intgl.

PRELIMINARY

MILITARY i860™ XR 32/64-BIT MICROPROCESSOR

Parallel Architecture that Supports Up

to Three Operations per Clock

— One Integer or Control Instruction
per Clock

— Up to Two Floating-Point Results per
Clock

High Performance Design

— 80 Peak Single Precision MFLOPs

— 60 Peak Double Precision MFLOPs

- 64-Bit External Data Bus

— 64-Bit Internal Instruction Cache Bus
— 128-Bit Internal Data Cache Bus

High Level of Integration on One Chip

— 32-Bit Integer and Control Unit

— 32/64-Bit Pipelined Floating-Point
Adder and Multiplier Units

— 64-Bit 3-D Graphics Unit

— Paging Unit with Translation
Lookaside Buffer (TLB)

— 4 Kbyte Instruction Cache

— 8 Kbyte Data Cache

Compatible with Industry Standards

— ANSI/IEEE Standard 754-1985 for
Binary Floating-Point Arithmetic

—i386TM/i486™™ Microprocessor Data
Formats and Page Table Entries

Easy to Use

— On-Chip Debug Register

— Assembler, Linker, Simulator,
Debugger, C, FORTRAN and Ada
Compilers, FORTRAN Vectorizer,
Scalar and Vector Math Libraries for
both VMS* and UNIX* Environments

Military Temperature Range:

—55°C to +125°C (T¢)

Available in a 168-pin Ceramic Pin Grid
Array Package (See Package/Module/PC Card
Qutlines and Dimensions, Order #2313689)

Available in 196-Lead Ceramic Quad

Flatpack (See Package/Module/PC Card Qutlnes and
Dimensions, Order #231369)

The Intel 1860™ XR Micropracessor delivers supercomputing performance in a single VLSI component. The
32/64-bit design of the i860 XR Microprocessor balances integer, floating point and graphics performance for
applications such as target tracking, acoustic imaging, terrain data mapping and image processing. Its parallel
architecture achieves high throughput with RISC design techniques, pipelined processing units, wide data
paths, large on-chip caches, million-transistor design, and fast one-micron CHMOS IV silicon technology.

NOTE:
References to devices within this document refer to the Military versions of those devices.

A31-A2 D63-DO CONTROL

BUS & CACHE
CONTROL UNIT

64 &4

32

PHYSICAL
ADDRESS

FP
srel

FP

64 result

DATA BUS +

FP
sre2

;

2 84

32 FLOATING-POINT

CONTROLLING UNIT

FP INSTRUCTION BUS

CORE INSTRUCTION BUS

32

FP REGISTER FILE

[

MULTIPLIER UNIT

INSTRUCTION
CACHE

RISC CORE
64

CACHE LOW
DATA

INSTRUCTION
ADDRESS

64

CACHE HIGH

64

vy v_ ¥

— o
1

P
ADDER UNIT
L

DATA

32

32 DATA ADDRESS

3

r
1

32
Y.

PAGE UNIT

r‘[DATA CACHE I

r GRAPHICS UNIT

271121 -1

Figure 0.1 Block Diagram

Intel, intel, 1386, 1486 and 1860 are trademarks of Intel Corporation
*UNIX 1s a registered trademark of AT&T. *VMS s a trademark of Digital Equipment Corporation.

October 1992
Order Number: 271121-005

B 4826175 0137341 340 1A

9-1

-
MILITARY i860™ XR MICROPROCESSOR ' Int&' o

Military i860™ XR 32/64-Bit Microprocessor

CONTENTS PAGE
1.0 FUNCTIONAL DESCRIPTION ... 9-7
2.0 PROGRAMMING INTERFACE ... 87
2aDataTypes ... 9-8
2A0Integer ... 9-8
21.20rdinal ... 9-8

2.1.3 Single- and Double-Precision Real ... 9-8
2VAPIXel 8-9
2.2Register Set ... 9-9
2.2.1Integer Register File 9-10

2.2.2 Floating-Point Register File 9-10

2:2.3 Processor Status Register ... 8-10

2.2.4 Extended Processor Status Register ... 9-13

2.2.5 Data Breakpoint Register_ .. 9-14

2.2.6 Directory Base Register 9-14

2.2.7 Fault Instruction Register 9-15

2.2.8 Floating-Point Status Register__..__.. 8-15

2.29 KR, KI, T and MERGE Registers ... 9-16

23 Addressing ... 9-17
24 Vinual Addressing ... 8-17
241 PageFrame ... 9-19

242 Virtual Address ... 9-19
243PageTables ... " 8-19
244TableBntries 9-20

2.4.5 Address Translation Algorithm ... 9-22

2.4.6 Address Translation Faults 9-23

2.4.7 Page Translation Cache .. 9-23

2.5 Caching and Cache Flushing ... 9-23
28Instruction Set ... 9-24
2.8.1 Pipelined and Scalar Operations ..._ 9-24

2.6.2 Duakinstruction Mode ... 9-27

2.6.3 Dual-Operation Instructions 9-28

9-2 PRELIMINARY I

M 482L175 0137342 287 WA

-
lntel ® MILITARY ig860™ XR MICROPROCESSOR

CONTENTS PAGE
2.0 PROGRAMMING INTERFACE (Continued)
2.7 Addressing MOdes e g-28
28 Traps and INtEITUPES e 9-29
2.8.1 Trap Handler Invocation oo 9-29
2. 8.2 INStruction FaUltoo i e 9-30
2.8.3Floating-Point Fault i 9-30
2.8.4 Instruction Access Fault e 9-31
2.8.5 Data AcCess FaUMt e 9-31
288 INtErTUPL TIAD - ittt e 9-32
2B 7 RSB TTAD ..ottt itt ettt e e 9-32
2.9 DEBUGGING + .« ot eeii et e e e 9-32
3.0 HARDWARE INTERFACE i e e 9-32
3.1 Signal DeSCHPION o e 9-32
311 CIOCK (LK) oottt et e 9-33
3.1.2System Reset (RESET) ... 9-33
3.1.3 Bus Hold (HOLD) and Bus Hold Acknowledge (HLDA)oon. 9-33
3.1.4BusRequest (BREQ) ...t 9-33
3.1.5 Interrupt/Code-Size (INT/CS8) i 9-33
3.1.6 Address Pins (A31-A3) and Byte Enables (BE7-BEO) 9-34
3.1.7 Data Pins (DB3-D0) ittt e -
3.1.8BUS LOCK (TOTK) .. vvveeeee et te et -
3.1.9 Write/Read Bus Cycle (W/R) ..ottt
3110 Next Near (NENE)ttt -
3.1.11 Next Address Request (NA) ... o i e -
3.1.12 Transfer Acknowiedge (READY) ...t -
3.1.13 Address Status (ADS) -
3.1.14 Cache Enable (KEN) ... ottt et et et
3.1.15Page Table Bit (PTB) -
3.1.16 Boundary Scan Shift input (SHI) ... -
3.1.17 Boundary Scan Enable (BSCN)t i -
3.1.18 Shift Scan Path (SCAN) o -
3.1.19 Configuration (CCT1-CCO0)ooiiii e
3.1.20 System Power (Vcc) and Ground (Vgg)
B2 INAlIZANION . oot e -
TR T =1 o111 2 -
3.3 1 NOMMAI MOGE . oottt e e e e -
3.3.2ShiftMode
I PRELIMINARY 93

B 4826175 0137343 113 WM

-
MILITARY i860™M XR MICROPROCESSOR an o

CONTENTS PAGE
40BUSOPERATION ... 9-38
4 Pipelining ... 9-39
4.2Bus State Machine ... 9-39
43BusCycles ... 9-41
4.3.1 Nonpipelined Read Cycles ... 9-41

4.3.2 Nonpipelined Write Cycles 9-42

4.3.3 Pipelined Read and Write Cycles ... 8-44

434 Locked Cyeles ... 9-46

4.3.5 HOLD and BREQ Arbitration Cycles 9-46

4.4 Bus States During RESET ... 9-47
S.OMECHANICALDATA 9-48
6.0 ELECTRICALDATA ... 9-55
6.1 Absolute Maximum Ratingso 9-55
6.2 Operating Conditionso 9-55
8.3 DC Characteristicsooooii i 9-55
8.4 AC Characteristicsoooooi i 9-56
TOINSTRUCTIONSET ... 9-58
7.1 Instruction Definitions in Alphabetical Order 9-59
7.2 Instruction Format and Encoding 9-67
7.21 REG-Format Instructions .. 9-67

7.22 CTRL-Format Instructions .._ 9-70

7.2.3 Floating-Point Instructions 9-71

7.3 Instruction Timings ... 9-73
7.4 Instruction Characteristics ... 9-76
9-4 PRELIMINARY I

B 4426175 03137344 057 A

a
Intel o MILITARY i860™ XR MICROPROCESSOR

FIGURES

Figure 0.1 Block Diagram

Figure 2.1 Real Number Formats

Figure 2.2 Pixel Format Example

Figure 2.3 Registers and Data Paths

Figure 2.4 Processor Status Register (psr)

Figure 2.5 Extended Processor Status Register (epsr)
Figure 2.6 Directory Base Register (dirbase)

Figure 2.7 Floating-Point Status Register (fsr)

Figure 2.8 Little and Big Endian Accesses

Figure 2.8 Format of a Virtual Address

Figure 2.10 Address Translation

Figure 2.11 Format of a Page-Table and Page-Directory Entry
Figure 2.12 FP-Adder Pipelined Instruction Execution

Figure 2.13 Dual-Instruction Mode Transitions

Figure 2.14 Dual-Operation Data Paths

Figure 3.1 Order of Boundary Scan Chain

Figure 4.1 Bus State Machine

Figure 4.2 Fastest Read Cycles

Figure 4.3 Fastest Write Cycles

Figure 4.4 Fastest Read/Write Cycles

Figure 4.5 Pipelined Read Followed by Pipelined Write
Figure 4.6 Pipelined Write Followed by Pipelined Read
Figure 4.7 Pipelining Driven by NA

Figure 4.8 NA Active with No Internal Bus Request

Figure 4.9 Locked Cycles

Figure 4.10 HOLD, HLDA and BREQ

Figure 4.11 Reset Activities

Figure 5.1 168-Pin Ceramic Pin Grid Array. Pin Configuration—View from Top Side
Figure 5.2 168-Pin Ceramic Pin Grid Array. Pin Configuration—View from Pin Side
Figure 5.3 196-Pin Ceramic Quad Flatpack. Pin Configuration—View from Lid Side
Figure 6.1 CLK, Input and Output Timings

Figure 7.1 REG-Format Variations

Figure 7.2 Core Escape Instruction Format

Figure 7.3 CTRL Instruction Format

Figure 7.4 Floating-Point Instruction Encoding

I PRELIMINARY 9-5

B 4826175 0137345 T9: A

.
MILITARY i860™ XR MICROPROCESSOR lnt9l o

TABLES

Table 2.1 Pixel Formats

Table 2.2 Values of PS

Table 2.3 Values of RB

Table 2.4 Values of RC

Table 2.5 Values of RM

Table 2.6 Combining Directory and Page Protections

Table 2.7 Instruction Set

Table 2.8 Types of Traps

Table 2.9 Register and Cache Values after Reset

Table 3.1 Pin Summary

Table 3.2 Indentifying Instruction Fetches

Table 3.3 Cacheability Based on KEN and CD or WT

Table 3.4 Output Pin Status During Reset

Table 3.5 Test Mode Selection J
Table 3.6 Test Mode Latches

Table 5.1 168-Pin Ceramic PGA Pin Assignment by Locaticn
Table 5.2 168-Pin Ceramic PGA Pin Assignment by Function
Table 5.3 196-Pin Ceramic Quad Flatpack (CQFP Pin Assignment by Location
Table 5.4 196-Pin Ceramic Quad Flatpack (CQFF) Pin Assignment by Function
Table 6.1 DC Characteristics

Table 6.2 AC Characteristics

Table 7.1 Precision Specification

Table 7.2 FADDP MERGE Update

Table 7.3 Register Encoding

Table 7.4 REG-Format Opcodes

Table 7.5 Core Escape Opcodes

Table 7.6 CTRL-Format Opcodes

Table 7.7 Floating-Point Opcodes

Table 7.8 DPC Encoding

Table 7.9 Instruction Characteristics

9-6 PRELIMINARY I

B 4826175 013734k 922

intgl.

1.0 FUNCTIONAL DESCRIPTION

As shown by the block diagram on the front page,
the Military i860 XR microprocessor consists of 9
units:

. RISC Based Core Execution Unit
. Floating-Point Control Unit

. Floating-Point Adder Unit

. Floating-Point Muitiplier Unit

. Graphics Unit

. Paging Unit

. Instruction Cache

. Data Cache

. Bus and Cache Control Unit

OO WK -

The core execution unit controls overall operation of
the Military i860 XR microprocessor. The core unit
executes load, store, integer, bit, and control-trans-
fer operations, and fetches instructions for the float-
ing-point unit as well. A set of 32 x 32-bit general-
purpose registers are provided for the manipulation
of integer data. Load and store instructions move 8-,
16-, and 32-bit data to and from these registers, Its
full set of integer, logical, and control-transfer in-
structions give the core unit the ability to execute
complete systems software and applications pro-
grams. A trap mechanism provides rapid response
to exceptions and external interrupts. Debugging is
supported by the ability to trap on data or instruction
reference.

The floating-point hardware is connected to a sepa-
rate set of floating-point registers, which can be
accessed as 16 x 64-bit registers, or 32 x 32-bit reg-
isters. Special load and store instructions can also
access these same registers as 8 x 128-bit registers.
Al floating-point instructions use these registers as
their source and destination operands.

The floating-point control unit controls both the float-
ing-point adder and the floating-point multiplier, issu-
ing instructions, handling all source and result
exceptions, and updating status bits in the floating-
point status register. The adder and multiplier can
operate in parallel, producing up to two floating-point
results per clock. The floating-point data types, float-
ing-point instructions and exception handling all sup-
port the IEEE Standard for Binary Floating-Point
Arithmetic (ANSI/IEEE Std 754-1985).

The floating-point adder performs addition, subtrac-
tion, comparison, and conversions on 64- and 32-bit
floating-point values. An adder instruction executes
in three clocks; however, in pipelined mode, a new
result is generated every clock.

The floating-point multiplier performs floating-point
and integer multiply and floating-point reciprocal op-
erations on 64- and 32-bit floating-point values. A
multiplier instruction executes in three to four clocks;

l PRELIMINARY

B 4826175 0237347 4L IR

MILITARY i860™ XR MICROPROCESSOR

however, in pipelined mode, a new result can be
generated every clock for single-precision and every
other clock for double precision.

The graphics unit has special integer logic that sup-
ports three-dimensional drawing in a graphics frame
buffer, with color intensity shading and hidden sur-
face elimination via the Z-buffer algorithm. The
graphics unit recognizes the pixel as an 8-, 16- or
32-bit data type. It can compute individual red, blue
and green color intensity values within a pixel; but it
does so with parallel operations that take advantage
of the 64-bit internal word size and 64-bit external
bus. The graphics features of the Military 1860 XR
microprocessor assume that the surface of a solid
object is drawn with polygon patches whose shapes
approximate the original object. The color intensities
of the vertices of the polygon and their distances
from the viewer are known, but the distances and
intensities of the other points must be calculated by
interpolation. The graphics instructions of the Mili-
tary i860 XR microprocessor directly aid such inter-
polation.

The paging unit implements a protected, paged, vir-
tual memory system via a 64-entry, four-way set-as-
sociative TLB (Translation Lookaside Buffer). The
paging unit uses the TLB to perform the translation
of logical address to physical address, and to check
for access viofations. The access protection scheme
employs two levels of privilege: user and supervisor.

The instruction cache is a two-way set-associative
memory of four Kbytes, with a 32-byte line size. It
transfers up to 64 bits per clock (266 Mbyte/sec at
33 MHz).

The data cache is a two-way set-associative memo-
ry of exght Kbytes, with a 32-byte line size. It trans-
fers up to 128 bits per clock (640 Mbyte/sec at
40 MHz). The Military i860 XR microprocessor uses
writeback caching, i.e. memory writes update the
cache (if applicable) without necessarily updating
memory immediately; however, caching can be in-
hibited by software where necessary.

The bus and cache contro! unit performs data and
instruction accesses for the core unit. It receives cy-
cle requests and specifications from the core unit,
performs the data-cache or instuction-cache miss
processing, controls TLB translation, and provides
the interface to the external bus. Its pipelined struc-
ture supports up to three outstanding bus cycles.

2.0 PROGRAMMING INTERFACE

The programmer-visible aspects of the architecture
of the Military i860 XR microprocessor include data
types, registers, instructions and traps.

MILITARY i860™ XR MICROPROCESSOR

2.1 Data Types

The Military 1860 XR microprocessor provides opera-
tions for integer and floating-point data. Integer op-
erations are performed on 32-bit operands with
some support also for 64-bit operands. Load and
store instructions can reference 8-bit, 16-bit, 32-bit,
64-bit and 128-bit operands. Floating-point opera-
tions are performed on IEEE-standard 32- and 64-bit
formats. Graphics oriented instructions operate on
arrays of 8-, 16- or 32-bit pixels.

2.1.1 INTEGER

An integer is a 32-bit signed value in standard two'’s
complement form. A 32-bit integer can represent a
value in the range —2,147,483648 (—231) to
2,147,483,647 (+231 — 1), Anthmetic operations on
8- and 16-bit integers can be performed by sign-ex-
tending the 8- or 16-bit values to 32 bits, then using
the 32-bit operations. :

There are also add and subtract instructions that op-
erate on 64-bit long integers.

Load and store instructions may also reference {in
addition to the 32- and 64-bit formats previously
mentioned) 8- and 16-bit items in memory. When an
8- or 16-bit item is loaded into a register, it is con-
verted to an integer by sign-extending the value to
32 bits. When an 8- or 16-bit item is stored from a
register, the corresponding number of low-order bits
of the register are used.

intgl.

Arithmetic operations are available for 32-bit ordi-
nals. An ordinal is an unsigned integer. An ordinal
can represent values in the range 0 to
4,294,967,295 (+232 — 1),

2.1.2 ORDINAL

Also, there are add and subtract instructions that op-
erate on 64-bit ordinals.

2.1.3 SINGLE- AND DOUBLE-PRECISION REAL

Figure 2.1 shows the real number formats. A single-
precision real (also called “single real”) data type is
a 32-bit binary floating-point number. Bit 31 is the
sign bit; bits 30..23 are the exponent; and bits 22..0
are the fraction. In accordance with ANSI/IEEE
standard 754, the value of a single-precision real is
defined as follows:

1.fe = 0andf + 0 or e = 255 then generate a
floating-point source-exception trap when en-
countered in a floating-point operation.

2.1f 0 < e < 255, then the value is (— 1) X 1.f X
2e—127,

3.1fe = 0and f = O, then the value is signed zero.

A double-precision real (also called “double real”)
data type is a 64-bit binary floating-point number. Bit
63 is the sign bit; bits 62..52 are the exponent; and
bits 51..0 are the fraction. In accordance with ANS!/
IEEE standard 754, the value of a double-precision
real is defined as follows:

1.1fe =0andf = 0ore = 2047, then generate a
floating-point source-exception trap when en-
countered in a floating-point operation.

2.0 < e < 2047, then the value is (—1)s X 1.f X
20—1023,

3 23

Single-Precision Real

1

L FRACTION

EXPONENT
~——~ SIGN
271121-2
Double-Precision Real
63 52 0
Ll -] ' |
‘] t— FRACTION
l EXPONENT
SIGN
271121-3

Figure 2.1 Real Number Formats

9-8

B u82L175 0137348 775 M

PRELIMINARY I

intgl.

3.ife = 0 and f = Q, then the value is signed zero.

The special values infimity, NaN (“Not a Number"),
indefinite, and denormal generate a trap when en-
countered. The trap handler implements |EEE-stan-
dard results.

A double-precision real value occupies an even/odd
pair of floating-point registers Bits 31..0 are stored
in the even-numbered floating-point register; bits
63..32 are stored in the next higher odd-numbered
floating-point register.

2.1.4 PIXEL

A pixel may be 8, 16, or 32 bits long depending on
color and intensity resolution requirements. Regard-
less of the pixel size, the Military 1860 XR microproc-
essor always operates on 84 bits worth of pixels at a
time. The pixel data type is used by two kinds of
instructions:

* The selective pixel-store instruction that helps im-
plement hidden surface elimination.

® The pixel add instruction that helps implement
3-D color intensity shading.

To perform color intensity shading efficiently in a va-
riety of applications, the Military i860 XR microproc-
essor defines three pixel formats according to Table
2.1.

Figure 2.2 illustrates one way of assigning meaning
to the fields of pixels. These assignments are for
illustration purposes only. The Military 1860 XR mi-
croprocessor defines only the field sizes, not the
specific use of each field. Other ways of using the
fields of pixels are possible.

MILITARY i860™ XR MICROPROCESSOR

Table 2.1 Pixel Formats

Pixel | Bitsof | Bitsof | Bits of %’:::r'
Size | Color1 | Color2 | Color3 .
(in bits) | Intensity | Intensity | Intensity Attribute
(Texture)
8 N (< 8) bits of intensity* 8 - N
16 6 6 4 0
32 8 8 8 8

The intensity attribute fields may be assigned to colors in
any order convenient to the application.

*With 8-bit pixels, up to 8 bits can be used for intensity; the
remaining bits can be used for any other atinbute, such as
color, The intensity bits must be the low-order bits of the
pixel.

2.2 Register Set

As Figure 2 3 shows, the Military i860 XR microproc-
essor has the following registers:

¢ An integer register file

A floating-point register file

Six contro! registers (psr, epsr, db, dirbase, fir
and tsr)

* Four special-purpose registers (KR, KI, T and
MERGE)

The control registers are accessible only by load
and store control-register instructions; the integer
and floating-point registers are accessed by anthme-
tic operations and load and store instructions. The
special-purpose registers KR, Ki, T and MERGE are
used by a few specific instructions.

7 5 0
8=BIT PIXEL | ¢ !
15 9 3 0
16=BIT PIXEL R G B
32-BIT PIXEL
31 23 15 7 0
R G 8 T

defined, not the specific use of each field.

I—Intensity, R—Red intensity, G—Green intensity, B—Blue intensity, C—Color, T—Texture
These assignments of specific meanings to the fields of pixels are for illustration purposes only. Only the field sizes are

271121-4

Figure 2.2 Pixel Format Example

I PRELIMINARY

M 4826175 0137349 31 M

9-9

MILITARY i860™ XR MICROPROCESSOR

2.2.1 INTEGER REGISTER FILE

There are 32 integer registers, each 32 bits wide,
referred to as r0 through r31, which are used for
address computation and scalar integer computa-
tions. Register r0 always returns zero when read,
independently of what is stored in it. This special
behavior of r0 makes it useful for modifying the func-
tion of certain instructions.

2.2.2 FLOATING-POINT REGISTER FILE

There are 32 floating-point registers, each 32-bits
wide, referred to as 10 through 31, which are used
for floating-point computations. Registers 10 and f1
always return zero when read, independently of
what is stored in them. The floating-point registers
are also used by a set of graphics operations, pri-
marily for 3D graphics computations.

When accessing 64-bit floating-point or integer val-
ues, the Military i860 XR microprocessor uses an
even/odd pair of registers. When accessing 128-bit
values, it uses an aligned set of four contiguous reg-
isters (10, 14, 18, . . ., 128). The instruction must des-
ignate the lowest register number of the set of regis-
ters containing 64- or 128-bit values. The register
with the fowest number contains the least significant
part of the value. For 128-bit values, the register pair
with the lower numbers contain the least significant
64 bits while the register pair with the higher num-
bers contain the most significant 64 bits.

9-10

B 442bL175 0137350 353

a

intgl.
The 128-bit load and store instructions, along with
the 128-bit data path between the floating-point reg-

isters and the data cache help to sustain the extraor-
dinarily high rate of computation.

2.2.3 PROCESSOR STATUS REGISTER

The processor status register (psr) contains state
information for the current process, Figure 2.4
shows the format of psr.

* BR (Break Read) and BW (Break Write) enable a
data access trap when the operand address
matches the address in the Data Breakpoint (db)
register and a read or write (respectively) occurs.

¢ Various instructions set CC (Condition Code) ac-
cording to tests they perform. The branch-on-
condition-code instructions test its value. The
Branch on CC and Add instruction sets and tests
LCC (Loop Condition Code).

* IM (Interrupt Mode) enables external interrupts if
set; disables interrupts if clear.

¢ U (User Mode) is set when the Military i860 XR
microprocessor is executing in user mode; it is
clear when the Military i860 XR microprocessor is
executing in supervisor mode. In user mode,
writes to some control registers are inhibited.
This bit also controls the memory protection
mechanism. See section 2.4.4.3 for a description
of memory protection in user and supervisor
modes.

PRELIMINARY |

MILITARY i860™ XR MiICROPROCESSOR

| PRELIMINARY

B 4426175 0137351 29T MR

32
EXTERNAL
nivony [~ avvRess
-
128 A 64
< ¢ ¥ . >
+— y >
128
[32 128 32 64 128
FLOATING PQINT
. 3 TEGER REGISTERS
IN
UMy baTA REGISTERS 1 5D (0 EEO I
CACKHE . 1
INSTRUCTION 126 | 25] 124
CACHE 722 [21128
S 3117[fi6
f1301t2
4 15 | 18
32 ENE
)
o
» 5 »
CONTROL
REGISTERS 32
s2p a2k b,
= 1—
L 2R 1 l
CORE
d A
N P
¢ MULTIPLIER UNIT
[” t >
+ 1
A L
|
A 4
FP
ADDER UNIT
L [|
E‘_ GRAPHICS UNIT
! ’ MERGE REG
|
271121-5
Figure 2.3 Registers and Data Paths
9-11

MILITARY i860™ XR MICROPROCESSOR

BREAK READ
BREAK WRITE
CONDITION CODE
LOOP CONDITION COOE
INTERRUPT MODE
PREVIOUS INTERRUPT MODE
USER MODE —
PREVIOUS USER MODE -—
INSTRUCTION TRAP
INTERRUPT
INSTRUCTION ACCESS TRAP
DATA ACCESS TRAP
FLOATING~POINT TRAP -
DELAYED SWITCH
DUAL INSTRUCTION MODE ———-l l l
31 23 2t 1715 7 0
K{D ofl P L
PM PS sc ang:AA':;SU|h"cngv:
FIM Tt M ¢
. . L] » L] . . . L] L] . - L] » *
[‘ KILL NEXT FLOATING=POINT INSTRUCTION
(RESERVED)
SHIFT COUNT
PIXEL SIZE
PIXEL MASK
271121-6
*Can be changed only from supervisor level.
Figure 2.4 Processor Status Register (psr)
INTERLOCK
WR'TE~PROTECT MODE
DATA CACHE SiZE —*1]
31 24 22 18 15 13 8 0
P 1
ofs wli STEPPING PROCESSOR
(RESERVED) Fle|B] XS MEXOPRICE womser TYPE
. . L L]
t (RESERVED)
PAGE~TABLE BIT MODE
81G ENDIAN MODE
OVERFLOW FLAG
271121-7
*Can be changed only from supervisor level

Figure 2.5 Extended Processor Status Register (epsr)

® PIM {Previous Interrupt Mode) and PU (Previous
User Mode) save the corresponding status bits
{(IM and U) on a trap, because those status bits
are changed when a trap occurs. They are re-
stored into their previous state upon returning
from a trap handler with a branch indirect instruc-
tion when a trap flag is set in the psr.

FT (Floating-Point Trap), DAT (Data Access
Trap), IAT (Instruction Access Trap), IN (Inter-
rupt) and IT (Instruction Trap) are trap flags. They
are set when the corresponding trap con-
dition occurs. The trap handler examines these
bits to determine which condition or conditions
caused the trap.

