10011111 |mod000 wm| 415 ass h
ENTER = Enter Procedure I 11001000 li&bﬂdisplacemem,a-bitlwel |
L= 10 10 b h
L=1 12 12 b h
L>1 15 + 15 + b h
4(n ~ 1) 4 - 1)
LEAVE = Leave Procedure 4 4 b h

11-122

M 4826175 0135759 32T MITLL

INtal.

MILITARY Intel386T™ MICROPROCESSOR

Table 8-1. Military Intel386™ Processor Instruction Set Clock Count Summary (Continued)

B 4826175 01357650 D4l EEITLD

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | Protected | Address | Protected
Modeor | Virtual Mode or Virtual-
Virtual Address Virtual Address
8086 Mode 8086 Mode
Mode Mode
INTERRUPT INSTRUCTIONS
INT = Interrupt:
Type Specified l 11001101 I type 37 b
T3 2 0
INTO = Interrupt 4 if Overfiow Flag Set
ItOF =1 35 b,e
HOF =0 3 3 b,e
Bound = Interrupt 5 If Detect Value | 01100010 |modreg r/m
Out of Range
1f Out of Range 44 b,e e, ghjkr
it In Range 10 10 b,e e, g hjkr
Protected Mode Only (INT)
INT: Type Specified
Via Interrupt or Trap Gate
to Same Privilege Level 59 gikr
Via Interrupt or Trap Gate
to Different Privilege Level a9 gk
From B0286 Task to 80286 TSS via Task Gate 282 g kr
From 80286 Task to Intel386 DX TSS via Task Gate 309 a.hkr
From B0286 Task to virt 8086 md via Task Gate 226 g.lkr
From Intel386 DX Task to B0286 TSS via Task Gate 284 gikr
From Intel386 DX Task 1o Intel386 DX TSS via Task Gate k11 ok
From Intel386 DX Task to virt 8086 md via Task Gate 228 g.i.kr
From virt 8086 md to 80286 TSS via Task Gate 289 ghkr
From virt 8086 md to Intel386 DX TSS via Task Gate 316 g kr
From virt 8086 md to priv level 0 via Trap Gate or Interrupt Gate 19
INT:TYPE 3
Via Interrupt or Trap Gate
to Same Privilege Level 59 gikr
Via interrupt or Trap Gate
to Ditferent Privilege Level 29 gikr
From 80286 Task to 80286 TSS via Task Gate 278 g kr
From 80286 Task 1o Intel386 DX TSS via Task Gate 305 g k. r
From 80286 Task to Virt 8086 md via Task Gate 222 a.j. k.r
From Intel386 DX Task to 80286 TSS via Task Gate 280 g.jkr
From intel386 DX Task to intet386 DX TSS via Task Gate 307 ahkr
From Intel386 DX Task to Virt 8086 md via Task Gate 224 aikr
From virt 8086 md to 80286 TSS via Task Gate 285 a.ikr
From virt 8086 md to Intel386 DX TSS via Task Gate 312 g.i kr
From virt 8086 md to priv level 0 via Trap Gate or Interrupt Gate 119
INTO:
Via Interrupt or Trap Grate
to Same Privilege Level 59 aikr
Via Interrupt or Trap Gate
to Different Privilege Level 89 gk r
From 80286 Task to 80286 TSS via Task Gate 280 gkt
From 80286 Task to Intel386 DX TSS via Task Gate 307 g kr
From 80286 Task to virt 8086 md via Task Gate 224 a.hkr
From Intel386 DX Task to 80286 TSS via Task Gate 282 aikr
From Intel386 DX Task to Intel386 DX TSS via Task Gate 309 ahkr
« From Intel386 DX Gate 225 gk
From virt 8086 md to 80286 TSS via Task Gate 287 ahkr
From virt 8086 md to Intel386 DX TSS via Task Gate 3t4 g.ikr
From virt 8086 md to priv level 0 via Trap Gate or Intarrupt Gate 118
11-123

R R R R IR R R R R R R R R RBRRBRBRBRERBREEEEEEBEEEBEF===EEEBEEEESSS

]
MILITARY Intel386™ MICROPROCESSOR Inté o

Table 8-1. Military Intel386™ Processor Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | Protected | Add Pr .

