

SCBS300G-MARCH 1994-REVISED JANUARY 2006

FEATURES

FEATURES	SN54ABT16245A WD PACKAGE
 Members of the Texas Instruments Widebus™ Family 	SN74ABT16245ADGG, DGV, OR DL PACKAGE (TOP VIEW)
 State-of-the-Art EPIC-IIB[™] BiCMOS Design Significantly Reduces Power Dissipation 	
 Typical V_{OLP} (Output Ground Bounce) <1 V at V_{CC} = 5 V, T_A = 25°C 	1B1 2 47 1A1 1B2 3 46 1A2
 High-Impedance State During Power Up and Power Down 	GND 4 45 GND 1B3 5 44 1A3 1B4 6 43 1A4
 Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise 	$V_{CC} \begin{bmatrix} 7 & 42 \end{bmatrix} V_{CC} \\ 1B5 \begin{bmatrix} 8 & 41 \end{bmatrix} 1A4$
 Flow-Through Architecture Optimizes PCB Layout 	1B6 9 40 1A6 GND 10 39 GND
 High-Drive Outputs (–32-mA I_{OH}, 64-mA I_{OL}) 	1B7 🛛 11 🛛 38 🗍 1A7
 Latch-Up Performance Exceeds 500 mA Per JESD 70 	1B8 0 12 37 0 1A8 2B1 0 13 36 0 2A1
 ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0) 	2B2 14 35 2A2 GND 15 34 GND 2B3 16 33 2A3
 Package Options Includes Plastic Thin Very Small-Outline (DGV), Shrink Small-Outline (DL), and Thin Shrink Small-Outline (DGG) 	2B4 17 32 2A4 V _{CC} 18 31 V _{CC} 2B5 19 30 2A5 2B6 20 29 2A6
Packages and 380-mil Fine-Pitch Ceramic (WD) Flat Package Using 25-mil Center-to-Center Spacings	GND 21 28 GND 2B7 22 27 2A7 2B8 23 26 2A8 2DIR 24 25 2 0E
	9 [

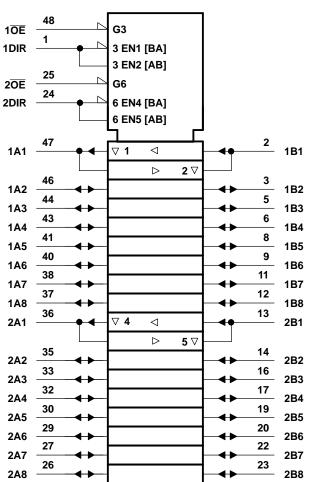
DESCRIPTION

The 'ABT16245A devices are 16-bit noninverting 3-state transceivers designed for synchronous two-way communication between data buses. The control-function implementation minimizes external timing requirements.

These devices can be used as two 8-bit transceviers or one 16-bit transceiver. They allow data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so that the buses are effectively isolated.

When V_{CC} is between 0 and 2.1 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impendance state above 2.1 V, OE should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54ABT16245A is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ABT16245A is characterized for operation from -40°C to 85°C.

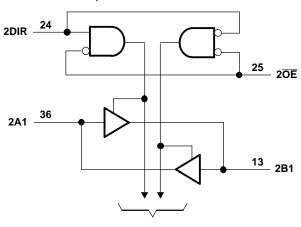

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus, EPIC-IIB are trademarks of Texas Instruments.

SCBS300G-MARCH 1994-REVISED JANUARY 2006

FUNCTION TABLE (EACH 8-BIT SECTION)

INP	UTS	OPERATION
OE	DIR	OFERATION
L	L	B data to A bus
L	Н	A data to B bus
н	Х	Isolation



LOGIC SYMBOL⁽¹⁾

(1) This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SCBS300G-MARCH 1994-REVISED JANUARY 2006