9-12

4826175 0137352 126 A

* DS (Delayed Switch) Is set if a trap occurs during
the instruction before dual-instruction mode is en-
tered or exited. If DS is set and DIM (Dual Instruc-
tion Mode) is clear, the Military 1860 XR micro-
processor switches to dual-instruction mode one
instruction after returning from the trap handier. If
DS and DIM are both set, the Military 1860 XR
microprocessor switches to single-instruction
mode one mstruction after returning from the trap
handier.

When a trap occurs, the Military 1860 XR micro-
processor sets DIM if it 1s executing in dual-in-
struction mode; it clears DIM if it 1s executing in
single-instruction mode. If DIM 1s set after return-
ing from a trap handler, the Military 1860 XR mi-
croprocessor resumes executon in dual-instruc-
tion mode.

PRELIMINARY I

-

intgl.

» When KNF (Kill Next Floating-Point Instruction) 1s
set, the next floating-point instruction is sup-
pressed (except that its dual-instruction mode bit
is interpreted). A trap handler sets KNF if the

trapped floating-point instruction should not be
reexecuted.

® SC (Shift Count) stores the shift count used by
the last nght-shift instruction. It controls the num-
ber of shifts executed by the double-shift instruc-
tion.

® PS (Pixel Size) and PM (Pixel Mask) are used by
the pixel-store instruction and by the graphics in-
structions. The values of PS control pixel size as
defined by Table 2.2. The bits in PM correspond
to pixels to be updated by the pixel-store instruc-
tion pst.d The low-order bit of PM corresponds
to the low-order pixel of the 64-bit source oper-
and of pst.d The number of low-order bits of PM
that are actually used is the number of pixels that
fit into 64-bits, which depends upon PS. if a bit of
PM is set, then pst.d stores the corresponding
pixel. Refer also to the pst.d instruction in Sec-
tion 7.

Table 2.2 Values of PS

Value Pixel Size Pixel Size
In bits in bytes
00 8 1
01 16 2
10 32 4
11 (undefined) (undefined)

MILITARY i860™ XR MICROPROCESSOR

2.2.4 EXTENDED PROCESSOR STATUS
REGISTER

The extended processor status register (epsr) con-
tains additional state information for the current pro-
cess beyond that stored in psr. Figure 2.5 shows the
format of epsr.

¢ The processor type 1s one (1) for the Military 1860
XR microprocessor (Read Only fieid).

* The stepping number has a unique value that dis-
tinguishes among different revisions of the proc-
essor (Read Only field).

® IL (Interlock) is set if a trap occurs after a lock
instruction but before the load or store following
the subsequent uniock instruction. IL indicates to
the trap handier that a locked sequence has
been interrupted. When the trap handler finds IL
set, it should scan backwards for the lock in-
struction and restart at that point. The absence of
a lock instruction within 30-33 instructions of the
trap indicates a progamming error.

* WP (wnte protect) controls the semantics of the
W bit of page table entries. A clear W bit in either
the directory or the page table entry causes
writes to be trapped. When WP s clear, writes
are trapped In user mode, but not in supervisor
mode. When WP 1s set, writes are trapped in both
user and supervisor modes. After the value of the
WP bit 1s changed, the TLB must be invaiidated
by setting the ITI bit of the dirbase register, be-
fore any stores are performed.

® INT (Interrupt) is the value of the INT input pin.

s DCS (Data Cache Size) is a read-only field that
tells the size of the on-chip data cache. The num-
ber of bytes actually available is 212+ DCS; there-
fore, a value of zero indicates 4 Kbytes, one indi-
cates 8 Kbytes, etc. For the 1860 processor, DCS
= 1.

ADDRESS TRANSLATION ENABLE

ORAM PAGE SIZE

BUS LOCK

1=CACHE, TLB INYALIDATE

(RESERVED)

CODE SIZE 8-BIT

REPLACEMENT BLOCK

REPLACEMENT CONTROL

31 12 10 8 4 1 0
e A
DIRECTORY TABLE BASE (DTB) RC RB XiTy DPS T
| 3
* * * L I . »
2711218

*Can be changed only from supervisor level.

g
—
*fonwOflN —————

Figure 2.6 Directory Base Register (dirbase)

| PRELIMINARY

B u422b175 0137353 Ob2 W

9-13

MILITARY i860™ XR MICROPROCESSOR

¢ PBM (Page-Table Bit Mode) determines which bit
of page-table entnes is output on the PTB pin.
When PBM is clear, the PTB signal reflects bit CD
of the page-table entry used for the current cycle.
When PBM is set, the PTB signal reflects bit WT
of the page-table entry used for the current cycle.

* BE (Big Endian) controls the ordering of bytes
within a data item in memory. Normally (.e. when
BE 15 clear) the Military 1860 XR microprocessor
operates in little endian mode, in which the ad-
dressed byte is the low-order byte. When BE s
set (big endian mode), the low-order three bits of
all load and store addresses are complemented,
then masked to the appropriate boundary for
alignment. This causes the addressed byte to be
the most significant byte. Section 2 3 discusses
littte and big endian addressing.

OF (Overflow Flag) is set by adds, addu, subs,
and subu when integer overflow occurs. For
adds and subs, OF 1s set If the carry from bit 31
1s different than the carry from bit 30. For addu,
OF 1s set if there is a carry from bit 31. For subu,
OF is set if there is no carry from bit 31. Under al}
other conditions, it is cleared by these instruc-
tions. OF controls the function of the intovr in-
struction.

2.2.5 DATA BREAKPOINT REGISTER

The data breakpoint register (db) is used to gener-
ate a trap when the Military 860 XR microprocessor
makes a data-operand access to the address stored
in this register. The trap is enabled by BR and BW in
psr. The db register can only be changed from su-
pervisor level. When comparing, a number of low
order bits of the address are ignored, depending on
the size of the operand. For example, a 16-bit ac-
cess ignores the low-order bit of the address when
comparing to db; a 32-bit access ignores the two
low-order bits. This ensures that any access that
overlaps the address contained in the register will
generate a trap. The data access trap occurs before
the data is accessed and prevents the load or store
from completing.

2.2.6 DIRECTORY BASE REGISTER

The directory base register dirbase (shown in Figure
2.6) controls address translation, caching, and bus
options. The dirbase register can only be changed
from the supervisor level. However, the BL bit can
be changed from user level with the lock and un-
lock instructions.

® ATE (Address Translation Enable), when set, en-
ables the wirtual-address translation algorithm.

The data cache must be flushed before changing
the ATE bit.

9-14

BN 4826175 0137354 TT9 WA

[
Intgl.
* DPS (DRAM Page Size) controls how many bits
to ignore when comparing the current bus-cycle
address with the previous bus-cycle address to
generate the NENE signal. This feature allows for
higher speeds when using static column or page-
mode DRAMSs and consecutive reads and writes
access the same column or page. The compari-
son ignores the low-order 12 + DPS bits. A value
of zero is appropriate for one bank of 256K x n
RAMs, one for 1M X n RAMS, etc.

* When BL (Bus Lock) is set, external bus access-
es are locked. The LOCK signal is asserted on
the next bus cycle whose internal bus request is
generated after BL is set. It remains asserted on
all subsequent bus cycles as long as BL remains
set. The LOCK signal 1s deasserted on the next
bus cycle whose internal bus request is generat-
ed after BL is cleared. Traps immediately clear
BL. The lock and unlock instructions control the
BL bit.

® [Ti (I-Cache, TLB Invalidate), when set in the val-
ue being stored into dirbase, causes the instruc-
tion cache and address-transiation cache (TLB)
to be flushed. The ITI bit does not remain set in
dirbase. ITl always appears as zero when read-
ing dirbase Section 2.5 discusses flushing the
data cache before invalidating the TLB.

* When CS8 (Code Size 8-Bit) is set, instruction
cache misses are processed as 8-bit bus cycles.
When this bit is clear, instruction cache misses
are processed as 64-bit bus cycles. This bit can
not be set by software; hardware sets this bit at
initiahization tme. It can be cleared by software
(one time only) to allow the system to execute out
of 64-bit memory after bootstrapping from 8-bit
EPROM. A nondelayed branch to code in 64-bit
memory should directly follow the st.¢ (store con-
troi register) instruction that clears CS8, in order
to make the transition from 8-bit to 64-bit memory
occur at the correct time. The branch must be
aligned on a 64-bit boundary.

* RB (Replacement Block) identifies the cache
block to be replaced by cache replacement algo-
rithms. The high-order bit of RB is ignored by the
instruction and data caches. RB conditions the
cache flush instruction flush, which is discussed
in Section 7. Table 2.3 explains the values of RB.

RC (Replacement Control) controls cache re-
placement algorithms. Table 2.4 explains the sig-
nificance of the values of RC.

* DTB (Directory Table Base) contains the high-or-
der 20 bits of the physical address of the page
directory when address translation is enabled (i.e.
ATE = 1). The twelve low-order bits of the ad-
dress are zeros.

PRELIMINARY I

intgl.

MILITARY i860™ XR MICROPROCESSOR

FLUSH ZERO

TRAP INEXACT

ROUNDING MODE

UPDATE

FLOATING=POINT TRAP ENABLE

(RESERVED)

STICKY INEXACT FLAG

SOURCE EXCEPTION

MULTIPLIER UNDERFLOW

MULTIPLIER OVERFLOW

MULTIPLIER INEXACT

MULTIPLIER ADD ONE

ADDER UNDERFLOW

ADDER OVERFLOW

-
-—)
-—
— N —

31 28 25 22 1715 0
N F
alalalm]lulmin]s T|F
X XIrR|R]R|R]X AE RR x|1ju] Rm
elelele ttojulaji|otule £ 1]z
T—— ADDER INEXACT
ADDER ADD ONE
RESULT REGISTER
ADDER EXPONENT
(RESERVED)
LOAD PIPE RESULT PRECISION
INTEGER (GRAPHICS) PIPE RESULT PRECISION
MULTIPLIER PIPE RESULT PRECISION
ADDER PIPE RESULT PRECISION
(RESERVED)
271121-9
Figure 2.7 Floating-Point Status Register (fsr)
Table 2.3 Values of RB 2.2.7 FAULT INSTRUCTION REGISTER
value | _Heplace Replace Instruction When a trap occurs, this register contains the ad-
TLB Block | and Data Cache Block dress of the trapping instruction (not necessarily the
00 0) instruction that created the conditions that required
0 1 1 1 the trap). The fir is a read only register. The address
10 2 0 of the Id.c instruction used to read the fir is returned
in rdest when reading the fir at any time other than
11 3 1 the first Id.c fir after a trap.
Table 2.4 Values of RC 2.2.8 FLOATING-POINT STATUS REGISTER
Value Meaning
The floating-point status register (fsr) contains the
00 Selects the normal replacement floating-point trap and rounding-mode status for the
algorithm where any block in the set current process. Figure 2.7 shows its format. The fsr
may be replaced on cache misses in all is writable in user level.
caches. e |f FZ (Flush Zero) is clear and underflow occurs,
01 Instruction, data, and TLB cache a result-exception trap is generated. When FZ is
misses replace the block selected by set and underflow occurs, the result is set to zero,
RB. The instruction and data caches and no trap due to underflow occurs.
ignore the high-order bit of RB. This ¢ If Tl (Trap Inexact) is clear, inexact results do not
mode is used for instruction cache and cause a trap. If Tl is set, inexact results cause a
TLB testing. trap. The sticky inexact flag (Sl) is set whenever
10 Data cache misses replace the block an inexact result is produced, regardless of the
selected by the low-order bit of RB. setting of T.
. * RM (Rounding Mode) specifies one of the four
" Disables data cache replacement. rounding modes defined by the IEEE standard.

I PRELIMINARY

B 482L175 0137355 935 M

Given a true result b that cannot be represented

9-15

MILITARY i860™ XR MICROPROCESSOR

Table 2.5 Values of RM

Vaiue Rounding Mode Rounding Action

00 Round to nearest or even Closer to b of a or ¢; if equally
close, select even number
(the one whose least
significant bit is zero).

01 Round down (toward — =) a

10 Round up (toward + o c

11 Chop (toward zero) Smaller in magnitude of g or c.

by the target data type, the Military 1860 XR mi-
croprocessor determines the two representable
numbers a and ¢ that most closely bracket & in
value (a < b < ¢). The Military 1860 XR micro-
processor then rounds (changes) b to & or ¢ ac-
cording to the mode selected by RM as defined
in Table 2.5. Rounding introduces an error in the
result that is less than one least-significant bit.

The U-bit (Update Bit), if set in the value that is
loaded into fsr by a st.c instruction, enables up-
dating of the result-status bits (AE, AA, Al, AQ,
AU, MA, Mi, MO and MU) in the first-stage of the
floating-point adder and multiplier pipelines. If this
bit is clear, the result-status bits are unaffected
by a st.c instruction; st.c ignores the correspond-
ing bits in the value that is being loaded. A st.c
always updates fsr bits 21..17 and 8..0 directly.
The U-bit does not remain set; it always appears
as zero when read.

The FTE (Floating-Point Trap Enable) bit, if clear,
disables all floating-point traps (invalid input oper-
and, overflow, underflow, and inexact result).

St (Sticky Inexact) is set when the last stage re-
sult of either the multiplier or adder is inexact (i.e.
when either Al or Mi s set). Sl is “sticky” in the
sense that it remains set until reset by software.
Al and MI, on the other hand, can by changed by
the subsequent floating-point instruction.

SE (Source Exception) is set when one of the
source operands of a floating-point operation is
invalid; it is cleared when ali the input operands
are valid. Invalid input operands include denor-
mals, infinities, and all NaNs (both quiet and sIg-
naling).

When read from the fsr, the result-status bits MA,
MI, MO, and MU (Multiplier Add-One, inexact,
Overflow and Underflow, respectively) describe
the last stage result of the multiplier.