Mode or Virtual Mode or Virtual
Virtual Address Virtual Address

8086 Mode 8086 Mode
Mode Mode
INTERRUPT INSTRUCTIONS (Continued)
BOUND:
Via Interrupt or Trap Gate
to Same Privilege Level 59 akr
Via Interrupt or Trap Gate
to Different Privilege Level 99 gk
From 80286 Task to 80286 TSS via Task Gate 254 g kr
From 80286 Task to Intel386 DX TSS via Task Gate 284 g jkr
From 80268 Task to virt 8086 Mode via Task Gate 231 a.jkr
From intel386 DX Task to 80286 TSS via Task Gate 264 Qikr
From Intel388 DX Task to Intel386 DX TSS via Task Gate . 294 Qi
From 80368 Task to virt 8086 Mode via Task Gate 243 gk
From virt 8086 Mode to 80286 TSS via Task Gate 264 aikr
From virt 8086 Mode to intel386 DX TSS via Task Gate 294 g kr
From virt 8086 md to priv level 0 via Trap Gate or Interrupt Gate 119
INTERRUPT RETURN
IRET = interrupt Retum 22 ahijkr
Protected Mode Only (IRET)
To the Same Privilege Level (within task) a8 g h kot
To Different Privilege Level (within task) 82 ghjkr
From 80286 Task to 80286 TSS 232 hjkr
From 80286 Task to Intel386 DX TSS 265 hjkr
From 80286 Task to Virtual 8086 Task 213 hjkr
From 80286 Task to Virtual 8086 Mode (within task) 60
From Intel386 DX Task to 80286 TSS 271 hkr
From Intel386 DX Task to Intel386 DX TSS) 275 hj kT
From intel386 DX Task to Virtual 8086 Task 223 h i kr
From intel386 DX Task to Virtual 8086 Mode (within task) 60
PROCESSOR CONTROL

WT = HALT s s !

MOV = Move to and From Control/Debug/Test Registers

CRO/CR2/CR3 from register I 00001111] 00100010 I 11eeereg] 117475 | 117475 1
Register From CR0-3 l 00001111 I 00100000 l 11eeereg I -6 6 |
DRO-3 From Register I 00001111 l 00100011 I 11660 reg] 22 22 1
DR6-7 From Register I 00001111 I 00100011] 11668 reg I 16 16 {
Register from DR6~7 /l 00001111 I 00100001] 110669 l 14 14 I
Register from DRO-3 | 00001111 l 00100001 l 11600189 I 22 22 I
TR6-7 from Register) | 00001111 I 00100110 I 11 eae reg I 12 12 1
Register from TR6-7 | 00001111] 00100100 l 11 eeereg | 12 12 1

NOP = No Operation 10010000 ' 3 3
WAIT = Walt untiht BUSY # pin Is negated 7 7

11-124

B us2hbl?5 01357k Téa MBITLL

ln o MILITARY Intel386™ MICROPROCESSOR

Table 8-1. Military Intel386™ Processor Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address Pr Add! P d
Mode or Virtual Mods or Virtual
Virtual Address Virtual Address
8086 Mode 8086 Mods
Mode Mode
PROCESSOR EXTENSION INSTRUCTIONS
Processor Extension Escape 11011TTT |modLiL r/m See h
TTT and LLL bits are opcode 80287/80387
information for coprocessor. data sheets for
clock counts

PREFIX BYTES
Address Size Prefix [0
LOCK = Bus Lock Prefix 11110000 ’ 0 0 m
Operand Size Prefix 01100110 0 0
Segment Override Prefix

CSs: , 00101110 [} 0

os: 0 0

ES: 00100110 0 0

FS: 01100100 [} 0

GS: 01100101 0 0

$8: 00110110 0 0
PROTECTION CONTROL
ARPL = Ad|ust Requested Privilege Level .

