Isolated Drive Transmitter

FEATURES

- 500mA Output Drive, Source or Sink
- 8 to 35V Operation
- Transmits Logic Signal Instantly
- Programmable Operating Frequency
- Under-Voltage Lockout
- Able To Pass DC Information Across Transformer
- Up To 600kHz Operation

DESCRIPTION

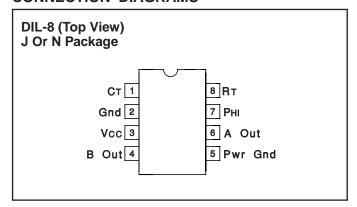
The UC1724 family of Isolated Drive Transmitters, along with the UC1725 Isolated Drivers, provide a unique solution to driving isolated power MOSFET gates. They are particularly suited to drive the high-side devices on a high-voltage H-bridge. The UC1724 devices transmit drive logic, and drive power, to the isolated gate circuit using a low cost pulse transformer.

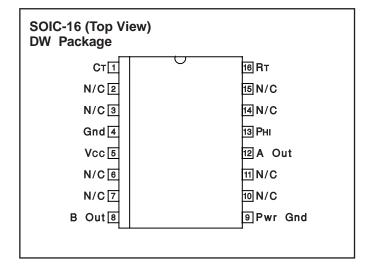
This drive system utilizes a duty-cycle modulation technique that gives instantaneous response to the drive control transistions, and reliably passes steady-state, or DC, conditions. High frequency operation, up to 600kHz, allows the cost and size of the coupling transformer to be minimized.

These devices will operate over an 8 to 35 Volt supply range. The dual high current totem pole outputs are disabled by an uder-voltage lockout circuit to prevent spurious responses during startup or low voltage conditions.

These devices are available in 8 pin plastic or ceramic dual-inline packages, as well as 16 pin SOIC package.

BLOCK DIAGRAM




ABSOLUTE MAXIMUM RATINGS

Supply Voltage V _{IN} 40V
Source/Sink Current (Pulsed)
Source/Sink Current (Continuous) 0.5A
Ouput Voltage (Pins 4, 6)0.3 to (V _{IN} +0.3)V
Рні, Rт, and Ст inputs (Pins 1, 7, and 8)0.3 to 6V
Operating Junction Temperature (Note 2) 150°C
Storage Temperature Range65°C to 150°C
Lead Temperature (Soldering, 10 Seconds) 300°C
Note 1: All voltages are with respect to GND (Pin 2); all cur-
rents are positive into, negative out of part.
Note 2: Consult Unitrode Integrated Circuit Databook for ther-

mal limitations and considerations of package. Note 3: Pin numbers refer to DIL-8 packages.

CONNECTION DIAGRAMS

RECOMMENDED OPERATION CONDITIONS

Input Voltage	35V
Sink/Source Load Current (each output)0 to 500	mΑ
Timing Resistor2kW to 10	kW
Timing Capacitor	3nF
Operating Temperature Range (UC1724)55°C <t<sub>A<12</t<sub>	5°C
Operating Temperature Range (UC3724) 0°C <t<sub>A<7</t<sub>	0°C
Note 4: Range over which the device is functional and	
parameter limits are guaranteed.	

ORDERING INFORMATION

	TEMPERATURE RANGE	PACKAGE
UC1724J	−55°C to +125°C	CDIP
UC2724DW	−25°C to +85°C	SOIC-Wide
UC2724N		PDIP
UC3724DW	0°C to +70°C	SOIC-Wide
UC3724N		PDIP

ELECTRICAL CHARACTERISTICS: Unless otherwise stated, V_{CC} = 20V, R_T = 4.3k Ω , C_T = 1000pF, no load on any output and these specifications apply for: $-55^{\circ}C < T_A < 125^{\circ}C$ for the UC1724, $-25^{\circ}C < T_A < 85^{\circ}C$ for the UC2724, and 0° C < TA < 70° C for the UC3724. T_A=T_{.1}.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Under-Voltage Lockout					
Start-Up Threshold	V _{IN} Rising		7.75	9.5	V
Threshold Hysteresis		0.4	1.0	1.5	V
Retriggerable One-Shot					
Initial Accuracy	T _J = 25°C	1.54	1.9	2.25	μs
Temperature Stability	Over Operating T _J	1.0		2.9	μs
Voltage Stability	V _{IN} = 10 to 35V		0.2	0.5	%/V
Operating Frequency	$L_{LOAD} = 1.4 \text{mH}$	100	150	200	kHz
Minimum Pulse Width	RT = 2k CT = 300pF	100	500	1200	ns
Operating Frequency	$RT = 2k CT = 300pF L_{LOAD} = 1.4mH$	500	750	1100	kHz