When read from the fsr, the result-status bits AA,
Al, AQ, AU, and AE (Adder Add-One, Inexact,
Overflow, Underflow and Exponent, respectively)
describe the last stage result of the adder. The
high-order three bits of the 11-bit exponent of the
adder result are stored in the AE field.

The Adder Add One and Multiplier Add One bits
indicate that the absolute value of the resuit frac-

9-16

B 4826175 013735k 471 HE

tion grew by one ieast-significant bit due to
rounding. AA and MA are not influenced by the
sign of the result.

After a floating-point operation in a given unit {ad-
der or multiplier), the result-status bits of that unit
are undefined until the point at which result ex-
ceptions are reported.

When wntten to the fsr with the U-bit set, the
result-status bits are placed into the first stage of
the adder and multiplier pipelines. When the
processor executes pipelined operations, it prop-
agates the result-status bits of a particular unit
(multiplier or adder) one stage for each pipelined
floating-point operation for that unit. When they
reach the last stage, they replace the normal re-
sult-status bits in the fsr. When the U-bit is not
set, result-status bits in the word being written to
the fsr are ignored.

In a floating-point dual-operation instruction (e.g.
add-and-multiply or subtract-and-multiply), both
the multipher and the adder may set exception
bits. The resuit-status bits for a particular unit re-
main set until the next operation that uses that
unit.

RR (Result Register) specifies which floating-
point register (f0~f31) was the destination regis-
ter when a result-exception trap occurs due to a
scalar operation.

¢ LRP (Load Pipe Result Precision), IRP (Integer
(Graphics) Pipe Result Precision), MRP (Multiplier
Pipe Result Precision) and ARP (Adder Pipe Re-
sult Precision) aid in restoring pipeline state after
a trap or process switch. Each defines the preci-
sion of the last stage result in the corresponding
pipetine. One of these bits is set when the result
in the last stage of the corresponding pipeline is
double precision; it 1s cleared if the result is single
precision. These bits cannot be changed by soft-
ware.

2.29 KR, KI, T AND MERGE REGISTERS
The KR, KI, and T registers are spectal-purpose reg-

isters used by the dual-operation floating-point in-
structions pfam, pfmam, pfsm and pfmsm, which

PRELIMINARY I

intgl.

initiate both an adder (A-unit) operation and a muiti-
plier (M-unit) operation. The KR, Kl and T registers
can store values from one dual-operation instruction
and supply them as inputs to subsequent dual-oper-
ation instructions. (Refer to Figure 2.14)

The MERGE register is used only by the graphics
instructions. The purpose of the MERGE register is
to accumulate (or merge) the results of muitiple-ad-
dition operations that use as operands the color-in-
tensity values from pixels or distance values from a
Z-buffer. The accumulated results can then be
stored in one 84-bit operation.

Two muitiple-addition instructions and an OR in-
struction use the MERGE register. The addition in-
structions are designed to add interpolation values
to each color-intensity field in an array of pixels or to
each distance value in a Z-buffer.

Refer to the instruction descriptions in Section 7 for
more information about these registers.

2.3 Addressing

Memory is addressed in byte units within a paged
virtual-address space of 232 bytes. Data and instruc-
tions can be located anywhere in this address
space. Address anthmetic is performed using 32-bit
input values and produces 32-bit results. The low-or-
der 32 bits of the result are used in case of overflow.

Normally, multibyte data values are stored in memo-
ry in little endian format, i.e., with the least significant
byte at the lowest memory address. As an option,
the ordering can be dynamically selected by soft-
ware in supervisor mode. The Military 1860 XR micro-
processor also offers big endian mode, in which the
most significant byte of a data item 15 at the lowest
address. Figure 2.8 shows the difference between
the two storage modes. Big endian and Iittle endian
data areas should not be mixed within a 64-bit data
word. Hlustrations of data structures in this data
sheet show data stored in Iittle endian mode, i.e., the
rightmast (low-order) byte is at the lowest memory
address.

PRELIMINARY

W 482bL17?5 0137357 708 WA

MILITARY i860™ XR MICROPROCESSOR

Code accesses are always done with little endian
addressing. This implies that code will appear differ-
ently than documented here when accessed as big
endian data. Intel recommends that disassemblers
running in a big endian system, convert instructions
which have been read as data back to little endian
form and present them in the format documented
here.

Page directories and page tables are also accessed
in little endian mode, regardless of the value of the
BE bit.

Alignment requirements are as follows (any violation
results in a data-access trap):

* 128-bit values are aligned on 16-byte boundaries
when referenced in memory (i.e. the four least
significant address bits must be zero).

® 64-bit values are aligned on 8-byte boundaries
when referenced in memory (i.e. the three least
significant address bits must be zero).

® 32-bit values are aligned on 4-byte boundaries
when referenced in memory (i.e. the two least
significant address bits must be zero).

* 16-bit values are aligned on 2-byte boundaries
when referenced in memory (i.e. the least signifi-
cant address bit must be zero).

2.4 Virtual Addressing

When address translation is enabled, the Military
i860 XR rmicroprocessor maps instruction and data
virtual addresses into physical addresses before ref-
erencing memory. This address transformation is
compatible with that of the Military 386 microproces-
sor and implements the basic features needed for
page-oriented virtual-memory systems and page-
level protection.

The address translation is optional. Address transla-
tion is in effect only when the ATE bit of dirbase is
set. This bit is typically set by the operating system
during software intialization. The ATE bit must be
set if the operating system is to implement page-ori-
ented protection or page-oriented virtual memory.

9-17

MILITARY i860™ XR MICROPROCESSOR

"SO$SBOOR URIPUS Bl SB SLIES ey} pajesl) aJe sessedde ueipus Big 1Ig-gzi pue -pg

v 8 2 a vaona o€ 3 4 9 H 34DH viL
3 4 9 H 349H viL Yy 8 2 @ vaoa og
op Lep op £9p op 1ep op £9p
v 8 ve ol 5 H 5 H 9.
D a oa FAN 3 4 34 ¥'g
3 4 34 ¥'s 2 0 oa e
9 H 9 H 9 v 8§ v e 0l
oP LEp op £ap op 1ep op £9p
v v 0 H H L
8 g i 9 9 9
o) o] z 4 4 S
a a € 3 3 ¥
3 3 4 a a £
Ei 4 [o) o} 2
) o) 9 8 a L
H H 2 v v 0
op 1Ep oP g9p (39) op) oP £9p (39
oL sna viva sa|qeu3 afg 9L4 sNg viva sajqeuy a)ig
_ NVION3 DIg NVION3 31LLN
op €gp
v 80ad 349D Hpadom

AHOWIN NIV

1 HOM

‘310N

911 (oY I'PI
914 *(090 I'PI

914 “(0s)9 spI
914 {0y 8P
9L (o) S'PI
914 (01)0 s

914 {oa)L a'pl
9id (o4)9 qpi
914 “(03)s a'pI
9L (oNF a-pl
911 “(p4)¢ a'pi
9L ‘(o2 q'pi
914 (04} qPI
9k ‘(010 apI

Figure 2.8 Little and Big Endian Accesses

PRELIMINARY I

9-18

B 4826175 0137358 Luy MN

MILITARY i860™ XR MICROPROCESSOR

31 21

11

L DA |

PAGE

L Je

| OFFSET

Figure 2.9 Format of a Virtual Address

Address translation is disabled when the processor
is reset. It is enabled when a store to dirbase sets
the ATE bit. It is disabled again when a store clears
the ATE bit.

2.4.1 PAGE FRAME

A page frame is a 4-Kbyte unit of contiguous ad-
dresses of physical main memory. Page frames be-
gin on 4-Kbyte boundaries and are fixed in size. A
page is the collection of data that occupies a page
frame when that data is present in main memory.
The data may also occupy some focation in second-
ary storage when there is not sufficient space in
main memory.

2.4.2 VIRTUAL ADDRESS

A virtual address refers indirectly to a physical ad-
dress by specifying a page table, a page within that
table, and an offset within that page. Figure 2.9
shows the format of a virtual address.

Figure 2.10 shows how the Military i860 XR micro-
processor converts the DIR, PAGE, and OFFSET
fields of a virtual address into the physical address
by consulting two levels of page tables. The ad-
dressing mechanism uses the DIR field as an index

into a page directory, uses the PAGE field as an
index into the page table determined by the page
directory, and uses the OFFSET field to address a
byte within the page determined by the page table.

2.4.3 PAGE TABLES

A page table is simply an array of 32-bit page specifi-
ers. A page table is itself a page, and therefore con-
tains 4 Kbytes of memory or at most 1K 32-bit en-
tries.

Two levels of tables are used to address a page of
memory. At the higher level is a page directory. The
page directory addresses up to 1K page tables of
the second level. A page table of the second level
addresses up to 1K pages. All the tables addressed
by one page directory, therefore, can address 1M
pages (220). Because each page contains 4 Kbytes
(212 bytes), the tables of one page directory can
span the entire physical address space of the Mili-
tary i860 XR microprocessor (220 x 212 = 232),

The physical address of the current page directory is
stored in DTB field of the dirbase register. Memory
management software has the option of using one
page directory for all processes, one page directory
for each process, or some combination of the two.

32-BIT VIRTUAL ADDRESS

| or] race | orrser | PAGE FRAME
32-8IT
PHYSICAL T pyysicaL
ADDRESS | ADDRESS
PAGE DIRECTORY PAGE TABLE 1
& PAGE FRAME
ADDRESS (PFA)
PG TBL ENTRY (PTE)

—»{ PG DIR ENTRY (PDE)

I DTB lr Y 3
l PAGE DIRECTORY ADDRESS
(PDA)

L PAGE TABLE ADDRESS (PTA)

271121-10

Figure 2.10 Address Translation

I PRELIMINARY

M 4426175 0137359 580 A

9-19

MILITARY i860™ XR MICROPROCESSOR

2.4.4 TABLE ENTRIES

Table entries in either lavel of page tables have the
same generai format. Figure 2.11 illusirates this for-
mat for a page-directory entry and a page-table en-
try.

2.4.4.1 Page Frame Address Generation

The page frame address specifies the physical start-
ing address of a page Because pages are located
on 4K boundaries, the low-order 12 bits are always
zero. In a page directory, the page table address is
the address of a page table. In a second-leve! page
table, the page frame address is the address of the
page frame that contains the desired memory oper-
and.

2.4.4.2 Present Bit

The P (present) bit indicates whether a page table
entry can be used in address translation. P = 1 indi-
cates that the entry can be used. When P = 0 in
either level of page tables, the entry is not valid for
address translation, and the rest of the entry is avail-
able for software use; none of the other bits in the
entry are tested by the hardware. If P = 0 in sither
level of page tabies when an attempt is made to use
a page-table entry for address translation, the proc-
essor signals either a data-access fault or an in-

a
intgl.
struction-access fault. In software systems that sup-

port paged virtual memory, the trap handler can
bring the required page into physical memoary.

Note that there is no P bit for the page directory
itself. The page directory may be not-present while
the associated process is suspended, but the oper-
ating system must ensure that the page directory
indicated by the dirbase image associated with the
process is present in physical memory before the
process is dispatched.

2.4.4.3 Writable and User Bits

The W (writable) and U (user) bits are used for page-
level protection, which the Military i860 XR micro-
processor performs at the same time as address
translation. The concept of privilege for pages is im-
plemented by assigning each page to one of two
levels:

1. Supervisor level (U = 0)—for the operating sys-
tem and other systems software and related data.

2. User level (U = 1)—for applications procedures
and data.

The U bit of the psr indicates whether the Military
i860 XR microprocessor 1s executing at user or su-
pervisor level. The Military i860 XR microprocessor
maintains the U bit of psr as follows:

N

PRESENT

WRITABLE
USER

WRITE-THROUGH (RESERVED IN PAGE DIR ENTRY)
CACHE DISABLE (RESERVED iN PAGE DIR ENTRY)

ACCESSED

DIRTY

(RESERVED)

AVAILABLE FOR SYSTEMS PROGRAMMER USER

PAGE TABLE ENTRY (PTE)
31

r
"]
~
v
w
©

PAGE FRAME ADDRESS 31..12

AVAIL X Xiofa

(=X
-~ %

PAGE DIRECTORY ENTRY (PDE)

PAGE TABLE ADDRESS 31..12

AVAIL X xfolalx|ixjulwir

NOTE:
X indicates Intel reserved. Do not use.

271121-11

Figure 2.11 Format of a Page-Table and Page-Directory Entry

9-20

M 4826175 0137360 272 A

PRELIMINARY I

-

intgl.

s The Miitary 1860 XR microprocessor clears the
psr U bit to indicate supervisor level when a trap
occurs (including when the trap instruction caus-

es the trap). The prior value of U is copied into
PU.

¢ The Military 1860 XR micreprocessor copies the
psr PU bit into the U bit when an indirect branch
is executed and one of the trap bits 1s set. If PU
was one, the Military i860 XR microprocessor en-
ters user level.

With the U bit of psr and the W and U bits of the
page table entries, the Military 1860 XR microproces-
sor implements the following protection rules:

* When at user level, a read or write of a supervi-
sor-level page causes a trap.

¢ When at user level, a write to a page whose W bit
is clear causes a trap.

® When at user level, st.c to certain control regis-
ters is ignored.

When the Military 1860 XR microprocessor 1s execut-
ing at supervisor level, all pages are addressable,
but, when it is executing at user level, only pages
that belong to the user-level are addressable

When the Military 1860 XR microprocessor is execut-
ing at supervisor level, all pages are readable.
Whether a page is writable depends upon the write-
protection mode controlled by WP bit of epsr.

WP =0 All pages are writable.

WP =1 A write to a page whose W bit is
clear causes a trap.

When the Military i860 XR microprocessor is execut-
ing at user level, only pages that belong to user level
and are marked writable are actually writable; pages
that belong to supervisor level are neither readabte
nor writable from user level.