1DIR 1 48 10E 1A1 47 1A1 47 To Seven Other Channels

To Seven Other Channels

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT	
V _{CC}	Supply voltage range		-0.5	7	V	
VI	Input voltage range (except I/O ports) ⁽²⁾		-0.5	7	V	
Vo	Voltage range applied to any output in the high c	range applied to any output in the high or power-off state -0.5 5.5				
	Current into any output in the low state	st into any output in the low state		96	mA	
I _O		SN74ABT16245A		128	ША	
I _{IK}	Input clamp current	V ₁ < 0		-18	mA	
I _{OK}	Output clamp current	V _O < 0		-50	mA	
		DGG package		89		
θ_{JA}	Package thermal impedance ⁽³⁾	DGV package		93	°C/W	
		DL package		94		
T _{stg}	Storage temperature range		-65	150	°C	

LOGIC DIAGRAM (POSITIVE LOGIC)

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

(3) The package thermal impedance is calculated in accordance with JESD 51.

SCBS300G-MARCH 1994-REVISED JANUARY 2006

Recommended Operating Conditions⁽¹⁾

			SN54ABT	16245A	SN74ABT	UNIT	
			MIN MAX 4.5 5.5		MIN	MAX	UNIT
V _{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
V _{IH}	High-level input voltage	2		2		V	
V _{IL}	Low-level input voltage		0.8		0.8	V	
VI	Input voltage	0	V_{CC}	0	V_{CC}	V	
I _{OH}	High-level output current			-24		-32	mA
I _{OL}	Low-level output current			48		64	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
$\Delta t / \Delta V_{CC}$	Power-up ramp rate		200		200		μs/V
T _A	Operating free-air temperature		-55	125	-40	85	°C

 All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCBS300G-MARCH 1994-REVISED JANUARY 2006

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

		TEAT OF		-	T _A = 25°	C	SN54ABT	16245A	SN74ABT16245A			
PARAMETER		TEST CC	ONDITIONS	MIN	TYP ⁽¹⁾	MAX	MIN	MAX	MIN	MAX	UNIT	
V _{IK}	V_{IK} $V_{CC} = 4.5 V,$		I _I = -18 mA			-1.2		-1.2		-1.2	V	
	$V_{CC} = 4.5 \text{ V}, \qquad I_{OH} = -3 \text{ r}$		I _{OH} = -3 mA	2.5			2.5		2.5			
		V _{CC} = 5 V,	I _{OH} = -3 mA	3			3		3		v	
V _{OH}		V _{CC} = 4.5 V	I _{OH} = -24 mA	2			2				V	
		$v_{\rm CC} = 4.5 \ v$	I _{OH} = -32 mA	2 ⁽²⁾					2			
V		V _{CC} = 4.5 V	I _{OL} = 48 mA			0.55		0.55			v	
V _{OL}		$v_{\rm CC} = 4.5 v$	I _{OL} = 64 mA			0.55 ⁽²⁾				0.55	v	
V _{hys}					100						mV	
	Control inputs	$V_{CC} = 0$ to 5.5 V, $V_{I} = V_{CC}$			±1		±1		±1			
I _I	A or B port	$V_{CC} = 2.1 \text{ V to } 5.5 \text{ V}, \text{ V}$	I = V _{CC} or GND			±20 ⁽²⁾		±100		±20	μA	
I _{OZPU}	PU $V_{CC} = 0$ to 2.1 V, $V_O = 0.5$ V to 2.7 V, $\overline{OE} = \lambda$					±50 ⁽³⁾		±50 ⁽³⁾		±50	μΑ	
I _{OZPD}		V_{CC} = 2.1 V to 0, V_{O} =	0.5 V to 2.7 V, OE = X			±50 ⁽³⁾		±50 ⁽³⁾		±50	μΑ	
I _{OZH} ⁽⁴⁾		$V_{CC} = 2.1 \text{ V to } 5.5 \text{ V}, \text{ V}$	⁷ _O = 2.7 V, OE ≥ 2 V			10 ⁽⁵⁾		10		10 ⁽⁵⁾	μΑ	
$I_{OZL}^{(4)}$		$V_{CC} = 2.1 \text{ V to } 5.5 \text{ V}, \text{ V}$	⁷ _O = 0.5 V, OE ≥ 2 V			-10 ⁽⁵⁾		-10		-10 ⁽⁵⁾	μA	
I _{off}		$V_{CC} = 0,$	$V_{I} \text{ or } V_{O} \leq 5.5 \text{ V}$			±100				±100	μΑ	
I _{CEX}		$V_{CC} = 5.5 V,$ $V_{O} = 5.5 V$	Outputs high			50		50		50	μA	
I _O ⁽⁶⁾		V _{CC} = 5.5 V,	V _O = 2.5 V	-50	-100	-180	-50	-180	-50	-180	mA	
			Outputs high			2		2		2		
I _{CC}	A or B port	$V_{CC} = 5.5 \text{ V}, I_O = 0,$ $V_I = V_{CC} \text{ or GND}$	Outputs low			32		32		32	mA	
	pon		Outputs disabled			2		2		2		
		$V_{CC} = 5.5 V,$	Outputs enabled			2		1.5		2		
$\Delta I_{CC}^{(7)}$ Data inputs		One inputs at 3.4 V, Other inputs at V_{CC} or GND	Outputs disabled			0.05		1		0.05	mA	
	Control $V_{CC} = 5.5 V$, One input at other inputs at V_{CC} or GN					1.5		1.5		1.5		
C _i	Control inputs	V _I = 2.5 V or 0.5 V			3						pF	
Co	A or B port	$V_0 = 2.5 \text{ V or } 0.5 \text{ V}$			6						pF	