ELECTRICAL CHARACTERISTICS: Unless otherwise stated, $V_{CC} = 20V$, $R_T = 4.3k\Omega$, $C_T = 1000pF$, no load on any output and these specifications apply for: $-55^{\circ}C < T_A < 125^{\circ}C$ for the UC1724, $-25^{\circ}C < T_A < 85^{\circ}C$ for the UC2724, and $0^{\circ}C < T_A < 70^{\circ}C$ for the UC3724. $T_A = T_J$.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS	
Phi Input (Control Input)						
HIGH Input Voltage		2.0			V	
LOW Input Voltage				0.8	V	
HIGH Input Current	$V_{IH} = +2.4V$	-220	-130		μΑ	
LOW Input Current	$V_{IL} = +0.4V$	-600	-300		μΑ	
Delay to One-Shot				350	ns	
Delay to Output				250	ns	
Output Drivers						
Output Low Level	$I_{SINK} = 50mA$		0.3	0.4	V	
	$I_{SINK} = 250mA$		0.5	2.1	V	
Output High Level (Volts Below V _{CC})	I _{SOURCE} = 50 mA		1.5	2.1	V	
	I _{SOURCE} = 250 mA		1.7	2.5	V	
Rise/Fall Time	No load		30	90	ns	
Total Supply Current						
Supply Current	$C_T = 1.4V$		15	30	mA	

Additional Information

Please refer to the following Unitrode application topics.

- [1] Application Note U-127, *Unique Chip Pair Simplified Isolated High-Side Switch Drive* by John A. O'Connor.
- [2] Design Note DN-35, *IGBT Drive Using MOSFET Gate Drivers* by John A. O'Conner.

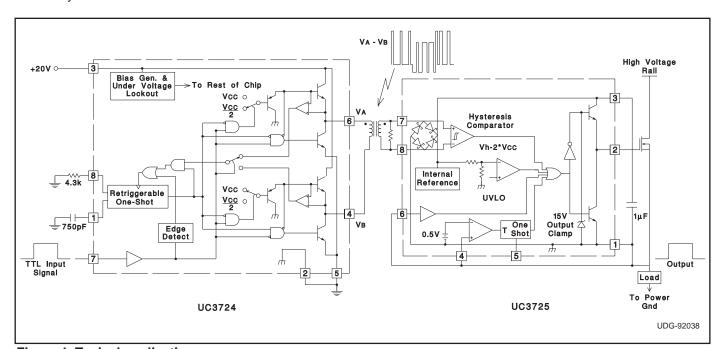


Figure 1. Typical application

UNITRODE CORPORATION 7 CONTINENTAL BLVD. • MERRIMACK, NH 03054 TEL. (603) 424-2410 FAX (603) 424-3460

i.com 18-Sep-2008

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
UC1724J	OBSOLETE	CDIP	J	8	TBD	Call TI	Call TI
UC2724J	OBSOLETE	CDIP	J	8	TBD	Call TI	Call TI
UC2724N	OBSOLETE	PDIP	Р	8	TBD	Call TI	Call TI
UC3724DW	OBSOLETE	SOIC	DW	16	TBD	Call TI	Call TI
UC3724DWTR	OBSOLETE	SOIC	DW	16	TBD	Call TI	Call TI
UC3724J	OBSOLETE	CDIP	J	8	TBD	Call TI	Call TI
UC3724N	OBSOLETE	PDIP	Р	8	TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Amplifiers amplifier.ti.com Data Converters dataconverter.ti.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications	
Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medical
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video & Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated