

74ACTQ273

Quiet Series Octal D-Type Flip-Flop

The ACTQ273 has eight edge-triggered D-type flip-flops with individual D inputs and Q outputs. The common buffered Clock (CP) and Master Reset (MR) input load and reset (clear) all flip-flops simultaneously.

The register is fully edge-triggered. The state of each D-type input, one setup time before the LOW-to-HIGH clock transition, is transferred to the corresponding flip-flop's Q output.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

74ACTQ273 Quiet Series Octal D-Type Flip-Flop

Features

- I_{CC} reduced by 50%
- Guaranteed simultaneous switching noise level and dynamic threshold performance
- Guaranteed pin-to-pin skew AC performance
- Improved latch-up immunity
- Buffered common clock and asynchronous master reset
- Outputs source/sink 24mA
- 4kV minimum ESD immunity

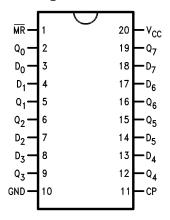
General Description

The ACTQ273 has eight edge-triggered D-type flip-flops with individual D inputs and Q outputs. The common buffered Clock (CP) and Master Reset (MR) input load and reset (clear) all flip-flops simultaneously.

The register is fully edge-triggered. The state of each D-type input, one setup time before the LOW-to-HIGH clock transition, is transferred to the corresponding flip-flop's Q output.

All outputs will be forced LOW independently of Clock or Data inputs by a LOW voltage level on the $\overline{\text{MR}}$ input. The device is useful for applications where the true output only is required and the Clock and Master Reset are common to all storage elements.

The ACTQ utilizes Fairchild Quiet Series™ technology to guarantee quiet output switching and improved dynamic threshold performance. FACT Quiet Series™ features

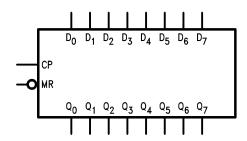

GTO™ output control and undershoot corrector in addition to a split ground bus for superior performance.

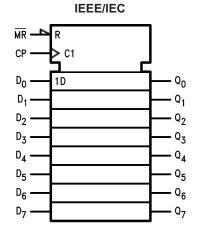
Ordering Information

Order Number	Package Number	Package Description
74ACTQ273SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74ACTQ273SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ACTQ273MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number.

Connection Diagram




Pin Description

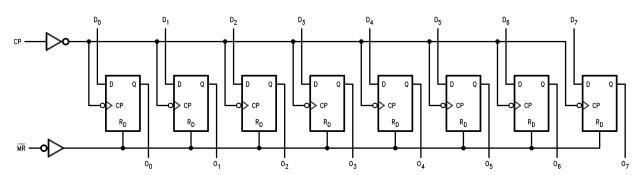
Pin Names	Description
D ₀ –D ₇	Data Inputs
MR	Master Reset
СР	Clock Pulse Input
Q ₀ –Q ₇	Data Outputs

FACT™, FACT Quiet Series™, and GTO™ are trademarks of Fairchild Semiconductor Corporation.

Logic Symbols

Mode Select-Function Table

Operating		Outputs		
Mode	MR	СР	D _n	Q _n
Reset (Clear)	L	Х	Х	L
Load "1"	Н	~	Н	Н
Load "0"	Н	~	L	L


H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

∠ = LOW-to-HIGH Transition

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to +7.0V
I _{IK}	DC Input Diode Current	
	$V_{I} = -0.5V$	–20mA
	$V_{I} = V_{CC} + 0.5V$	+20mA
V _I	DC Input Voltage	-0.5V to V _{CC} + 0.5V
lok	DC Output Diode Current	
	$V_{O} = -0.5V$	–20mA
	$V_{O} = V_{CC} + 0.5V$	+20mA
Vo	DC Output Voltage	-0.5V to V _{CC} + 0.5V
Io	DC Output Source or Sink Current	±50mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current per Output Pin	±50mA
T _{STG}	Storage Temperature -69	
	DC Latch-Up Source or Sink Current	±300mA
TJ	Junction Temperature	140°C

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	4.5V to 5.5V
VI	Input Voltage	0V to V _{CC}
Vo	Output Voltage	0V to V _{CC}
T _A	Operating Temperature	-40°C to +85°C
ΔV / Δt	Minimum Input Edge Rate:	125mV/ns
	V _{IN} from 0.8V to 2.0V, V _{CC} @ 4.5V, 5.5V	