2.4.4.4 Write-Through Bit

The Military 1860 XR microprocessor does not imple-
ment a write-through caching pohicy for the on-chip
data cache; however, the WT (write-through) bit 1n
the second-level page-table entry does determine
internal caching policy. If WT 1s set in a PTE, on-chip
caching of data from the corresponding page is In-
hibited. The Military i860 CPU may place pages hav-
ing WT = 1.nto the instruction cache Future imple-
mentations of the Military 1860 architecture may ad-
here to a write-through data caching policy. There-
fore, they may cache pages having the WT bit of the
PTE set if WT is clear, the normal wnte-back policy
is applied to data from the page in the on-chip
caches. The WT bit of page directory entries is not
referenced by the processor, but is reserved.

The WT bit is independent of the CD bit; therefore,
data may be placed in a second-level coherent
cache, but kept out of the on-chip caches.

PRELIMINARY

M 4826175 0137361 139 W

MILITARY i860™ XR MICROPROCESSOR

2.4.4.5 Cache Disable Bit

If the CD (cache disable) bit in the second-level
page-table entry is set, data from the associated
page is not placed in instruction or data caches.
Clearing CD permits the cache hardware to place
data from the associated page into caches. The CD
bit of page directory entries 1s not referenced by the
processor, but is reserved.

To control external caches, the Military i860 XR mi-
croprocessor outputs on its PTB pin either the CD or
WT bit. The PBM bit of epsr determines which bit is
output.

2.4.4.6 Accessed and Dirty Bits

The A (accessed) and D (dirty) bits provide data
about page usage in both levels of the page tables.

The Military i860 XR microprocessor sets the corre-
sponding accessed bits in both levels of page tables
before a read or write operation to a page. The proc-
essor tests the dirty bit in the second-level page ta-
ble before a write to an address covered by that
page table entry, and, under certain conditions,
causes traps. The trap handier then has the opportu-
nity to maintain appropriate values in the dirty bits.
The dirty bit in directory entries is not tested by the
Military 1860 XR microprocessor. The precise algo-
rthm for using these bits is specified in Section
2.4.5.

An operating system that supports paged virtual
memory can use these bits to determine what pages
to eliminate from physical memory when the de-
mand for memory exceeds the physical memory
available. The D and A bits in the PDE (Page-Direc-
tory Entry) or the PTE (Page-Table Entry) are nor-
mally initialized to zero by the operating system. The
processor sets the A bit when a page is accessed
either by a read or write operation. When a data- or
instruction-access fault occurs, the trap handler sets
the D bit if an allowable write is being performed,
then re-executes the instruction.

The operating system is responsible for coordinating
its updates to the accessed and dirty bits with up-
dates by the CPU and by other processors that may
share the page tables. The Military i860 XR micro-
processor automatically asserts the LOCK signal
while setting the A bit. If an A-bit of a PTE is found
not set during a locked sequence (created by the
lock instruction), a trap will occur and the processor
will not update the A-bit.

2.4.4.7 Combining Protection of Both Levels of
Page Tables

For any one page, the protection attributes of its
page directory entry may differ from those of its
page table entry. The Military i860 XR microproces-
sor computes the effective protection attributes for a

9-21

MILITARY i860™ XR MiCROPROCESSOR

page by examining the protection attributes in both
the directory and the page table. Table 2.6 shows
the effective protection provided by the possible
combinations of protection attributes.

2.4.5 ADDRESS TRANSLATION ALGORITHM

Referring to Figure 2-10, the algorithm below defines
the translation of each virtual address to a physical
address. Let DIR, PAGE, and OFFSET be the fields
of the wirtual address; let PTA be the page table ad-
dress and PFA be the page frame address of the
first and second level page tables respectively; DTB
is the page directory table base address stored in
the dirbase register.

1. Read the PDE (Page Directory Entry) at the physi-

cal address formed by DTB:DIR:00.

2. If P in the PDE is zero, generate a data- or instruc-
tion-access fault.

3. If W in the PTE is zero, the operation is a write,
and either the U-bit of the PSR 1s set or WP = 1,
generate a data or instruction access fault.

4. if the U-bit in the PDE is zero and the U-bit in the
psr is set, generate a data or instruction access
fault.

intal.

5.1f A in the PDE is zero, and if the TLB miss oc-
curred white the bus was locked, generate a data
or instruction access fault. (The trap allows soft-
ware to set A to one and restart the sequence.
This avoids ambiguity in determining what ad-
dress corresponds to a locked semaphore for ex-
ternal bus hardware use.)

6. If A in the PDE 1s zero, and if the TLB miss oc-
curred while the bus was not locked, assert
LOCK. Re-fetch and check the PDE, set A, and
store the PDE. Deassert LOCK during the store.

7. Locate the PTE (Page Table Entry) at the physical
address formed by PTA:PAGE:00.

8. Perform the P, W, U and A checks as in steps 2
through & with the second-level PTE.

9.1f D in the PTE 1s clear and the operation is a
write, generate a data or instruction access fault.

10. Form the physical address as PFA:OFFSET.

The Military 1860 XR microprocessor looks only in
external memory for Page Directories and Page Ta-
bles, in the transiation process. The data cache is
not searched. Therefore, any code which modifies
Page Directories or Page Tables must keep them
out of the cache. The tables should be kept in non-
cacheable memory, or flushed from the cache.

Table 2.6 Combining Directory and Page Protections

Page Directory Page Table Combined Protection
Entry Entry User Supervisor
Access Access
U-bit W-bit U-bit W-bit WP =X WP=0 WP =1

0 0 0 0 N R/W R
0 0 0 1 N R/W R
0 0 1 0 N R/W R
0 0 1 1 N R/W R
0 1 0 0 N R/W R
0 1 0 1 N R/W R/W
Q 1 1 0 N R/W R
0 1 1 1 N R/W R/W
1 0 0 0 N R/W R
1 0 o] 1 N R/W R
1 0 1 4] R R/W R
1 o] 1 1 R R/W R
1 1 0 0 N R/W R
1 1 0 1 N R/W R/W
1 1 1 0 R R/W R
1 1 1 1 R/W R/W R/W

NOTES:

N = No access allowed R/W = Both reads and wntes allowed

R = Read access only X = Don't care

o-22 PRELIMINARY

B 4482175 01373L2 075 WA

intgl.

The Military 1860 XR microprocessor expects Page
Directories and Page Tables to be in little endian
format. The operating system must maintain these
tables in little endian format by either setting BE = 0
when manipulating the tables or by complementing
bit 2 of the address when loading or storing entries.

2.4.6 ADDRESS TRANSLATION FAULTS

The address translation fault is one instance of the
data-access fault. The instruction causing the fault
can be re-executed upon returning from the trap
handier.

2.4.7 PAGE TRANSLATION CACHE

For greatest efficiency in address translation, the
Military 1860 XR microprocessor stores the most re-
cently used page-table data in an on-chip cache
called the TLB (translation lookaside bufter). Only if
the necessary paging information is not in the cache
must both levels of page tables be referenced.

2.5 Caching and Cache Flushing

The Military i860 XR microprocessor has the ability
to cache instruction, data, and address-translation
information in on-chip caches. Caching uses virtual-
address tags. The effects of mapping two different
virtual addresses in the same address space to the
same physical address are undefined.

Instruction, data and address-translation caching on
the i860 XR microprocessor are not transparent. Be-
cause the data cache uses a write-back protocol,
writes do not immediately update memory, and
writes to memory by other bus devices do not up-
date the cache. Changes to page tables do not auto-
matically update the TLB, and changes to instruc-
tions do not automatically update the instruction
cache. Under certain circumstances, such as 1/0
references, self-modifying code, page-table updates
or shared data in a multiprocessing system, it is nec-
essary to bypass or to flush the caches. The The
i860 XR microprocessor provides the following
methods for doing this:

e Bypassing Instruction and Data Caches. |f
deasserted during cache-miss processing, the
KEN pin disables instruction and data caching of
the referenced data. If the CD bit of the associat-

I PRELIMINARY

B 4826175 0137363 TOl N

MILITARY i860™ XR MICROPROCESSOR

ed second-level PTE is set, caching of data and
instructions is disabled. The Military i860 CPU
may place pages having WT = 1 into the instruc-
tion cache. Future implementations of the Military
1860 architecture may adhere to a write-through
data cache policy. Thus, they may cache pages
having the WT bit of the PTE set. The value of the
CD bit or the WT bit is output on the PTB pin for
use by external caches.

Flushing Instruction and Address-Translation
Caches. Storing to the dirbase register with the
IT! bit set invalidates the contents of the instruc-
tion and address-translation caches. This bit
should be set when a page table or a page con-
taining code is modified or when changing the
DTB field of dirbase. Note that in order to make

the instruction or address-translation caches con-
sistent with the data cache, the data cache must
be flushed before invalidating the other caches.

The mapping of the page containing the currently
executing instruction and the next six instructions
should not be different in the new page tables
when st.c dirbase changes DTB or activates iT1.
The six instructions following the st.c should be
nops and should lie in the same page as the st.c.

Flushing the Data Cache. The data cache is
flushed by a software routine using the flush in-
struction. The data cache must be flushed prior to
flushing the instruction or address-translation
caches (as controlled by the IT1 bit of dirbase) or
enabling or disabling address translation (via the
ATE bit). The data cache does not need flushing
if the program is modifying only the P, U, W, A, or
D bits of a PDE or PTE (as long as the Page
Table or Page Frame Address is not changed
and the entry itself was not in the data cache.)
The Military iB60 CPU does not check these pro-
tection bits on cache line writeback. Thus, a trap
handler can service a Data Access Fault for D-
hit-zero by setting D = 1 and then ITI = 1. In the
case of setting the P or A bits active, there is no
need to invalidate or flush any caches because
the processor does not load entries into the TLB
that have P = 0 or A = 0. The Military i860 XR
microprocessor searches only external memory
for Page Directories and Page Tables in the
translation process. The data cache is not
searched. Therefore, Page Tables and Directo-
ries should be kept in non-cacheable memory, or
flushed from the cache by any code which ac-
cesses them.

9-23

MILITARY i860™ XR MICROPROCESSOR

2.6 Instruction Set

Table 2.7 shows the complete set of instructions
grouped by function and data type. Refer to Section
7 for an aigorithmic definition of each instruction.

The architecture of the Mitary 1860 XR microproc-
essor uses parallelism to increase the rate at which
operations may be introduced into the unit. Parallel-
ism in the Military 1860 XR microprocessor is not
transparent; rather, programmers have complete
control over parallelism and therefore can achieve
maximum performance for a variety of computation-
al problems.

' 2.6.1 PIPELINED AND SCALAR OPERATIONS

One type of parallelism used within the floating-point
unit is “pipelining”. The pipelined architecture treats
each operation as a senes of more primitive opera-
tions (called “stages") that can be executed in par-
allel. Consider just the floating-point adder unit as an
example. Let A represent the operation of the adder.
Let the stages be represented by Ay, Az, and Az,
The stages are designed such that A;j+ ¢ for one ad-
der instruction can execute in paralle! with A; for the
next adder instruction. Furthermore, each A; can be
executed in just one clock. The pipelining within the
multiplier and graphics units can be described simi-
larly, except that the number of stages may be differ-
ent.

Figure 2.12 illustrates three-stage pipelining as
found in the fioating-point adder (also In the floating-
point multiplier when single-precision input operands
are employed). The columns of the figure represent
the three stages of the pipeline. Each stage holds
intermediate results and also {when introduced into
first stage by software) holds status information per-
taining to those results. The figure assumes that the
instruction stream consists of a series of consecu-
tive floating-point instructions, all of one type (i.e. all
adder instructions or all single-precision multiplier in-
structions). The instructions are represented as |,
i+ 1, etc. The rows of the figure represent the states
of the unit at successive clock cycles. Each time a
pipelined operation is performed, the result of the
last stage of the pipeline is stored in the destination
register fdest, the pipeline is advanced one stage,
and the input operands src? and src2 are trans-
ferred to the first stage of the pipeline.

9-24

B 4826175 0137364 F4a HR

-

intgl.
In the Military 1860 XR microprocessor, the number
of pipeline stages ranges from one to three. A pipe-
lined operation with a three-stage pipeline stores the
result of the third prior operation. A pipelined opera-
tion with a two-stage pipeline stores the result of the
second prior operation. A pipelined operation with a
one-stage pipeline stores the result of the prior oper-
ation.

There are four floating-point pipelines: one for the
multiplier, one for the adder, one for the graphics
unit, and one for floating-point loads. The adder
pipeline has three stages. The number of stages in
the multiplier pipeline depends on the precision of
the source operands in the pipeline. Single precision
has three stages and double precision has two
stages. The graphics unit has one stage for all preci-
sions. The load pipeline has three stages for all pre-
cisions.

Changing the FZ (fiush zero), RM (rounding mode),
or RR (result register) bits of sr while there are re-
sults in either the multiplier or adder pipeline produc-
es effects that are not defined.

2.6.1.1 Scalar Mode

In addition to the pipelined execution mode, the Mili-
tary i860 XR microprocessor also can execute float-
ing-point instructions in “scalar” mode. Most float-
ing-point instructions have both pipelined and scalar
variants, distinguished by a bit in the instruction en-
coding. In scalar mode, the floating-point unit does
not start a new operation until the previous floating-
point operation is completed. The scalar operation
passes through all stages of its pipeline before a
new operation is introduced, and the result is stored
automatically. Scalar mode is used when the next
operation depends on results from the previous
floating-point operations (or when the compiler or
programmer does not want to deal with pipelining).