From Register/Memory I 01100011 I modreg r/m | N/A 20/21 a h

LAR = Load Access Rights
From Register/Memory I 00001111 l 00000010 lmodreg r/m' N/A 15/16 a a.hjp

LGDT = Load Giobal Descriptor
Table Register I 00001111 [00000001 Imod010 r/ml 11 11 b, ¢ h,i

LIDT = Load Interrupt Descriptor
Table Register 100001111 l 00000001 Imodo11 r/ml 11 " b,c h, 1

LLDT = Load Local Descriptor

Table Register to
Register/Memory I 00001111 l 00000000]mod(HO r/ml N/A 20/24 a g.hjt

LMSW = Load Machine Status Word .
From Register/Memory l 00001111 I 00000001 |mod110 r/m] 11/14 11/14 b.c h,i

LSL = Load Segment Limit
From Register/Memory L00001111 l 00000011 lmodreg r/mI

‘Byte-Granular Limit N/A 21/22 a a.hip

Page-Granular Limit N/A 25/26 a ahip
LTR = Load Task

From Register/Memory I 0000t111 l 00000000 Imodo11 r/ml N/A 23727 a a.hjl

SGOT = Store Global Descriptor
Table Register | 00001111 | 00000001]modOOO r/mI 9 9 b, ¢ h

SIDT = Store interrupt Descriptor

Table Register uooo1111 I 00000001 |mod001 r/ml 9 9 b,¢ h
SLDT = Store Locai Descriptor Table Register

To Register/Memory I 00001111 | 00000000 |mod000 r/m] N/A 2/2 a h
] 11-125

B 4482175 0135762 914 EEITLL
e

-
MILITARY Intel386™ MICROPROCESSOR Intd o

Table 8-1. Military Intel386™ Processor Instruction Set Clock Count Summary (Continued)

CLOCK COUNT NOTES
Real Real
INSTRUCTION FORMAT Address | Protected | Address | Protected
Mode or Virtuat Mode or Virtual
Virtual Address Virtual Address
8088 Mode 8086 Mode
Mode Mods
SMSW =Store Machine -
Status Word I 00001111 l 00000001 lmodmo r/mJ 2/2 2/2 . bc hi
STR =Store Task Regi!
To Register/Memory [00001111 I 00000000 |mod001 r/rnl N/A 2/2 a h
VERR =Verify Read Accesss
Register/Memory I 00001111 l 00000000 [modIOO rlmJ N/A 10/11 a a.hjp
VERW = Verify Write Accesss [00001111 | 00000000 [mod1o1 r/rﬂ N/A 15/16 a a.hip

INSTRUCTION NOTES FOR TABLE 8-1

Notes a through ¢ apply to Intel386 DX Real Address Mode only:

a. This is a Protected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid opcode).

b. Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully
extends beyond the maximum CS, DS, ES, FS or GS limit, FFFFH. Exception 12 fault (stack segment limit violation or not
present) will occur in Real Mode if an operand reference is made that partially or fully extends beyond the maximum SS limit.
¢. This instruction may be executed in Real Mode. In Real Mode, its purpose is primarily to initialize the CPU for Protected
Mode.

Notes d through g apply to Intel386 DX Real Address Mode and Intei386 DX Protected Virtual Address Mode:
d. The Intel386 DX uses an early-out muitiply algorithm. The actual number of clocks depends on the position of the most
significant bit in the operand (multiplier).

Clock counts given are minimum to maximum. To calculate actual clocks use the following formula:

Actual Clock = if m < > 0 then max (llogz |m|], 3) + b clocks:

if m = 0 then 3+Db clocks

In this formula, m is the multiplier, and

b = 9 for register to register,

b = 12 for memory to register,

b = 10 for register with immediate to register,

b = 11 for memory with immediate to register.
a. An exception may occur, depending on the value of the operand. .
{f. LOCK# is automatically asserted, regardless of the presence or absence of the. LOCK# prefix.
g. LOCK # is asserted during descriptor table accesses.

