

HA-2500/02/05

Precision High Slew Rate Operational Amplifiers

Features

•	High Slew Rate	30V/μs
•	Fast Settling	330ns
•	Wide Power Bandwidth	500KHz
•	High Gain Bandwidth	12MHz
•	High Input Impedance	50M Ω

Low Offset Current10nA

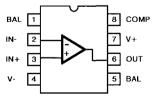
Internally Compensated For Unity Gain Stability

Description

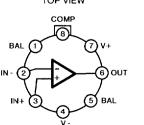
HA-2500/2502/2505 comprises a series of monolithic operational amplifiers whose designs are optimized to deliver excellent slew rate, bandwidth, and settling time specifications. The outstanding dynamic features of this internally compensated device are complemented with low offset voltage and offset current.

These dielectrically isolated amplifiers are ideally suited for applications such as data acquisition, R.F.. video, and pulse conditioning circuits. Slew rates of ±25V/µs and 330ns (0.1%) settling time make these devices excellent components in fast, accurate data acquisition and pulse amplification designs. 12MHz small signal bandwidth and 500kHz power bandwidth make these devices well suited to R.F. and video applications. With 2mV typical offset voltage plus offset trim capability and 10nA offset current, HA-2500/2502/2505 are particularly useful components in signal conditioning designs.

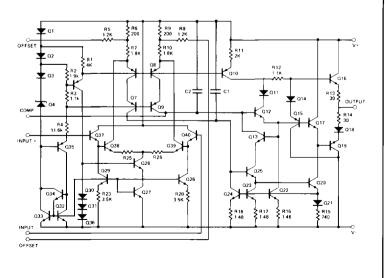
Applications


- Data Acquisition Systems
- · R.F. Amplifiers
- Video Amplifiers
- Signal Generators
- Pulse Amplification

The gain and offset voltage figures of the HA-2500 series are optimized by internal component value changes while the similar design of the HA-2510 series is maximized for slew rate.


The HA-2500 and HA-2502 have guaranteed operation from -55°C to +125°C and are available in hermetic metal can and ceramic miniDIP packages. Both are offered as a /883 military grade part with the HA-2502 also available in LCC package. The HA-2505 has guaranteed operation from 0°C to +75°C and is available in plastic and ceramic miniDIP and metal can packages. Mil-Std-883 product and data sheets are available upon request.

Pinouts


HA7-2500/02/02 (CERAMIC MINI-DIP) HA3-2505 (PLASTIC MINI-DIP) TOP VIEW

HA2-25:00/02/05 (TO-99 METAL CAN) TOP VIEW

Schematic

Specifications HA-2500/2502/2505

Absolute Maximum Ratings (Note 6)

Voltage Between V+ and V- Terminals 40.0V	Operating Temperature Range
Differential Input Voltage ±15.0V	HA-2510:251255°C ≤ T∆ ≤ +125°C
Peak Output Current50mA	HA-2515 0°C ≤ T _Δ ≤ +75°C
Internal Power Dissipation300mW	Storage Temperature Range65°C ≤ TA ≤ +150°C
Lead Solder Temperature (10 Seconds)+275°C	Maximum Junction Temperature+175°C

Electrical Specifications V+ =+15V D.C., V- = -15V D.C.

		HA-2500 -55°C to +125°C		HA-2502 -55°C to +125°C		HA-2505 0°C to +75°C					
PARAMETER	TEMP.	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
INPUT CHARACTERISTICS											
Offset Voltage	+25°C Full		2	5 8		4	8 10		4	8 10	mV mV
Offset Voltage Average Drift	Full		20			20			20		μV/0
Bias Current	+25°C Fuil		100	200 400		125	250 500		125	250 500	nA nA
Offset Current	+25°C Full	,	10	25 50	,	20	50 100		20	50 100	nA nA
Input Resistance (Note 10)	+25°C	25	50		20	50		20	50		мΩ
Common Mode Range	Full	± 10.0			± 10.0			±10.0			ν
TRANSFER CHARACTERISTICS											
Large Signal Voltage Gain (Note 1, 4)	+25°C Full	20 K 15 K	30K		15K 10K	25K		15K 10K	25K		V/V V/V
Common Mode Rejection Ratio (Note 2)	Full	80	90		74	90		74	90		dB
Gain Bandwidth Product (Note 3)	+25°C		12			12			12		MHz
OUTPUT CHARACTERISTICS				_						_	
Output Voltage Swing (Note 1)	Full	± 10.0	± 12.0		±10.0	± 12.0		± 10.0	±12.0		v
Output Current (Note 4)	+25°C	± 10	± 20		±10	±20		±10	± 20		mA
Full Power Bandwidth (Notes 4,11)	+25°C	350	500		300	500		300	500		KHz
TRANSIENT RESPONSE		-									
Rise Time (Notes 1, 5, 7 & 8)	+25°C		25	50		25	50		25	50	ns
Overshoot (Notes 1, 5, 7 & 8)	+25°C		25	40		25	50		25	50	%
Slew Rate (Notes 1, 5, 8 & 12)	+25°C	± 25	± 30		± 20	±30		± 20	± 30		V/μs
Settling Time to 0.1% (Notes 1, 5, 8 & 12)	+25°C		0.33			0.33			0.33		μs
POWER SUPPLY CHARACTERISTICS					_						
Supply Current	+25°C		4	6		4	6		4	6	mA
Power Supply Rejection Ratio (Note 9)	Full	80	90		74	90		74	90		dB