(1)

(2)

All typical values are at V_{CC} = 5 V. On products compliant to MIL-PRF-38535, this parameter does not apply. On products compliant to MIL-PRF-38535, this parameter is not production tested. (3)

(4) The parameters I_{OZH} and I_{OZL} include the input leakage current.

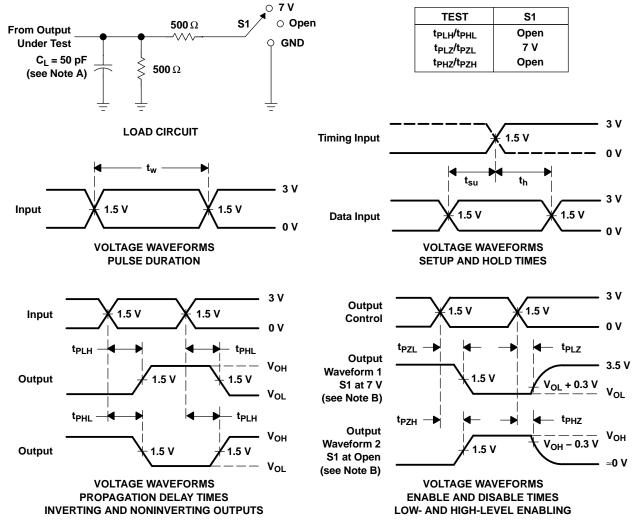
This limit may vary among suppliers. (5)

(6) Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

(7) This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND. SCBS300G-MARCH 1994-REVISED JANUARY 2006

Switching Characteristics

over recommended operating ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)


				SN54ABT16245A					
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _C T	_{CC} = 5 V, _A = 25°C		MIN	МАХ	UNIT	
			MIN	TYP	MAX				
t _{PLH}	A or B	B or A	0.5	2.2	3.4	0.5	4	ns	
t _{PHL}	AUB	BUIA	0.5	2.3	3.8	0.5	4.6	115	
t _{PZH}	OE	B or A	0.8	3.6	5.2	0.8	5.5	ns	
t _{PZL}	OL	BUIA	0.9	3.7	6.1	0.1	7.3	115	
t _{PHZ}	OE	B or A	1.3	4.4	5.8	1.3	6.3	ns	
t _{PLZ}	0L	BUX	1.4	3.3	4.7	1.4	5.5	115	

Switching Characteristics

over recommended operating ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER								
	FROM (INPUT)	TO (OUTPUT)	V _C T _A	_{CC} = 5 V _A = 25°C		MIN MAX	МАХ	UNIT
			MIN	TYP	MAX			
t _{PLH}	A or D	B or A	1	2.2	3.4	1	3.9	20
t _{PHL}	A or B	D OF A	1	2.3	3.7	1	4.2	ns
t _{PZH}	OE	B or A	1	3.6	5.2	1	6.3	20
t _{PZL}	UE	BUIA	1	3.7	5.4	1	6.4	ns
t _{PHZ}	ŌĒ	B or A	2	4.4	5.8	2	6.3	ns
t _{PLZ}	0L	BUIA	1.5	3.3	4.7	1.5	5.2	115

SCBS300G-MARCH 1994-REVISED JANUARY 2006

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.