DC Electrical Characteristics

				T _A = +	+25°C	T _A = -40°C to +85°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Тур.	G	uaranteed Limits	Units
V _{IH}	Minimum HIGH Level	4.5	V _{OUT} = 0.1V	1.5	2.0	2.0	V
	Input Voltage	5.5	or V _{CC} – 0.1V	1.5	2.0	2.0	
V _{IL}	Maximum LOW Level	4.5	V _{OUT} = 0.1V	1.5	0.8	0.8	V
	Input Voltage	5.5	or V _{CC} – 0.1V	1.5	0.8	0.8	
V _{OH}	Minimum HIGH Level	4.5	$I_{OUT} = -50\mu A$	4.49	4.4	4.4	V
	Output Voltage	5.5		5.49	5.4	5.4	
		4.5	$V_{IN} = V_{IL} \text{ or } V_{IH}$:			0.70	
		4.5	$I_{OH} = -24 \text{mA}$		3.86	3.76	-
		5.5	$I_{OH} = -24 \text{mA}^{(1)}$		4.86	4.76	
V _{OL}	Maximum LOW Level	4.5	$I_{OUT} = 50\mu A$	0.001	0.1	0.1	V
	Output Voltage	5.5		0.001	0.1	0.1	
			$V_{IN} = V_{IL}$ or V_{IH} :				
		4.5	$I_{OL} = 24mA$		0.36	0.44	
		5.5	$I_{OL} = 24 \text{mA}^{(1)}$		0.36	0.44	
I _{IN}	Maximum Input Leakage Current	5.5	$V_I = V_{CC}$, GND		±0.1	±1.0	μA
Ісст	Maximum I _{CC} /Input	5.5	$V_I = V_{CC} - 2.1V$	0.6		1.5	mA
I _{OLD}	Minimum Dynamic	5.5	V _{OLD} = 1.65V Max.			75	mA
I _{OHD}	Output Current ⁽²⁾	5.5	V _{OHD} = 3.85V Min.			– 75	mA
I _{CC}	Maximum Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$ or GND		4.0	40.0	μA
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	5.0	Figures 1 & 2 ⁽³⁾	1.1	1.5		V
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	5.0	Figures 1 & 2 ⁽³⁾	-0.6	-1.2		V
V_{IHD}	Minimum HIGH Level Dynamic Input Voltage	5.0	(4)	1.9	2.2		V
V_{ILD}	Maximum LOW Level Dynamic Input Voltage	5.0	(4)	1.2	0.8		V

Notes:

- 1. All outputs loaded; thresholds on input associated with output under test.
- 2. Maximum test duration 2.0ms, one output loaded at a time.
- 3. Max number of outputs defined as (n). n-1 Data inputs are driven 0V to 3V; one output @ GND.
- 4. Max number of Data Inputs (n) switching. (n–1) Inputs switching 0V to 3V (ACTQ). Input-under-test switching: 3V to threshold (V_{ILD}) , 0V to threshold (V_{IHD}) f = 1 MHz.

AC Electrical Characteristics

			l	T _A = +25°C, C _L = 50pF		$T_A = -40$ °C to +85°C, $C_L = 50$ pF		
Symbol	Parameter	V _{CC} (V) ⁽⁵⁾	Min.	Тур.	Max.	Min.	Max.	Units
f _{MAX}	Maximum Clock Frequency	5.0	125	189		110		MHz
t _{PLH} , t _{PHL}	Propagation Delay, CP to Q _n	5.0	1.5	6.5	8.5	1.5	9.0	ns
t _{PHL}	Propagation Delay, MR to Q _n	5.0	1.5	7.0	9.0	1.5	9.5	ns
t _{OSHL} , t _{OSLH}	Output to Output Skew ⁽⁶⁾	5.0		0.5	1.0		1.0	ns

Notes:

- 5. Voltage range 5.0 is $5.0V \pm 0.5V$.
- 6. Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs within the same packaged device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHI}) or LOW-to-HIGH (t_{OSI}). Parameter guaranteed by design. Not tested.

AC Operating Requirements

			T _A = +	·25°C, 50 pF	$T_A = -40$ °C to +85°C, $C_L = 50$ pF	
Symbol	Parameter	$V_{CC} (V)^{(7)}$	Тур.	Gu	aranteed Minimum	Units
t _S	Setup Time, HIGH or LOW, D _n to CP	5.0	1.0	3.5	3.5	ns
t _H	Hold Time, HIGH or LOW, D _n to CP	5.0	-0.5	1.5	1.5	ns
t _W	Clock Pulse Width, HIGH or LOW	5.0	2.0	4.0	4.0	ns
t _W	MR Pulse Width, HIGH or LOW	5.0	1.5	4.0	4.0	ns
t _W	Recovery Time, MR to CP	5.0	0.5	3.0	3.0	ns

Note:

7. Voltage range 5.0 is $5.0V \pm 0.5V$.

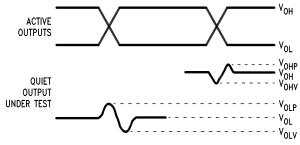
Capacitance

Symbol	Parameter	Conditions	Тур.	Units
C _{IN}	Input Capacitance	V _{CC} = OPEN	4.5	pF
C _{PD}	Power Dissipation Capacitance	V _{CC} = 5.0V	40.0	pF

FACT Noise Characteristics

The setup of a noise characteristics measurement is critical to the accuracy and repeatability of the tests. The following is a brief description of the setup used to measure the noise characteristics of FACT.

Equipment:


Hewlett Packard Model 8180A Word Generator

PC-163A Test Fixture

Tektronics Model 7854 Oscilloscope

Procedure:

- 1. Verify Test Fixture Loading: Standard Load 50pF, 500Ω .
- Deskew the HFS generator so that no two channels have greater than 150 ps skew between them. This requires that the oscilloscope be deskewed first. It is important to deskew the HFS generator channels before testing. This will ensure that the outputs switch simultaneously.
- 3. Terminate all inputs and outputs to ensure proper loading of the outputs and that the input levels are at the correct voltage.
- Set the HFS generator to toggle all but one output at a frequency of 1MHz. Greater frequencies will increase DUT heating and effect the results of the measurement.
- Set the HFS generator input levels at 0V LOW and 3V HIGH for ACT devices and 0V LOW and 5V HIGH for AC devices. Verify levels with an oscilloscope.

Notes:

- V_{OHV} and V_{OLP} are measured with respect to ground reference.
- 9. Input pulses have the following characteristics: f = 1MHz, $t_r = 3ns$, $t_f = 3ns$, skew < 150ps.

Figure 1. Quiet Output Noise Voltage Waveforms

V_{OLP}/V_{OLV} and V_{OHP}/V _{OHV}:

- Determine the quiet output pin that demonstrates the greatest noise levels. The worst case pin will usually be the furthest from the ground pin. Monitor the output voltages using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- Measure V_{OLP} and V_{OLV} on the quiet output during the worst case transition for active and enable.
 Measure V_{OHP} and V_{OHV} on the quiet output during the worst case active and enable transition.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

V_{ILD} and V_{IHD}:

- Monitor one of the switching outputs using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- First increase the input LOW voltage level, V_{IL}, until the output begins to oscillate or steps out a min of 2ns. Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits, or on output HIGH levels that exceed V_{IH} limits. The input LOW voltage level at which oscillation occurs is defined as V_{ILD}.
- Next decrease the input HIGH voltage level, V_{IH}, until the output begins to oscillate or steps out a min of 2ns. Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits, or on output HIGH levels that exceed V_{IH} limits. The input HIGH voltage level at which oscillation occurs is defined as V_{IHD}.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

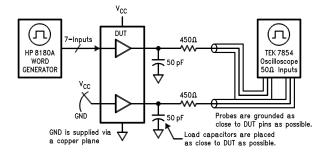
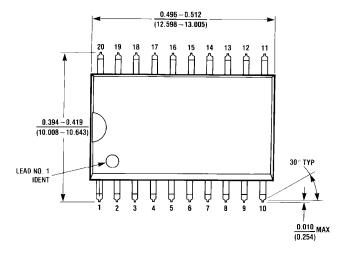
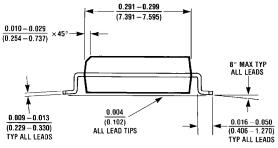




Figure 2. Simultaneous Switching Test Circuit

Physical Dimensions

Dimensions are in inches (millimeters) unless otherwise noted.