Notes h through r apply to Intel386 DX Protected Virtual Address Mode only:

h. Exception 13 fault (general protection violation) will occur if the memory operand in CS, DS, ES, FS or GS cannot be used
due to either a segment limit violation or access rights violation. If a stack limit is violated, an exception 12 (stack segment
limit violation or not present) occurs.

i. For segment load operations, the CPL, RPL, and DPL must agree with the privilege rules to avoid an exception 13 fauit
(general protection violation). The segment’s descriptor rmust indicate “present” or exception 11 (CS, DS, ES, FS, GS not
present). If the SS register is loaded and a stack segment not present is detected, an exception 12 (stack segment limit
violation or not present) occurs.

j. All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert TOCK to maintain
descriptor integrity in multiprocessor systems.

k. JMP, CALL, INT, RET and IRET instructions referring to another code segment will cause an exception 13 (general
protection violation) if an applicable privilege rule is violated.

I. An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level).

m. An exception 13 fault occurs if CPL is greater than IOPL.

n. The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the flag register are
updated only if CPL = 0.

0. The PE bit of the MSW (CR0) cannot be reset by this instruction. Use MOV into CRO if desiring to reset the PE bit.

p. Any violation of privilege rules as applied to the selector operand does not cause a protection exception; rather, the zero
flag is cleared.

q. If the coprocessor's memory operand violates a segment limit or segment access rights, an exception 13 fault (general
protection exception) will occur before the ESC instruction is executed. An exception 12 fault (stack segment limit violation
or not present) will occur if the stack limit is violated by the operand's starting address. "

r. The destination of a JMP, CALL, INT, RET or IRET must be in the defined limit of a code segment or an exception 13 fault
(general protection violation) will occur.

11-126

B 482bL175 01357L3 &850 MEITL]

intel.
7.2 INSTRUCTION ENCODING

7.2.1 Overview

All instruction encodings are subsets of the general

instruction format shown in Figure 8-1. Instructions
consist of one or two primary opcode bytes, possibly
an address specifier consisting of the “mod r/m"
byte and “scaled index” byte, a displacement if re-
quired, and an immediate data field if required.

Within the primary opcode or opcodes, smaller en-
coding fields may be defined. These fields vary ac-
cording to the class of operation. The fields define
such information as direction of the operation, size
of the displacements, register encoding, or sign ex-
tension.

Almost all instructions referring to an operand in
memory have an addressing mode byte following
the primary opcode byte(s). This byte, the mod r/m
byte, specifies the address mode to be used. Certain

MILITARY Intel386™ MICROPROCESSOR

encodings of the mod r/m byte indicate a second
addressing byte, the scale-index-base byte, follows
the mod r/m byte to fully specify the addressing
mode.

Addressing modes can include a displacement im-
mediately following the mod r/m byte, or scaled in-
dex byte. If a displacement is present, the possible
sizes are 8, 16 or 32 bits.

If the instruction specifies an immediate operand,
the immediate operand follows any displacement
bytes. The immediate operand, if specified, is always
the last field of the instruction.

Figure 8-1 illustrates several of the fields that can
appear in an instruction, such as the mod field and
the r/m fieid, but the Figure does not show all fields.
Several smaller fields also appear in certain instruc-
tions, sometimes within the opcode bytes them-
selves. Table 8-2 is a complete list of all fields ap-
pearing in the Military Intel386 processor instruction
set. Further ahead, following Table 8-2, are detailed
tables for each field.