2.6.1.2 Pipelining Status Information

Result status information in the fsr consists of the
AA, Al, AD, AU and AE bits, for the adder, and the
MA, MI, MO and MU buts, for the multiplier. This in-
formation arrives at the fsr via the pipeline in one of
two ways:

PRELIMINARY l

a
Intel o MILITARY i860™ XR MICROPROCESSOR

Table 2.7 instruction Set

Core Unit Floating-Point Unit
Mnemonic l Description Mnemonic Description
Load and Store instructions F-P Multiplier Instruction
Id.x Load integer fmul.p F-P multiply
st.x Store integer pfmul.p Pipelined F-P multiply
fld.y F-P load pfmul3.dd | 3-Stage pipelined F-P multiply
pfid.z Pipelined F-P load fmiow.p F-P multiply low
fsty F-P store frep.p F-P reciprocal
pst.d Pixe! store frsqr.p F-P reciprocal square root
Register to Register Moves F-P Adder Instructions
ixfr Transfer integer to F-P register fadd.p F-P add
fxfr Transfer F-P to integer register pfadd.p Pipelined F-P add
. " famov.r F-P adder move
Integer Arithmetic Instructions pfamov.r Pipelined F-P adder move
addu Add unsigned fsub.p F-P subtract
adds Add signed pfsub p Pipelined F-P subtract
subu Subtract unsigned pfgt.p Pipelined F-P greater-than compare
subs Subtract signed pfeq.p Pipelined F-P equal compare
Shift Instructions fix.p F-P to integer conversion)
pfix.p Pipelined F-P to integer conversion
shi Shift left ftrunc.p F-P to integer truncation
shr Shift right pftrunc.p Pipelined F-P to integer truncation
shra Shift right arithmetic - -
shrd Shift right double Dual-Operation Instructions
Logical Instruction pfam.p Pipelined F-P add and multiply
glcal sty - d pism.p Pipelined F-P subtract and multiply
and Logical AND pfmam.p Pipelined F-P multiply with add
andh Logical AND high pfmsm.p Pipelined F-P muitiply with subtract
andnot Logical AND NOT -
andnoth | Logical AND NOT high Long Integer Instructions
or Logical OR fisub.z Long-integer subtract
orh Logical OR high pfisub.z Pipelined long-integer subtract
xor Logical exclusive OR fiadd.z Long-integer add
xorh Logical exclusive OR high pfiadd.z Pipelined long-integer add
Control-Transfer Instructions Graphics Instructions
trap Software trap fzchks 16-bit Z-buffer check
intovr Software trap on integer overflow pfzchks Pipelined 16-bit Z-buffer check
br Branch direct fzchki 32-bit Z-buffer check
bri Branch indirect pfzchki Pipelined 32-bit Z-buffer check
be Branch on CC faddp Add with pixel merge
be.t Branch on CC taken pfaddp Pipelined add with pixel merge
bne Branch on not CC faddz Add with Z merge
bnc.t Branch on not CC taken pfaddz Pipelined add with Z merge
bte Branch !f equal form OR with MERGE register
btne Branch if not equal pform Pipelined OR with MERGE register
bla Branch on LCC and add
call Subroutine call
calli Indirect subroutine call Assembier Pseudo-Operations
System Control Instructions Mnemonic Description
flush Cache flush mov integer register-register move
ld.c Load from control register fmov.r F-P reg-reg move
st.c Store to control register pfmov.r Pipelined F-P reg-reg move
lock Begin interlocked sequence nop Core no-operation
unlock End interlocked sequence fnop F-P no-operation
pfle.p Pipelined F-P less-than or equal
I PRELIMINARY 9-25

B 4826175 0137365 884 WM

MILITARY i860™ XR MICROPROCESSOR

STAGE 1 STAGE 2 STAGE 3
results (status) rasults (status) results status
CLOCK n
INSTRUC i
! r (s)
\ CLOCK n+1
INSTRUC i+ i
e | - (s)
\ cLocK n+2\
INSTRUG i+2 41 i
i+2 r (s) r (s) r s
\ CLoCK n+3\ \
INSTRUC i+3 i+2 i+1 fdi"{
i+3 r (s) r (s) re s
\ cLock n+4\ \
. . . fdest
INSTRUC i+4 i+3 i+2 i1
i+4 r (s) r (s) r s
CLOCK n+5\ \
. . fdest
INSTRUC i+5 i+3 i+2
i*5 r (s) r (s) r s
27112112

Figure 2.12 FP-Adder Pipelined Instruction Execution

1. It is calculated by the last stage of the pipeline.
(This is the normal case.)

2. It is propagated from the first stage of the pipe-
line. This method is used when restoring the state
of the pipeline after a preemption. When a store
instruction updates the fsr with the U bit in the
word being written into the fsr set, the store up-
dates the result status bits in the first stage of
both the adder and multiplier pipelines. When
software changes the resuit-status bits of the first
stage of a particular unit (multiplier or adder), the
updated result-status bits are propagated one
stage for each pipelined floating-point operation
for that unit. In this case, each stage of the adder
and muitiplier pipelines holds its own copy of the
relevant bits of the fsr. When they reach the last
stage, they override the normal result-status bits
computed from the last stage result.

9-26

M 4326175 01373kL 710 MM

At the next floating-point instruction (or at certain
core instructions), after the result reaches the last
stage, the Military i860 XR microprocessor traps if
any of the status bits of the fsr indicate exceptions.
Note that the instruction that creates the exception
condition is not the instruction at which the trap oc-
curs.

2.6.1.3 Precision in the Pipelines

In pipelined mode, when a floating-point operation is
intiated, the result of an earlier pipelined floating-
point operation is returned. The result precision of
the current instruction applies to the operation being
mnitiated. The precision of the value stored in fdest is
that which was specified by the instruction that initia-
ted that operation.

PRELIMINARY I

MILITARY i860™ XR MICROPROCESSOR

31 g
op
- d.FP=-0P
63 d.FP~OP or CORE-OF
ENTER DUAL-
CORE=OP d.FP-0P INSTRUCTION MODE.
INITIATE EXIT FROM
CORE-OP FP~OP DUAL=INSTRUCTION MODE.
CORE-OP FP-0P l
o LEAVE DUAL=
INSTRUCTION MODE.
opP l
31 0
op
d.FP-OP
o FP=OP
TEMPORARY DUAL=
CORE-OP Fp-opP INSTRUCTION MODE
opP
op
271121-13

Figure 2.13 Dual-Instruction Mode Transitions

if fdest is the same as fsre? or fsrc2, the value being
stored in fdest is used as the input operand. In this
case, the precision of fdest must be the same as the
source precision.

The muitiplier pipeline has two stages when the
source operand 1s double-precision and three stages
when the source operand is single-precision. This
means that a pipelined multipler operation stores
the result of the second previous multiplier operation
for double-precision inputs and third previous for sin-
gle-precision inputs (except when changing preci-
sions).

2.6.1.4 Transition between Scalar and Pipelined
Operations

When a scalar operation is executed, it passes
through all stages of the pipeline; therefore, any un-
stored results in the affected pipeline are lost. To
avod losing information, the last pipelined opera-
tions before a scalar operation should be dummy
pipelined operations that unload unstored resuits
from the affected pipeline.

| PRELIMINARY

B 4826175 01373L7 L57 M

After a scalar operation, the values of all pipeline
stages of the affected unit (except the last) are un-
defined. No spurious result-exception traps resuit
when the undefined values are subsequently stored
by pipelined operations; however, the values should
not be referenced as source operands.

For best performance a scalar operation should not
immediately precede a pipelined operation whose
fdest is nonzero.

2.6.2 DUAL-INSTRUCTION MODE

Another form of parallelism results from the fact that
the Military 1860 XR microprocessor can simulta-
neously execute both a floating-point and a core in-
struction. Such parallel execution is called dual-in-
struction mode. When executing in dual-instruction
mode, the instruction sequence consists of 64-bit
aligned instructions with a floating-pomt instruction
in the lower 32 bits and a core instruction in the
upper 32 bits. Table 2.7 identfies which instructions
are executed by the core unit and which by the float-
ing-point unit.

9-27

ERE T U TN N BT

MILITARY i860™ XR MICROPROCESSOR

Programmers specify dual-instruction mode either
by including in the mnemonic of a floating-point in-
struction a d. prefix or by using the Assembler direc-
tives .dualenddual. Both of the specifications
cause the D-bit of floating-point instructions 1o be
set. i the Military i860 XR microprocessor is execut-
ing in single-instruction mode and encounters a
floating-point instruction with the D-bit set, one more
32-bit instruction is executed before dual-mode exe-
cution begins. If the Military i860 XR microprocessor
is executing in dual-instruction mode and a floating-
point instruction is encountered with a clear C-bit,
then one more pair of instructions is executed be-
fore resuming single-instruction mode. Figure 2.13
ilustrates two variations of this sequence of events:
one for extended sequences of dual-instructions and
one for a single instruction pair.

When a 64-bit dual-instruction pair sequentially fol-
lows a delayed branch instruction in dual-instruction
mode, both 32-bit instructions are executed.

2.6.3 DUAL-OPERATION INSTRUCTIONS

Special dual-operation floating-point instructions
(add-and-multiply, subtract-and-multiply) use both
the multiplier and adder units within the floating-
point unit in parallel to efficiently execute such com-
mon tasks as evaluating systems of linear equa-
tions, performing the Fast Fourier Transform (FFT),
and performing graphics transformations.

The instructions pfam fsrc1, fsrc2, fdest (add and
muitiply), ptsm fsret, fsrc2, fdest (subtract and mul-
tiply), ptmam fscri, fsrc2, fdest (multiply and add)
and pfmsm fsrc?, fsrc2, fdest (multiply and subtract)
intiate both an adder operation and a multiplier op-
eration. Six operands are required, but the instruc-
tion format specifies only three operands; therefore,
there are special provisions for specifying the oper-
ands. These special provisions consist of:

® Three special registers (KR, Kl, and T), that can
store values from one dual-operation instruction
and supply them as inputs to subsequent dual-
operation instructions.

1. The constant registers KR and Ki can store the
value of fsrc? and subsequently supply that
value to the muitiplier pipeline in place of fsre7.

2. The transfer register T can store the last stage
resuit of the multiplier pipeline and subse-
quently supply that value to the adder pipeline
in piace of fsre1,

* A four-bit data-path control field in the opcode
(DPC) that specifies the operands and loading of
the special registers.

1. Operand-1 of the multiplier can be KR, K!, or
fsre1.

2. Operand-2 of the multiplier can be fsrc2 or the
last stage result of the adder pipeline.

9-28

M 4826175 0137368 593 M

intgl.

3. Operand-1 of the adder can be fsrc?, the T-
register or the last stage result of the adder
pipeline.

4, Operand-2 of the adder can be fsrc2, the last
stage result of the multiplier pipeline or the last
stage result of the adder pipeline.

Figure 2.14 shows all the possible data paths sur-
rounding the adder and multipher A DPC field in
these instructions select different data paths. Table
7.8 shows the various encodings of the DPC field.

SRCt : SRC2 FDEST

1

MULTIPLIER UNIT

RESULT

T
l P §
A 4 A Yy A 4

oP1t oP2

ADDER UNIT

RESULT

L

271121-14

Figure 2.14 Dual-Operation Data Paths

Note that the mnemonics pfam.p, pfsm.p, pfmam.p
and pfmsm.p are never used as such In the assem-
bly language; these mnemonics are used here to
designate classes of related instructions. Each value
of DPC has a unique mnemonic associated with it.

2.7 Addressing Modes

Data access is limited to load and store instructions.

Memory addresses are computed from two fields of

load and store instructions: sref and src2.

1. /src1 either contains the identifier of a 32-hit inte-
ger register or contains an immediate 16-bit ad-
dress offset.

2. isrc2 always specifies a rogister.

PRELIMINARY |

intgl.

MILITARY i860™ XR MICROPROCESSOR

Table 2.8 Types of Traps
Type Indication Caused by
PSR,ESPR| FSR Condition Instruction
Instruction IT OF Software traps trap, intovr
Fault IL Missing unlock Any
Floating Sk Floating-point source exception | Any M- or A-unit except fmlow
Point Floating-point result exception | Any M- or A-unit except fmlow, pigt,
Fauit FT AC, MO overflow and pfeq. Reported on any F-P
AU, MU underflow instruction plus pst, fst and
Al, Mi inexact result sometimes fid, pfid, ixfr
Instruction IAT Address translation exception | Any
Access Fault during instruction fetch
Data Access Load/store address translation | Any load/store
Fault exception
DAT* Misaligned operand address Any load/store
Operand address matches Any load/store
db register
Interrupt IN External interrupt
Reset No trap bits set Hardware RESET signal

NOTES: *These cases can be distinguished by examining the operand addresses.

The IL bit of the epsr must be checked by the trap handler to tell if the bus is currently in a locked sequence.

Because either isrc? or jsre2 may be null (zero), a
variety of useful addressing modes result:

offset + register

Useful for accessing fields within
a record, where register points
to the beginning of the record
Useful for accessing items in a
stack frame, where register is
r3, the register used for pointing
to the beginning of the stack
frame.

register + register Useful for two-dimensional ar-

register

offset

rays or for array access within
the stack frame.

Useful as the end result of any
arbitrary address calculation.

Absolute address into the first or
last 32K of the logical address
space.

In addition, the floating-point load and store instruc-
tions may select autoincrement addressing. in this
mode /src2 is replaced by the sum of isre? and jsre2
after performing the load or store. This mode makes
stepping through arrays more efficient, because it
eliminates an address-calculation instruction.

2.8 Traps and Interrupts

Traps are caused by exceptional conditions detect-
ed in programs or by external interrupts. Traps

I PRELIMINARY

BB 442b1L75 0137369 42T M

cause interruption of normal program flow to exe-
cute a special program known as a trap handler.
Traps are divided into the types shown in Table 2.8.
interrupts and traps start execution in single instruc-
tion mode at virtual address OxFFFFFFOO In supervi-

sor level (U = 0).

2.8.1 TRAP HANDLER INVOCATION

This section applies to traps other than reset. When
a trap occurs, execution of the current instruction is
aborted. The instruction is restartable. The proces-
sor takes the following steps while transferring con-

trol to the trap handler:

1. Copies U (user mode) of the psr into PU (previous

U).

Sets U to zero (supervisor mode).
Sets IM to zero (interrupts disabied).

N A~ DM

DIM; otherwise it clears DIM.

. Copies IM (interrupt mode) into PIM (previous IM).

. If the processor is in dual instruction mode, it sets

6. If the processor is in single-instruction mode and
the next instruction will be executed in dual-
instruction mode or if the processor is in dual-in-
struction mode and the next instruction will be
executed in single-instruction mode, DS is set;

otherwise, it is cleared.

