

HA-2557

130MHz, Four Quadrant, **Current Output Analog Multiplier**

November 1996

Features	
Low Multiplication Error	.5%
Input Bias Currents	8μΑ
• Y Input Feedthrough at 5MHz	0dB
Wide Y Channel Bandwidth 130.	MHz
Wide Y Chennel Randwidth 75	MHz

Applications

- Military Avionics
- · Medical Imaging Displays
- Video Mixers
- Sonar AGC Processors
- Radar Signal Conditioning
- Voltage Controlled Amplifier
- Vector Generator

Pinout

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE	PKG. NO.
HA3-2557-9	-40 to 85	16 Ld PDIP	E16.3
HA9P2557-9	-40 to 85	16 Ld SOIC	M16.3

Description

The HA-2557 is a monolithic, high speed, four quadrant, analog multiplier constructed in Harris' Dielectrically Isolated High Frequency Process. The single-ended current output of the HA-2557 has a 130MHz signal bandwidth ($R_1 = 50\Omega$). High bandwidth and low distortion make this part an ideal component in video systems.

The suitability for precision video applications is demonstrated further by low multiplication error (1.5%), low feedthrough (-50dB), and differential inputs with low bias currents (8µA). The HA-2557 is also well suited for mixer circuits as well as AGC applications for sonar, radar, and medical imaging equipment.

The current output of the HA-2557 allows it to achieve higher bandwidths than voltage output multipliers. Full scale output current is trimmed to 1.6mA. An internal 2500 Ω feedback resistor is also provided to accurately convert the current, if desired, to a full scale output voltage of ±4V. The HA-2557 is not limited to multiplication applications only; frequency doubling and power detection are also possible.

For MIL-STD-883 compliant product consult the HA-2557/883 datasheet.

HA-2557 (PDIP, SOIC) TOP VIEW GND VREE

GND VYIO

Schematic