NOTES 1 R_L = 2KΩ

2 V_{CM} = ±10V

 $3 - A_V \approx 10$

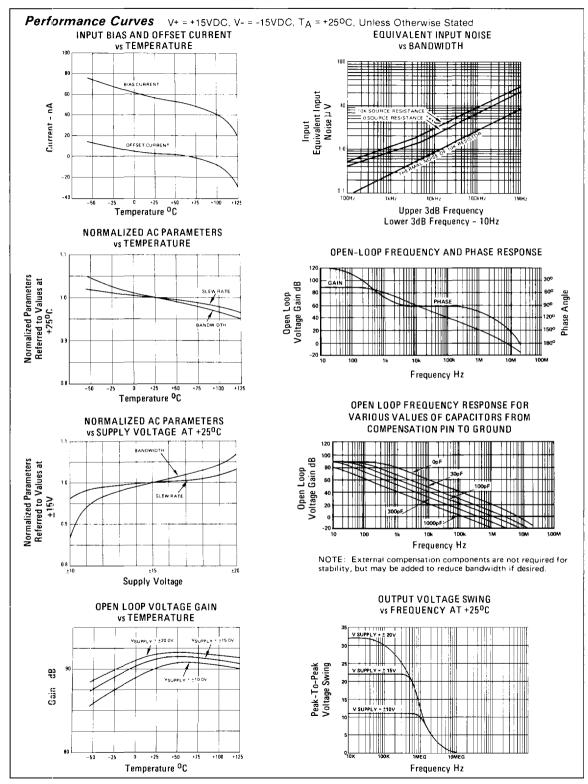
4 VO = ±10.0V

5 C_L = 50pF

6 Absolute Maximum Ratings are limiting values, applied individually, beyond which the serviceability of the circuit

may be impaired

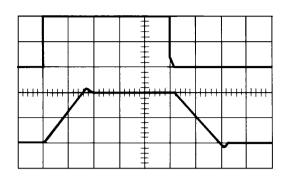
7 Vo - : 200mV


8 See Transient Response Test Circuits and Waveforms

9 ΔV ≈ :50V

12 VOUT : :5V

10. This parameter value is based on design calculations

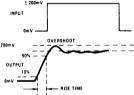

11 Full Power Bandwidth guaranteed based on slew rate measurement using. FPBW = S.R 2:-Vpeak

Typical Performance Curves POWER SUPPLY CURRENT vs TEMPERATURE S VSUPPLY - 20 0V VSUPPLY - 15 0V VSUPPLY - 15 0V VSUPPLY - 10 0V VSUPPLY -

Temperature ^OC

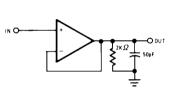
VOLTAGE FOLLOWER PULSE RESPONSE

R_L = 2KΩ, C_L = 50pF Upper Trace: Input Lower Trace: Output Vertical = 5V/Div. Horizontal = 200ns/Div. $T_A = +25^{\circ}C$, $V_S = \pm 15.0V$

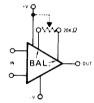

Test Circuits

INPUT

TRANSIENT RESPONSE

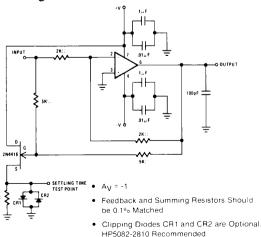


NOTE: Measurement on both positive and negative


-200mV at the output.

transitions from 0V to +200mV and 0V to

SLEW RATE AND TRANSIENT RESPONSE


SUGGESTED VOS ADJUSTMENT

40

Tested Offset Adjustment Range is $|V_{OS}| + 1mV|$ minimum referred to output. Typical ranges is $\pm 8mV$ with $R_T=20k\Omega$.

Settling Time Circuit

Die Characteristics

Die Dimensions			
Process			
Thermal Constants (°C/W)	θ_{ja}	θ _{jc}	
HA2- Metal Can (-2, -5, -7)	202	56	
HA2- Metal Can (-8, /883)	168	52	
HA3- Plastic Mini-DIP (-5)	84	34	
HA4- Ceramic LCC (/883)	97	35	
HA7- Ceramic Mini-DIP (-8, /883)	138	63	
HA7- Ceramic Mini-DIP (-2 -5 -7)	204	112	

Transistor Count