LTTTTTTTT TTTTTTTT|mod TTTr/m| ssindex base]daz | 16| 8| none data32| 16| 8 | none
\7 0Y7 9J65Y320Ji65Y320J\ § L , Y
opcode “mod r/m” “s-i-b"’ address immediate
(one or two bytes) - byte byte y displacement data
(T represents an v (4, 2, 1 bytes (4, 2, 1 bytes
opcode bit.) register and address or none) or none)
mode specifier

Figure 8-1. General Instruction Format

Table 8-2. Fields within Military Intel386™ Processor Instructions

Field Name Description _ Number of Bits
w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 Bits) 1
d Specifies Direction of Data Operation 1
s Specifies if an immediate Data Field Must be Sign-Extended 1
reg General Register Specifier 3
mod r/m Address Mode Specifier (Effective Address can be a General Register) 2 for mod;
3forr/m
ss Scale Factor for Scaled Index Address Mode 2
index General Register to be used as Index Register 3
base General Register to be used as Base Register 3
sreg2 Segment Register Specifier for CS, SS, DS, ES 2
sreg3 Segment Register Specifier for CS, SS, DS, ES, FS, GS 3
titn For Conditional Instructions, Specifies a Condition Asserted
or a Condition Negated 4
Note: Table 8-1 shows encoding of individual instructions.
| 11-127

B 4826175 01357kY4 797 MEITLL

MILITARY Intel386™ MICROPROCESSOR

7.2.2 32-Bit Extensions of the
Instruction Set

With the Military Intel386 processor, the 86/186/
286 instruction set is extended in two orthogonal di-
rections: 32-bit forms of all 16-bit instructions are
added to support the 32-bit data types, and 32-bit
addressing modes are made available for all instruc-
tions referencing memory. This orthogonal instruc-
tion set extension is accomplished having a Default
(D) bit in the code segment descriptor, and by hav-
ing 2 prefixes to the instruction set.

Whether the instruction defaults to operations of 16
bits or 32 bits depends on the setting of the D bit in
the code segment descriptor, which gives the de-
fault length (either 32 bits or 16 bits) for both oper-
ands and effective addresses when executing that
code segment. In the Real Address Mode or Virtual
MB086 Mode, no code segment descriptors are
used, but a D value of 0 is assumed internally by the
Military Intel386 processor when operating in those
modes (for 16-bit default sizes compatible with the
M8086/M80186/M80286).

Two prefixes, the Operand Size Prefix and the Effec-
tive Address Size Prefix, allow overriding individually
the Default selection of operand size and effective
address size. These prefixes may precede any op-
code bytes and affect only the instruction they pre-
cede. If necessary, one or both of the prefixes may
be placed before the opcode bytes. The presence of
the Operand Size Prefix and the Effective Address
Prefix will toggle the operand size or the effective
address size, respectively, to the value “opposite”
from the Default setting. For example, if the default
operand size is for 32-bit data operations, then pres-
ence of the Operand Size Prefix toggles the instruc-
tion to 16-bit data operation. As another example, if
the default effective address size is 16 bits, pres-
ence of the Effective Address Size prefix toggles the
instruction to use 32-bit effective address computa-
tions. .

These 32-bit extensions are available in all Military
Intel386 processor modes, including the Real Ad-
dress Mode or the Virtual M8086 Mode. In these
modes the default is always 16 bits, so prefixes are
needed to specify 32-bit operands or addresses.

Unless specified otherwiss, instructions with 8-bit
and 16-bit operands do not affect the contents of
the high-order bits of the extended registers.

7.2.3 Encoding of Instruction Fields

within the instruction are several fields indicating
register selection, addressing mode and so on. The
exact encodings of these fields are defined immedi-
ately ahead.

11-128

intgl.

7.2.3.1 ENCODING OF OPERAND LENGTH (w)
FIELD

For any given instruction performing a data opera-
tion, the instruction is executing as a 32-bit operation
or a 16-bit operation. Within the constraints of the
operation size, the w field encodes the operand size
as either one byte or the full operation size, as
shown in the table below.

Operand Size Operand Size
w Field During 16-Bit During 32-Bit
Data Operations | Data Operations
0 8 Bits 8 Bits
1 16 Bits 32 Bits

7.2.3.2 ENCODING OF THE GENERAL
REGISTER (reg) FIELD

The general register is specified by the reg field,
which may appear in the primary opcode bytes, or as -
the req field of the “mod r/m" byte, or as the r/m

field of the “mod r/m" byte.