D. The outputs are measured one at a time, with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

6-Feb-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing		Package Qty		Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
5962-9317501MXA	(1) ACTIVE	CFP	WD	48	1	(2) TBD	(6) Call TI	(3) N / A for Pkg Type	-55 to 125	(4/5) 5962-9317501MX A SNJ54ABT16245A WD	Samples
74ABT16245ADGGRG4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABT16245A	Samples
SN74ABT16245ADGGR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABT16245A	Samples
SN74ABT16245ADGVR	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	AH245A	Samples
SN74ABT16245ADL	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABT16245A	Samples
SN74ABT16245ADLR	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABT16245A	Samples
SNJ54ABT16245AWD	ACTIVE	CFP	WD	48	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	5962-9317501MX A SNJ54ABT16245A WD	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

www.ti.com

PACKAGE OPTION ADDENDUM

6-Feb-2020

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

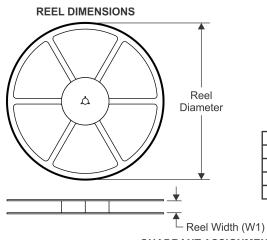
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54ABT16245A, SN74ABT16245A :

- Catalog: SN74ABT16245A
- Enhanced Product: SN74ABT16245A-EP, SN74ABT16245A-EP
- Military: SN54ABT16245A

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications

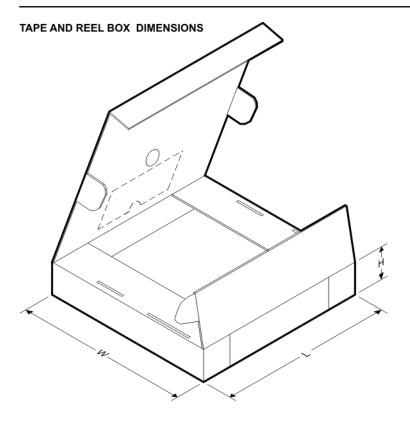
PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal	All dimensions are nominal													
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant		
SN74ABT16245ADGGR	TSSOP	DGG	48	2000	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1		
SN74ABT16245ADGVR	TVSOP	DGV	48	2000	330.0	16.4	7.1	10.2	1.6	12.0	16.0	Q1		
SN74ABT16245ADLR	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1		