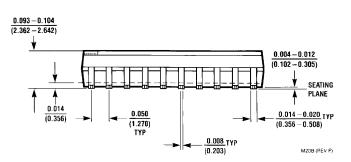
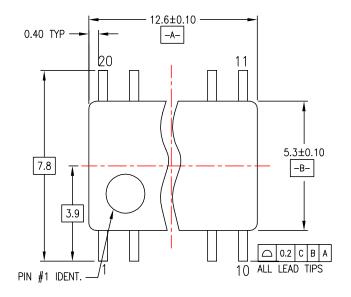
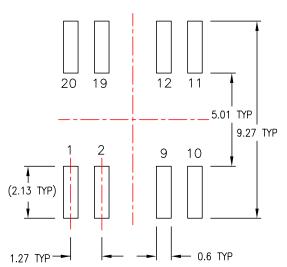
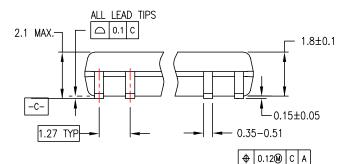
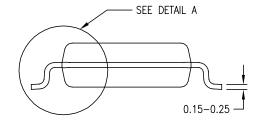
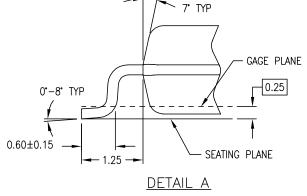




Figure 3. 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Package Number M20B


Physical Dimensions (Continued)


Dimensions are in millimeters unless otherwise noted.

LAND PATTERN RECOMMENDATION

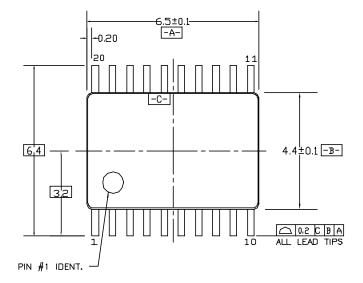

DIMENSIONS ARE IN MILLIMETERS

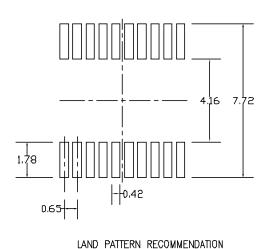
NOTES:

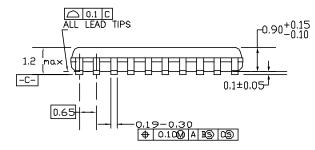
- A. CONFORMS TO EIAJ EDR-7320 REGISTRATION,
- ESTABLISHED IN DECEMBER, 1998.

 B. DIMENSIONS ARE IN MILLIMETERS.

 C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

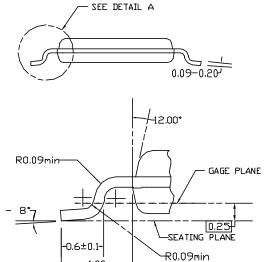



M20DREVC


Figure 4. 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M20D

Physical Dimensions (Continued)

Dimensions are in millimeters unless otherwise noted.



DIMENSIONS ARE IN MILLIMETERS

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MD-153, VARIATION AC, REF NOTE 6, DATE 7/93.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

DETAIL A

MTC20REVD1

Figure 5. 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACFx® i-Lo™ Across the board. Around the world.™ ImpliedDisconnect™ ActiveArray[™] IntelliMAX™ Bottomless™ ISOPLANAR™ Build it Now™ MICROCOUPLER™ MicroPak™ CoolFET™ CROSSVOLT™ MICROWIRE™ $\mathsf{CTL^{\mathsf{TM}}}$ Motion-SPM™ Current Transfer Logic™ MSX™ DOME™ MSXPro™ E²CMOS™ OCX^{TM} EcoSPARK® OCXPro™

EnSigna™ OPTOLOGIC® FACT Quiet Series™ OPTOPLANAR® FACT[®] PACMAN™ $\mathsf{FAST}^{^{\circledR}}$ PDP-SPM™ FASTr™ РОР™ FPS™ Power220® FRFET® Power247® GlobalOptoisolator™ PowerEdge™

The Power Franchise® GTO™ PowerSaver™

HiSeC™

Power-SPM™ TinyBoost™ PowerTrench® TinyBuck™ Programmable Active Droop™ TinyLogic[®] TINYOPTO™ QFĚT QS™ TinyPower™ QT Optoelectronics™ TinyWire™ Quiet Series™ TruTranslation™

SPM[®]

SuperSOT™8

SyncFET™

 $\mathsf{TCM}^{\mathsf{TM}}$

RapidConfigure™ μSerDes™ RapidConnect™ . UHC® ScalarPump™ UniFET™ SMART START™ VCX™ Wire™ STEALTH™ SuperFET™ SuperSOT™3 SuperSOT™6

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
 - 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. 126