Encoding of reg Field When w Field
is not Present in Instruction

Register Selected | Register Selected
reg Field During 16-Bit During 32-Bit

Data Operations | Data Operations
000 AX EAX
001 CcX ECX
010 DX EDX
011 “BX EBX
100 SP ESP
101 BP EBP
110 Sl ESI
111] EDI

Encoding of reg Field When w Field
is Present in Instruction

Register Specified by reg Field
During 16-Bit Data Operations:

reg Function of w Field
(whenw = 0) (whenw = 1)

000 AL AX
001 CL CX
010 DL DX
011 BL BX
100 AH SP
101 CH BP
110 DH Sl
111 BH Dl

B 4826175 0135765 b23 EEITLIL

intal.

Register Specified by reg Field
During 32-Bit Data Operations

reg Function of w Field
{(whenw = 0) (whenw = 1)

000 AL EAX °
001 CL ECX

010 DL EDX

011 BL EBX

100 AH ESP

101 CH EBP

110 DH ESI

11 BH EDI

7.2.3.3 ENCODING OF THE SEGMENT
REGISTER (sreg) FIELD

The sreg field in certain instructions is a 2-bit field
allowing one of the four M80286 segment registers
1o be specified. The sreg field in other instructions is
a 3-bit field, allowing the Military Intel386 processor
FS and GS segment registers to be specified.

2-Bit sreg2 Field

Segment
2-Bit
Register
sreg2 Field Selected
00 ES
01 CS
10 SS
19 DS
3-Bit sreg3 Field
Segment
o 3;B|I=t|eld Register
eg Selected
000 ES
001 cs
010 S8
011 DS
100 FS
101 GS
110 do not use
11 . donotuse

MILITARY Intei386™ MICROPROCESSOR

7.2.3.4 ENCODING OF ADDRESS MODE

Except for special instructions, such as PUSH or
POP, where the addressing mode is pre-determined,
the addressing mode for the current instruction is
specified by addressing bytes following the primary
opcode. The primary addressing byte is the “mod
r/m” byte, and a second byte of addressing informa-
tion, the “s-i-b” (scale-index-base) byte, can be
specified.

The s-i-b byte (scale-index-base byte) is specified
when using 32-bit addressing mode and the “mod
r/m” byte has r/m = 100 and mod = 00, 01 or 10.
When the sib byte is present, the 32-bit addressing
mode is a function of the mod, ss, index, and base
fields.

The primary addressing byte, the *mod r/m" byte,
also contains three bits (shown as TTT in Figure 8-1)
sometimes used as an extension of the primary op-
code. The three bits, however, may also be used as
a register field (reg).

When calculating an effective address, either 16-bit
addressing or 32-bit addressing is used. 16-bit ad-
dressing uses 16-bit address components to calcu-
late the effective address while 32-bit addressing
uses 32-bit address components to calculate the ef-
fective address. When 16-bit addressing is used, the
“mod r/m” byte is interpreted as a 16-bit addressing
mode specifier. When 32-bit addressing is used, the
“mod r/m” byte is interpreted as a 32-bit addressing
mode specifier.

Tables on the following three pages define all en-

codings of all 16-bit addressing modes and 32-bit
addressing modes.

11-129

B 4826175 01357bk 56T EEITLL

MILITARY Intel386™ MICROPROCESSOR ‘ : Intel .

Encoding of 16-bit Address Mode with “mod r/m” Byte ~

mod r/m Etfective Address mod r/m Effective Address
00 000 DS:[BX+Sl) 10 000 DS:[BX+SI+d16]
00 001 DS:(BX+Dl) " 10001 DS:[BX+ DI+ d16]
00010 Ss:(BP+ Sl : 10010 SS:[BP +Si+d16]
00011 SS:[BP+ D] 10 011 SS:[BP+DI+d16]
00 100 Ds:[Sl} 10100 DS:[SI+d16]
00 101 DS:[DI} 10101 DS:[Di+d16]
00 110 DS:d16 10 110 SS:[BP+d16]
00 111 Ds:[BX] 10111 DS:[BX +d16]
01000 DS:[BX+ Si+d8]) 11 000 register—see below
01001 DS:[BX+ DI+ d8) 11 001 register—see below
01010 SS:[BP + SI+d8] 11010 register—see below
01011 §S:[BP+ Di+d8] 11011 register—see below
01 100 DS:[SI1+d8] 11 100 register—see below
01 101 DS:[D! +d8] 11101 register—see below
01110 $S:[BP +d8] 11 110 register—see below
01111 DS:[BX +d8] 11111 register—see below
Register Specified by r/m
During 16-Bit Data Operations
mod r/m Function of w Fleld
(when w=0) {(whenw =1)
11 000 AL AX
11001° CL CX
11010 DL DX
11011 BL BX
11100 AH SP
11101 CH BP
11110 DH Sl
11111 BH DI
Register Specified by r/m
During 32-Bit Data Operations
mod r/m Function of w Field
(when w=0) {(whenw =1)
11 000 AL EAX
11 001 CL ECX
11010 bL’ EDX
11 011 BL EBX
11 100 AH ESP
11101 CH EBP
11110 DH ESI
11111 BH EDI

11-130

M 4226L75 0L357L7 4Th EEITLL

a
Intd o MILITARY Intel386™ MICROPROCESSOR

Encoding of 32-bit Address Mode with “mod r/m” byte (no “s-I-b” byte present):

mod r/m Effective Address mod r/m Etfective Address
00 000 DS:[EAX] 10 000 DS:[EAX+d32]

00 001 DS:[ECX] 10 001 DS:[ECX+d32]
00010 DS:[EDX] 10010 DS:[EDX +d32]

00 011 Ds:(EBX] 10011 DS:(EBX +d32]
00100 s-i-b is present 10100 s-i-b is present

00 101 DS:d32 10101 SS:[EBP+d32)

00 110 DS:[ESI] 10110 DS:[ESI +d32]

00 111 DS:[EDI] 10111 DS:[EDI+d32]

01 000 DS:[EAX + d8] 11 000 register—see below
01 001 DS:[ECX + d8] 11001 register—see below
01010 DS:[EDX + d8) 11010 register—see below
0101 DS:[EBX +d8) 11011 register—see below
01100 s-i-b is present 11100 register—see below
01101 SS:[EBP +dB] 11101 register—see below
01110 DS:[ES!+d8) 11110 register—see below
01111 DS:[EDI +d8] 11111 register—see below

Register Specified by regorr/m
! during 16-Bit Data Operations:

mod r/m function of w field
(when w=0) {(whenw=1)

11 000 AL AX
11 001 CL CX
11010 DL . DX
11011 BL BX
11 100 AH) SP
11101 CH BP
11110 DH Si
11111 BH DI

Register Specified by reg orr/m
during 32-Bit Data Operations:

function of w field
mod r/m
(when w=0) {(whenw=1)
11000 AL EAX
11 001 CL ECX
11010 DL EDX
11011 BL EBX
11 100 AH ESP
11101 CH EBP
11110 DH ESI
11111 BH EDI
[] 11-131

I 442L175 0135768 332 EEITLY

a
MILITARY Intei386™ MICROPROCESSOR "'ftel .

Encoding of 32-bit Address Mode (“mod r/m” byte and “s-I-b” byte present):

mod base Effective Address ss Scale Factor
00 000 DS:[EAX + (scaled index)] 00 x1
00 001 DS:[ECX + (scaled index)] 01 x2
00010 DS:[EDX + (scaled index)] 10 _ x4
00011 DS:[EBX + (scaled index)] 1 x8
00 100 SS:[ESP+ (scaled index)]
00 101 DS:[d32+ (scaled index)]
00 110 DS:[ESI + (scaled index)] index Index Register
00 111 DS:[EDi + (scaled index)) 000 EAX
001 ECX
01 000 DS:[EAX + (scaled index) + d8] 010 EDX
01001 DS:[ECX + (scaled index) + d8] 011 EBX
01010 DS[EDX + (Sca|9d index) + dB] 100 no index reg‘ *
01011 DS:[EBX + (scaled index) + d8] 101 EBP
01100 SS;[ESP + (scaled index)+ d8] 110 ESI
01101 SS:[EBP + (scaled index) + d8} 111 EDI
01110 DS:[ESI + (scaled index) + d8]
01 111 DS:[EDI + (scaled index) + d8] **IMPORTANT NOTE:
e oo el 00, el s 00 and o doss ot
:g gg? gg{gg;: E:Z:::: :::Z;g : ggg Ztsqual 00, the effgctive address is undefined.
10010 DS:[EDX + (scaled index) + d32]
10011 DS:[EBX + (scaled index) + d32]
10100 SS;[ESP + (scaled index) + d32]
10 101 SS:[EBP + (scaled index) + d32]
10110 DS:[ESI+ (scaled index) + d32]
10111 DS:[ED! + (scaled index) + d32]
NOTE:
Mod field in “mod r/m” byte; ss, index, base fields in
“s-i-b”" byte.
|
|
11-132 |

BN 4826175 0135769 279 MEITLL

intal.

7.2.3.5 ENCODING OF OPERATION DIRECTION
(d) FIELD

In many two-operand instructions the d field is pres-
ent to indicate which operand is considered the
source and which is the destination.

d Direction of Operation

0 | Register/Memory <- - Register

“reg” Field Indicates Source Operand;

“mod r/m” or “mod ss index base” Indicates
Destination Operand

1 | Register <- - Register/Memory
“reg” Field Indicates Destination Operand;
“mod r/m" or “mod ss index base” Indicates

MILITARY Intei386™ MICROPROCESSOR

Mnemonic

Source Operand

7.2.3.6 ENCODING OF SIGN-EXTEND (s) FIELD

The s field occurs primarily to instructions with im-
mediate data fields. The s field has an effect only if
the size of the immediate data is 8 bits and is being
placed in a 16-bit or 32-bit destination.

Condition tttn
0 Overflow 0000
NO No Overflow 0001
B/NAE Below/Not Above or Equal 0010
NB/AE Not Below/Above or Equal 0011
E/Z Equal/Zero 0100
NE/NZ Not Equal/Not Zero 0101
BE/NA Below or Equal/Not Above 0110
NBE/A Not Below or Equal/Above 0111
S Sign 1000
NS Not Sign 1001
P/PE Parity/Parity Even 1010
NP/PO Not Parity/Parity Odd 1011
L/NGE Less Than/Not Greater or Equal |1100
NL/GE Not Less Than/Greater or Equal (1101
LE/NG Less Than or Equal/Greater Than|1110
NLE/G Not Less or Equal/Greater Than [1111

7.2.3.8 ENCODING OF CONTROL OR DEBUG
OR TEST REGISTER (eee) FIELD

For the loading and storing of the Control, Debug
and Test registers.

When Interpreted as Control Register Field

Effect on
Effect on
s Immediate
Immediate Data8 Data 16/32
0 None None
1 Sign-Extend Data8 to Fill None
16-Bit or 32-Bit Destination

7.2.3.7 ENCODING OF CONDITIONAL TEST
(tttn) FIELD

For the conditional instructions (conditional jumps
and set on condition), {ttn is encoded with n indicat-
ing to use the condition (n=0) or its negation (n=1),
and ttt giving the condition to test.

11-133
I B 4826175 0435770 T90 EEITLL

eee Code Reg Name
000 CRO
010 CR2
011 CR3

Do not use any other encoding

When Interpreted as Debug Register Field

eee Code Reg Name
000 DRO
001 DR1
010 DR2
011 DR3
110 DR8&
111 ‘ DR7

Do not use any other encoding

When Interpreted as Test Register Field

eee Code Reg Name
110 TR6
111 TR7

Do not use any other encoding