TEXAS INSTRUMENTS

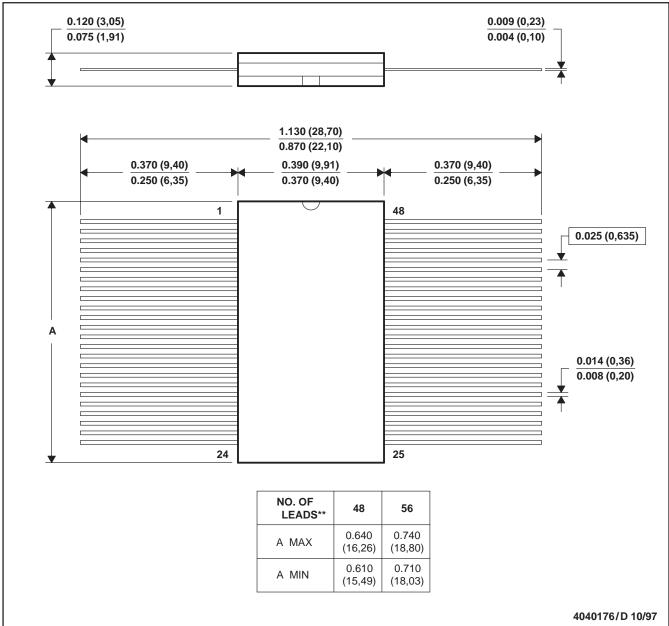
www.ti.com

PACKAGE MATERIALS INFORMATION

11-Mar-2017

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74ABT16245ADGGR	TSSOP	DGG	48	2000	367.0	367.0	45.0
SN74ABT16245ADGVR	TVSOP	DGV	48	2000	367.0	367.0	38.0
SN74ABT16245ADLR	SSOP	DL	48	1000	367.0	367.0	55.0

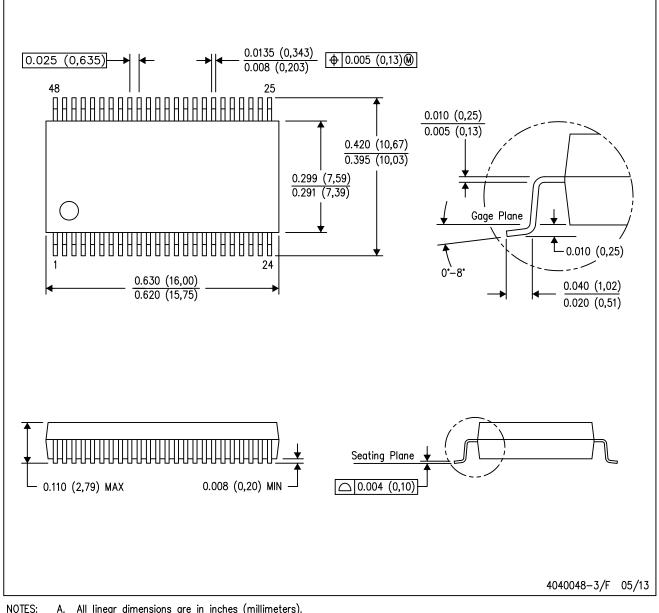

MECHANICAL DATA

MCFP010B - JANUARY 1995 - REVISED NOVEMBER 1997

CERAMIC DUAL FLATPACK

WD (R-GDFP-F**)

48 LEADS SHOWN



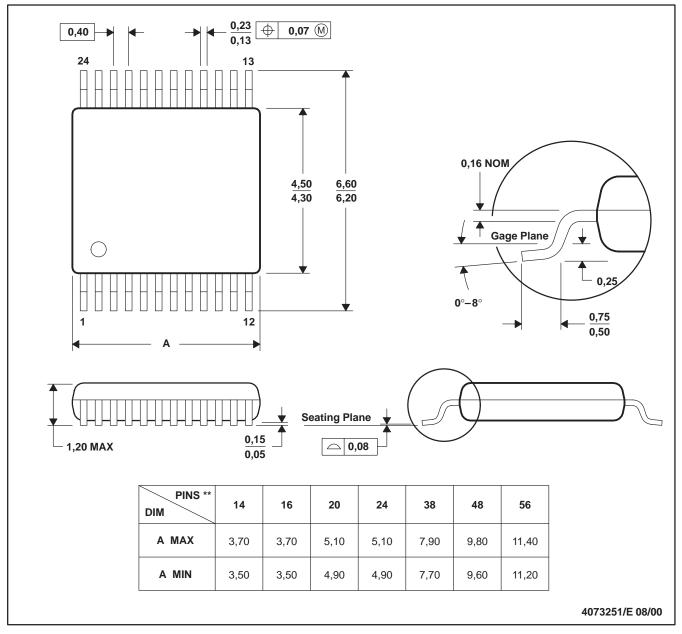
- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only
 - E. Falls within MIL STD 1835: GDFP1-F48 and JEDEC MO-146AA
 - GDFP1-F56 and JEDEC MO-146AB

DL (R-PDSO-G48)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.


MECHANICAL DATA

PLASTIC SMALL-OUTLINE

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

DGV (R-PDSO-G**)

24 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

14/16/20/56 Pins – MO-194

MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated