ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Single Relay Driver IC

This ASIC provides up to 350 mA of drive current for driving a relay. On–chip diagnostic features include open and short circuit detection in the on state, duty cycle current limit control, and thermal shutdown. Faults are reported on the Fault lead. Fault is an active–low output. An on–chip zener provides protection from flyback pulses from the relay. Internal pull–down circuitry is provided to ensure the output pin turns off when the Control pin is floating.

Features

- Fault Detection
 - Open Circuit
 - Short Circuit
 - Overtemperature
- On-Chip Flyback Protection
- Low Standby Current
- Internally Fused Leads in SO-8 Package

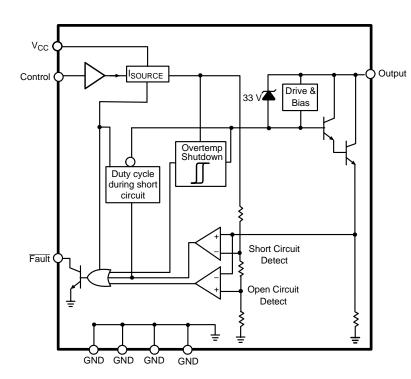
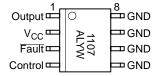


Figure 1. Block Diagram


ON Semiconductor™

http://onsemi.com

SO-8 DF SUFFIX CASE 751

PIN CONNECTIONS AND MARKING DIAGRAM

A = Assembly Location

WL, L = Wafer Lot YY, Y = Year WW, W = Work Week

ORDERING INFORMATION

Device	Package	kage Shipping	
CS1107EDF8	SO-8	95 Units/Rail	
CS1107EDFR8	SO-8	2500 Tape & Reel	

CS1107

MAXIMUM RATINGS*

Rating			Unit
Storage Temperature		-65 to +150	°C
V _{CC} , Fault, Control		-0.5 to 6.0	V
ESD Capability (Human Body Model)		2.0	kV
Peak Transient Voltage (output off mode, output pin only)	(26 V Load Dump @ 14 V V _{BAT})	40	V
Lead Temperature Soldering:	Reflow: (SMD styles only) (Note 1)	230 peak	°C

^{1. 60} second maximum above 183°C.

ELECTRICAL CHARACTERISTICS $(4.75 \le V_{CC} \le 5.25 \text{ V}, -40^{\circ}\text{C} \le T_{A} \le 85^{\circ}\text{C}, -40^{\circ}\text{C} \le T_{J} \le 150^{\circ}\text{C}; \text{ unless otherwise specified.})$

Characteristic	Test Conditions	Min	Тур	Max	Unit
Supply Requirements					
V _{CC} Quiescent Current	Output ON	_	3.0	6.0	mA
V _{CC} Quiescent Current	Output OFF	-	70	250	μΑ
Output					
Leakage Current	V _{BAT} = 14 V	_	0	100	μΑ
Saturation Voltage	I _{OUTPUT} = 350 mA I _{OUTPUT} = 180 mA	_ _	1.1 0.9	1.5 1.3	V V
V _{CLAMP}	V _{CC} < 4.5 V, I _{OUTPUT} = 180 mA	29	33	36	V
Current Sense					
Short Circuit Current	-	350	500	650	mA
Open Circuit Current	Output in the ON state	20	40	60	mA
Control-Input					
Input Voltage	Logic = High Logic = Low	2.0		- 0.8	V V
Input Current	Control = V _{CC}	-	40	80	μΑ
Fault Output – (Open Collector)		•	-1	-1	
Output Low Voltage	I _{FAULT} = 250 μA (sink)	_	0.24	0.40	V
Overtemperature Shutdown					
T _J Output Disable Threshold	(Guaranteed by Design)	150	180	_	°C
T _J Hysteresis	(Guaranteed by Design)	5.0	_	_	°C

PACKAGE PIN DESCRIPTION

PACKAGE PIN #			
8 Lead SO Narrow	PIN SYMBOL	FUNCTION	
1	Output	Open collector output.	
2	Vcc	5.0 V regulated supply input.	
3	Fault	Open collector diagnostic output low during open load, short circuit and overtemperature conditions.	
4	Control	TTL compatible input. A high on this pin turns the output on.	
5, 6, 7, 8	Ground	Signal ground.	

^{*}The maximum package power dissipation must be observed.

CS1107

CIRCUIT DESCRIPTION

The CS1107 relay driver IC provides up to 350 mA of drive current in a low–side configuration. The Output driver pin is controlled through the TTL compatible Control input pin. A high condition on the Control pin turns the output pin on.

The Fault pin reports short circuit, open circuit, and overtemperature conditions on the IC. If a fault is present, the open collector output Fault pin will be low. Typical numbers for faults are: exceeding 500 mA of drive current will report a short circuit. Less than 40 mA (typical) will report an open circuit. A temperature fault will be reported when the die temperature exceeds 180°C (typical). Faults

are only reported when the Control pin is high, due to the low quiescent current when the Control pin is low and the output device is turned off.

Overcurrent protection is provided by duty cycle control. When the Output current exceeds the current limit threshold, the output enters duty cycle mode to reduce power dissipation of the IC to a safe level. The higher the threshold is exceeded the lower the duty cycle becomes.

A 33 V on-chip zener diode on the Output pin protects the device from flyback pulses when a relay is turned off. The saturation voltage of this pin will not exceed 1.5 V at 350 mA.

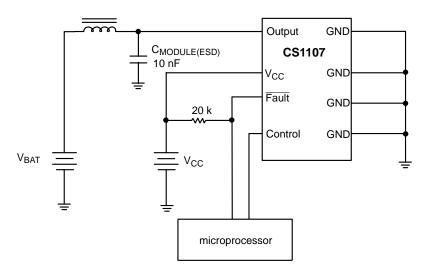


Figure 2. Applications Diagram

PACKAGE DIMENSIONS

SO-8 DF SUFFIX CASE 751-07 ISSUE V B 1 C SEATING PLANE O.10 (0.004) M M

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
Н	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0 °	8 °	0 °	8 °
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

PACKAGE THERMAL DATA

0.25 (0.010) M Z Y S

Parameter		SO-8	Unit	
$R_{\Theta JC}$	Typical	25	°C/W	
$R_{\Theta JA}$	Typical	110	°C/W	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax:** 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 **Email**: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.