9-29

MILITARY i860™ XR MICROPROCESSOR

7. The appropriate trap type bits in psr are set (IT,
IN, IAT, DAT, FT). Several bits may be set if the
corresponding trap conditions occur simulta-
neously.

8. An address is placed in the fault instruction regis-
ter (fir) to help locate the trapped instruction. [n
single-instruction mode, the address in fir is the
address of the trapped instruction itself. In dual-in-
struction mode, the address in fir is that of the
floating-point half of the dual instruction. If an in-
struction or data access fault occurred, the asso-
ciated core instruction is the high-order half of the
dual instruction (fir + 4). In dual-instruction
mode, when a data access fault occurs in the ab-
sence of other trap conditions, the floating-point
half of the dual instruction will aiready have been
executed.

The processor begins executing the trap handler
by transferring execution to virtual address
OxFFFFFF00. The trap handler begins execution in
single-instruction mode. The trap handler must ex-
amine the trap-type bits in psr (IT, IN, IAT, DAT, FT)
to determine the cause or causes of the trap.

2.8.2 INSTRUCTION FAULT

This fault is caused by any of the following condi-
tions. In all cases the processor sets the Instruction
Trap (IT) bit before entering the trap handier.

1. By the trap instruction. When trap is executed in
dual-instruction mode, the floating-point compan-
ion of the trap instruction is not executed before
the trap is taken.

2. By the intovr instruction. The trap occurs only if
the Overflow Flag (OF) in epsr is set when intovr
is executed. The trap handler should clear OF
before returning. When intovr causes a trap in
dual-instruction mode, the floating-point compan-
ion of the intovr instruction is completely execut-
ed before the trap is taken.

3. By violation of lock/unlock protocol, explained
below. (Note that trap and intovr should not be
used within a locked sequence; otherwise, it
would be difficult to distinguish between this and
the prior cases.)

The lock protocol requires the following se-
quence of activities:

1. lock

2. Any load or store instruction that misses the
cache.

3. unlock

4. Any load or store instruction (regardless of
whether it misses the cache)

There may be other instructions between any of
these steps. The bus is locked after step 2, and re-

9-30

M 4826175 0137370 14l WN

intgl.

mains locked until step 4. Step 4 must follow step 1
by 30 instructions or less, otherwise the instruction
trap occurs. In case of a trap, the Interlock (IL) bit 1s
also set. If the load or store instruction in step 2 hits
the cache, the sequence is legal, but the bus is not
locked.

2.8.3 FLOATING-POINT FAULT

The floating-point fault can occur on floating-point
instructions, pst, fst, and sometimes fld, pfid, ixfr.
The floating-point faults of the Military i860 XR mi-
croprocessor support the floating-point exceptions
defined by the IEEE standard as well as some other
useful classes of exceptions. The Military i860 XR
microprocessor divides these into two classes
source exceptions and result exceptions. The nu-
merics library supplied by Intel adheres to the IEEE
standard default handling for all these exceptions

2.8.3.1 Source Exception Faults

When used as inputs to the multiplier or adder, all
exceptional operands, including infinities, denormal-
ized numbers and NaNs, cause a floating-point fault
and set the Source Exception (SE) bit in the fsr.
Source exceptions are reported on the instruction
that intiates the operation. For pipelined operations,
the pipeline is not advanced.

The SE value is undefined for faults on fid, pfid, fst,
pst and ixfr instructions when in single-instruction
mode or when in dual-instruction mode and the com-
panion instruction is not a muitiplier or adder opera-
tion.

2.8.3.2 Result Exception Faults

The class of result exceptions includes any of the
following conditions:

* Overflow. The absolute value of the rounded
true result would exceed the largest positive finite
number in the destination format.

* Underfiow {when FZ is clear). The absolute val-
ue of the rounded true result would be smaller
than the smallest positive finite number in the
destination format.

® |nexact result (when Tl is set). The result i1s not
exactly representable in the destination format.
For example, the fraction 4 cannot be precisely
represented in binary form. This exception occurs
frequently and indicates that some (generally ac-
ceptable) accuracy has been lost.

The point at which a result exception is reported de-

pends upon whether pipelined operations are being
used:

PRELIMINARY I

intgl.

e Scalar (nonpipelined) operations. Result ex-
ceptions are reported on the next floating-point,
fst.x, or pst.x (and sometimes fid, pfld, ixfr) in-
struction after the scalar operation. When a trap
occurs, the last stage of the affected unit con-
tains the result of the scalar operation.

Pipelined operations. Result exceptions are re-
ported when the result is in the last stage and the
next floating-point, fst.x or pst.x (and sometimes
fid, pfld, ixfr) instruction is executed. When a
trap occurs, the pipeline is not advanced, and the
last stage results (that caused the trap) remain
unchanged.

When no trap occurs (either because FTE is clear or
because no exception occurred), the pipeline is ad-
vanced normally by the new floating-point operation.
The result-status bits of the affected unit are unde-
fined until the point that resuit exceptions are report-
ed. At this point, the last stage result-status bits (bits
29..22 and 16..9 of the fsr) reflect the values in the
last stages of both the adder and multiplier. For ex-
ample, if the last stage result in the multiplier has
overflowed and a pipelined floating-point pfadd is
started, a trap occurs and MO is set.

For scalar operations, the Result Register (RR) field
of fsr specify the register in which the result was
stored. RR is updated when the scalar instruction is
initiated. The trap, however, occurs on a subsequent
instruction. Programmers must prevent intervening
stores to fsr from modifying the RR bits. Prevention
may take one of the following forms:

* Before any store to fsr when a result exception
may be pending, execute a dummy floating-point
operation to trigger the resuit-exception trap.

* Always read from fsr before storing to it, and
mask updates so that the RR field is not
changed.

For pipelined operations, RR is cleared and the re-
sult is in the last stage of the pipeline of the appro-
priate unit. The trap handier must flush the pipeline,
saving the results and the status bits.

In either pipelined or scalar mode, the trap handler
must then compute the trapping result. In either
case, the result has the same fraction as the true
result and has an exponent which 1s the low-order
bits of the true resuit. The trap handler can inspect
the result, compute the result appropriate for that
instruction (a NaN or an infinity, for example), and
store the correct result. The result is either stored in
the register spectfied by RR (if nonzero) or (it RR =
0) the trap handler must reload the pipeline with the
saved results and status bits. The trap handler must
clear the resuit status for the last stage and then
reexecute the trapping instruction.

PRELIMINARY

B 432L175 0137371 088 ME

MILITARY i860™ XR MICROPROCESSOR

Result exceptions may be simultaneously reported
for both the adder and multiplier units. In this case,
the trap handler must correct the last stage of both
pipelines.

2.8.4 INSTRUCTION ACCESS FAULT

The Instruction Access Trap (IAT) occurs during ad-

dress translation for instruction fetches in any of

these cases:

¢ The address fetched is in a page whose P (pres-
ent) bit in the page table is clear (not present).

® The address fetched is in a supervisor mode
page, but the processor is in user mode.

e The address fetched is in a page whose PTE has
A = 0, and the access occurs during a locked
sequence (i.e., between lock and unlock).

Note that several instructions are fetched at one
time, either due to instruction prefetching or to in-
struction caching. Therefore, a trap handler can
change from supervisor to user mode and continue
to execute instructions fetched from a supervisor
page. An instruction access trap occurs only when
the next group of instructions is fetched from a su-
pervisor page {(up to eight instructions later). if, in the
meantime, the handler branches to a user page, no
instruction access trap occurs. No protection viola-
tion results, because the processor does not permit
data accesses to supervisor pages while running in
user mode.

2.8.5 DATA ACCESS FAULT

The Data Access Trap (DAT) results from an abnor-
mal condition detected during a data operand fetch
or store. Such an exception can be caused by only
one of the following situations.

e An attempt is being made to write to a page
whose (Dirty) D bit is clear.

* A memory operand is misaligned (is not located
at an address that is a muitiple of the length of
the data).

¢ The address stored in the db register is equal to
one of the addresses spanned by the operand.

¢ The operand is in a not-present page.

® An attempt is being made from user level to write

to a read-only page or to access a supervisor-lev-
el page.

e The operand was in a page whose PTE had
A = 0, and the access occurred during a locked
sequence. (i.e., between lock and unlock.)

® Write protection (determined by epsr bit WP = 1)
is violated in supervisor mode.

9-31

MILITARY i860™ XR MICROPROCESSOR

2.8.6 INTERRUPT TRAP

An interrupt is an event that is signaled from an ex-
ternal source. If the processor is executing with in-
terrupts enabled (IM set in the psr), the processor
sets the interrupt bit IN in the psr, and generates an
interrupt trap. Vectored interrupts are implemented
by interrupt controliers and software.

'2.8.7 RESET TRAP

When the Military i860 XR microprocessor is reset,
execution begins in single-instruction mode at physi-
cal address OxFFFFFFOOQ. This is the same address
as other traps. The reset trap can be distinguished
from other traps by the fact that no trap bits are set.
The instruction cache is flushed. The bits DPS, BL
and ATE in dirbase are cleared. The Code-Size8
(CS8) mode is initialized if the INT/CS8 pin is assert-
ed at the end of reset. The read-only fields of the
espr are set to 1dentify the processor, while the 1L,
WP and PBM bits are cleared. The bits U, IM, BR
and BW in psr are cleared as are the trap bits FT,
DAT, IAT, IN and IT. All other bits of psr and all
other register contents are undefined.

Refer to Table 2.9 for a summary of these initial set-
tings.

Table 2.9 Register and Cache Values after Reset

Registers Initial Value
integer Registers | Undefined
Floating-Point Undefined
Registers
psr U, IM, BR, BW, FT, DAT, |AT, IN,
IT = 0; others are undefined
epsr IL, WP, PBM, BE = 0;
Processor Type, Stepping
Number, DCS are read
only; others are undefined
db Undefined
dirbase DPS, BL, ATE = 0; others
are undefined
tir Undeftined
fsr Undefined
KR, KI, T, Undefined
MERGE
Caches Initial Value
Instruction Cache | Flushed
Data Cache Undefined
TLB Flushed

The software must ensure that the data cache is
flushed and control registers are properly initialized
before performing operations that depend on the

9-32

B 482L175 0137372 Tiy mm

=
Inte' .
values of the cache or registers. The data cache has

no “validity” bits, so memory accesses before the
flush may result in false data cache hits.

Reset code must imitialize the floating-point pipeline
state to zero with floating-point traps disabled to en-
sure that no spurious floating-point traps are gener-
ated.

After a RESET the Military i860 XR microprocessor
starts execution at supervisor level (U=0). Before
branching to the first user-level instruction, the
RESET trap handler or subsequent initialization
code has to set PU and a trap bit so that an indirect
branch instruction will copy PU to U, thereby chang-
ing to user level.

2.9 Debugging

The Military i860 XR microprocessor supports de-
bugging with both data and instruction breakpoints.
The features of the Military i860 architecture that
support debugging include:

¢ db (data breakpoint register) which permits speci-
fication of a data addresses that the Military i860
XR microprocessor will monitor.

® BR (break read) and BW (break write) bits of the
psr, which enable trapping of either reads or
writes (respectively) to the address in db.

¢ DAT (data access trap) bit of the psr, which al-
lows the trap handler to determine when a data
breakpoint was the cause of the trap.

e trap instruction that can be used to set break-
points in code. Any number of code breakpoints
can be set. The values of the src? and src2 fields
help identify which breakpoint has occurred.

® IT (instruction trap) bit of the psr, which allows
the trap handler to determine when a trap in-
struction was the cause of the trap.

3.0 HARDWARE INTERFACE

In the following description of the military 1860's
hardware interface, the ~ symbol (overbar) above
a signal name indicates that the active or asserted
state occurs when the signal is at a low voltage.
When no ~ is present above the signal name, the
signal is asserted when at the high voltage level.

3.1 Signal Description

Table 3.1 identifies functional groupings of the pins,
lists every pin by its identifier, gives a brief descrip-
tion of its function, and lists some of its characteris-
tics. All output pins are 3-state, except HLDA and

PRELIMINARY

intgl.

BREQ. All inputs are synchronous with the Clock
(CLK), except HOLD and INT.

3.1.1 CLOCK {CLK)

The CLK input determines execution rate and timing
of the Military i860 XR microprocessor. Timing of
other signals is specified relative to the nsing edge
of this signal. The internal operating frequency is the
same as the external clock. This signal 1s TTL com-
patible.

3.1.2 SYSTEM RESET (RESET)

Asserting RESET for at least 16 CLK periods causes
initialization of the Military 1860 XR microprocessor.
Refer to section 3.2 “Inttialization” for more details
related to RESET.

3.1.3 BUS HOLD (HOLD) AND BUS HOLD
ACKNOWLEDGE (HLDA)

These pins are used for Military 1860 XR microproc-
essor bus arbitration. At some clock after the HOLD
signal I1s asserted, the Military 1860 XR microproces-
sor releases control of the local bus and puts all bus
interface outputs (except BREQ and HLDA) into a
floating state, then asserts HLDA—all during the
same clock period. It mantains this state until HOLD
is deasserted. Instruction execution stops only if re-
quired instructions or data cannot be read from the
on-chip nstruction and data caches.

The time required to acknowledge a hold request is
one clock plus the number of clocks needed to finish
any outstanding bus cycles. HOLD is recognized
even while RESET or LOCK are asserted.

When leaving a bus hold, the Military 1860 XR micro-
processor deactivates HLDA and, in the same clock
period, inhates a pending bus cycle, if any.

Hold 1s an asynchronous nput.

PRELIMINARY

B 4826175 0137373 950 =M

MILITARY i860™ XR MICROPROCESSOR

3.1.4 BUS REQUEST (BREQ)

This signal is asserted when the 1860 XR microproc-
essor has a pending memory request, even when
HLDA 1s asserted. This allows an external bus arbi-
ter to implement an “on demand only” policy for
granting the bus to the i860 XR microprocessor.
BREQ Is asserled the clock after the 1860 XR micro-
processor realizes an internal request for the bus. In
normal operation, BREQ goes low the clock after
ADS goes low for the final pending bus cycle. (Refer
to Figure 4.10 for timing information.) During data or
instruction cache fills, however, BREQ may be deas-
serted for one or more clocks, due to cache and TLB
logic.

3.1.5 INTERRUPT/CODE-SIZE (INT/CS8)

This dual purpose pin signifies either an external in-
terrupt or Code-Size8 when asserted. if INT/CS8 is
asserted during the clock before the falling edge of
RESET, the eight-bit code-size mode is selected.
For more about this mode, refer to Section 3.2 “Ini-
tialization”.

At any other time it signifies an interruption of the
current instruction stream. W interrupts are enabled
(M set in psr) when INT/CS8 1s asserted, the Mili-
tary i860 XR microprocessor fetches the next in-
struction from virtual address OxFFFFFF00. To as-
sure that an interrupt 1s recognized, the INT/CS8 pin
should remain asserted until the software acknowl-
edges the interrupt (by writing, for example, to a
memory-mapped port of an interrupt controller).

When the bus 1s not locked, the maximum time be-
tween the assertion of the INT/CS8 pin and the exe-
cution of the first instruction of the trap handler is ten
clocks, plus the time for four sets of four pipelined
read cycles and two sets of four pipelined writes (in-
struction- and data-cache misses and write-back cy-
cles to update memory), plus the time for twenty
nonpipelined read cycles (six TLB misses, with eight
refetches when the A-bit 1s zero), plus the time for
eight non-pipelined writes (updates to the A-tit).

If the bus 1s locked from a lock instruction, the pin is
ignored and the INT bit of epsr 1s always zero. The
lack instruction can only assert LOCK for 30-33 in-
structions before trapping.

INT/CS8 1s an asynchronous input.

9-33

MILITARY i860™ XR MICROPROCESSOR

Table 3.1 Pin Summary

Pin . Active Input/
Name Function State Output
Execution Contro! Pins
CLK Clock |
RESET System reset High !
HOLD Bus hold High |
HLDA Bus hold acknowledge High o}
BREQ Bus request High 0
INT/CS8 Interrupt, code-size High |
Bus Interface Pins

AJ1-A3 Address bus High o]
BE7-BED Byte Enables Low o]
D63-D0 Data bus High 170
LOCK Bus lock Low 0]
W/R Write/Read bus cycle Hi/Low 0
NENE Next Near Low 0
NA Next Address request Low |
READY Transfer Acknowledge Low |

DS ADdress Status Low 0

Cache Interface Pins
KEN Cache Enable Low |
PTB Page Table Bit High 0
Testability Pins
SHI Boundary Scan Shift Input High [
BSCN Boundary Scan Enable High |
SCAN Shift Scan Path High !
Intel-Reserved Configuration Pins
CC1-CCo Configuration High |
Power and Ground Pins

Vee System power
Vss System ground

A" above a pin name indicates that the signal is active when at the low voltage level.

3.1.6 ADDRESS PINS (A31-A3) AND BYTE
ENABLES (BE7-BED)

The 29-bit address bus (A31 -A3) identifies address-
es to a 64-bit location. Separate byte-enable signals
(BE7-BED) identify which bytes are accessed within
the 64-bit location. in all noncacheable read cycles
(KEN deasserted), the byte enables match the
iength and address of the requested data. Cache-
able read cycles (KEN asserted), however, result in
four 64-bit memory cycles to fill an entire 32-byte
cache line. The BEn pins activated are those that
represent the operand of the load instruction that
caused the line fill, and these same BEn pins remain

9-34

B 482bL175 0137374 497 MR

activated for all four cycles of the line fill. All 64 bits
must be returned for each cycle without regard for
the BEn signals. In all wnte cycles (noncacheable
writes as well as cache lfine write-backs) the BEn
signals indicate the bytes that must be written.

Instruction fetches (W/R is low) are distinguished
from data accesses by the unique combinations of
BE7-BED defined in Table 3 2. For an eight-bit code
fetch in code-size8 (CS8) mode, BE2-BED are rede-
fined to be A2-AD0 of the address. In this case BE7 -~
BES form the code shown in Table 3.2 that identifies
an instruction fetch. The A2 in the table does not
represent a physical pin, just a conceptual internal

PRELIMINARY

intgl.

address line value. The “x” under A2 for CS8 mode
means ‘‘not applicable”, or “don't care”. All other
combinations of byte enables indicate data access-
es.

The address and byte-enable pins are driven until
either NA or READY is asserted.

3.1.7 DATA PINS (D63-D0)

The bus interface has 64 bidirectional data pins
(D63-DO0) to transfer data in eight- to 64-bit quanti-
ties. Pins D7-D0 transfer the least significant byte;
pins D63-D56 transter the most significant byte.

In write bus cycles, the point at which data is driven
onto the bus depends on the type of the preceding
cycle. If there was no preceding cycle (i.e. the bus
was idle), data is driven with the address. If the pre-
ceding cycle was a write, data is driven as soon as
READY s returned from the previous cycle. If the
preceding cycle was a read, data is driven one clock
after READY is returned from the previous cycle,
thereby allowing time for the bus to be turned
around.

3.1.8 BUS LOCK (LOCK)

This signal is used to provide atomic (indivisible)
read-modify-write sequences in multiprocessor sys-
tems. A multiprocessor bus arbiter must permit only
one processor a locked access to the address which
is on the bus when LOCK first activates. The system
must maintain the lock of that location until LOCK
deactivates.

The Military i860 XR microprocessor coordinates the
external LOCK signal with the software-controlled
Bus Lock (BL) bit of the dirbase register. Program-
mers do not have to be concerned about the fact
that bus activity is not always synchronous with in-
struction execution. LOCK is asserted with ADS for
the address operand of the first load or store instruc-
tion executed after the BL bit is set by the lock in-
struction. Pending bus cycles are locked according
to the value of the BL bit when the instruction was
executed. Even if the BL bit 1s changed between the
time that an instruction generates an internal bus
request and the time that the cycle appears on the
bus, the 1860 XR microprocessor still asserts LOCK
for that bus cycle.

It ADS is active when LOCK deactivates, then that
request should complete before the hardware relin-
quishes the lock. If ADS is not active, the locking of
the location can immediately end when LOCK deac-
tivates. Of course the simplest arbitration hardware
can just lock the entire bus against all other access-
es during LOCK assertion.

| PRELIMINARY

I 43265175 0137375 723

MILITARY i860™ XR MICROPROCESSOR

When the BL bit 1s deasserted with the unlock in-
struction, LOCK is deasserted with the next load or
store but after any pending bus cycles. Between
locked sequences, at least one cycle of no LOCK is
guaranteed by the behavior of the unlock instruc-
tion. LOCK deassertion may occur independently of
ADS for the case of a trap or a cache hit after un-
lock.

The Military 860 XR microprocessor also asserts
LOCK during TLB miss processing for updates of the
accessed bit in page-table entries. The maximum
time that LOCK can be asserted in this case is five
clocks plus the time required to perform a read-mod-
ify-wnite sequence. Instruction fetches do not alter
the LOCK pin.

Between lock and unlock instructions, the INT pin is
ignored and the INT bit of epsr is zero when read by
Id.c epsr. The tme that interrupts are disabled is
limited by the lock protocol outlined in Section 2.8.2.

3.1.9 WRITE/READ BUS CYCLE (W/R)

This pin specifies whether a bus cycle is a write
(HIGH) or read (LOW) cycle.

3.1.10 NEXT NEAR (NENE)

The NENE signal allows figher-speed reads and
writes in the case of consecutive reads and writes
that access static column or page-mode DRAMSs.
The Military 1860 XR microprocessor asserts NENE
when the current address is in the same DRAM
page as the previous bus cycle. The Military i860 XR
microprocessor determines the DRAM page size by
inspecting the DPS field in the dirbase register. The
page size can range from 29 to 216 64-bit words,
supporting DRAM sizes from 256K x 1, 256K X 4,
and up. NENE s never asserted on the next bus
cycie after HLDA 1s deasserted.

3.1.11 NEXT ADDRESS REQUEST (NA)

The NA signal makes address pipelining possible.
The system asserts NA to indicate that it is ready to
accept the next address from the Military 1860 XR
microprocessor. NA may be asserted before the cur-
rent cycle ends. (If the system does not implement

pipelining, NA does not have to be activated.) The

Military 1860 XR micropracessor samples NA every

clock, starting one clock after the prior activation of §

ADS. When NA is active, the Miltary 1860 XR micro-
processor is free to drive address and bus-cycle def-
intion for the next pending bus cycle. The Military
i860 XR microprocessor remembers that NA was as-
serted when no internal request 1s pending; there-
fore, NA can be deactivated after the next rising
edge of the CLK signal. Up to three bus cycles can
be outstanding simuitaneously.

9-35

MILITARY i860™ XR MICROPROCESSOR

intgl.

Table 3.2 Identifying Instruction Fetches

g;gf‘ A2 | BE7 | BE6 | BE5 | BE4 | BEZ | BE? | BET | BED
Noncss) | ! ! ! 1 ! ° 1 °
Mot | | Lo | o [[
I(\:Aige X 9 0 1 0 1 Low-order address bits

3.1.12 TRANSFER ACKNOWLEDGE (READY)

The system asserts the READY signal during read
cycles when valid data is on the data pins and during
write cycles when the system has accepted data
from the data pins. READY must be asserted for at
teast one clock. Sampling of READY begins in the
clock after an ADS or in the second clock after a
prior READY.

3.1.13 ADDRESS STATUS (ADS)

The Military i860 XR microprocessor asserts ADS
during the first clock of each bus cycle to identify the
clock penod dunng which it begins to assert outputs
on the address bus. This signal 1s held active for one
clock.

3.1.14 CACHE ENABLE (KEN)

The Military i860 XR microprocessor samples KEN
to determine whether the data being read for the
current cache-miss cycle is to be cached. This pin is
internally NORed with the CD and WT bits to controt
cacheability on a page by page basts (refer to Table
3.3).

If the address is one that 1s permitted to be in the
cache, KEN must be continuously asserted during
the sampling period starting from the second rnsing
clock edge after ADS 1s asserted, through the clock
NA or READY s asserted. The entire 64 bits of the
data bus will be used for the read, regardless of the
state of the byte-enable pins. Three additional 64-bit
bus cycles will be generated to fill the rest of the 32-
byte cache biock.

it KEN is found deasserted at any clock from the
clock after ADS through the clock of the first NA or
READY, the data being read will not be cached and
two scenarios can occur: 1) if the cycle s due to
data-cache miss, no subsequent cache-fill cycles
will be generated; 2) if the cycle is due to an instruc-
tion-cache muss, addttional cycle(s) will be generat-
ed until the address reaches a 32-byte boundary. To
avoid caching a line, external hardware must deas-
sert KEN during or before the first NA or READY.

9-36

B 4825175 013737k bBET N

Table 3.3 Cacheability Based on

KEN and CD or WT
CDor WT KEN Meaning
0 0 Cacheable access
0 1 Noncacheable access
1 0 Noncacheable page
1 1 Noncacheable page

3.1.15 PAGE TABLE BIT (PTB)

Depending on the setting of the PBM (page-table bit
mode}) bit of the epsr, the PTB reflects the value of
either the CD (cache disable) bit or the WT (write
through) bit of the page-table entry used for the cur-
rent cycle. When paging is disabled, PTB remains
inactive.

3.1.16 BOUNDARY SCAN SHIFT INPUT (SHI)
This pin 1s used with the testability features. Refer to
section 3.3.

3.1.17 BOUNDARY SCAN ENABLE (BSCN)

This pin is used with the testability features. Refer to
section 3.3.

3.1.18 SHIFT SCAN PATH (SCAN)

This pin 1s used with the testability features Refer to
section 3.3.

3.1.19 CONFIGURATION (CC1-CC0)

These two pins are reserved by Intel. Strap both pins

LOW.

3.1.20 SYSTEM POWER (Vcc) AND GROUND
(Vss)

The Military 1860 XR microprocessor has 48 pins for
power and ground. All pins must be connected to
the appropriate tow-inductance power and ground
signals in the system.

PRELIMINARY I

intal.

3.2 Initialization

Initialization of the Military i860 XR microprocessor
is caused by assertion of the RESET signal for at
least 16 clocks. Table 3.4 shows the status of output
pins during the time that RESET is asserted. Note
that HOLD requests are honored during RESET and
that the status of output pins depends on whether a
HOLD request is being acknowledged.

Table 3.4 Output Pin Status During Reset

Pin Value
Pin Name HOLD HOLD
Not Acknowledged
Acknowledged s

ADS, LOCK HIGH HI-Z
W/R, PTB LOW HI-Z
BREQ LOW LOW
HLDA LOW HIGH
D63-D0 HI-Z HI-Z
A31-A3,

BE7-BEO, Undefined HI-Z
NENE

After a reset, the Military 1860 XR microprocessor
begins executing at physical address OxFFFFFF0O.
The program-visible state of the Military i860 XR mi-
croprocessor after reset is detailed in section 2.8.7.

Eight-bit code-size mode is selected when INT/CS8
is asserted during the clock before the falling edge
of RESET. While in eight-bit code-size mode, in-
struction cache misses are byte reads (transferred
on D7-DO of the data bus) instead of eight-byte
reads. This allows the Military 1860 XR microproces-
sor to be bootstrapped from an eight-bit EPROM.
For these code reads, byte enables BE2-BED are
redefined to be the low order three bits of the ad-
dress, so that a complete byte address is available.
These reads update the instruction cache if KEN is
asserted (refer to section 3.1.14) and are not pipe-
lined even if NA I1s asserted. While in this mode, in-
structions must reside in an eight-bit wide memory,
while data must reside in a separate 64-bit wide

I PRELIMINARY

B 482b175 0137377 5Tb -

MILITARY i860™ XR MICROPROCESSOR

memory. After the code has been loaded into 64-bit
memory, initialization code can intiate 64-bit code
fetches by clearing the CS8 bit of the dirbase regis-
ter (refer to section 2). Once eight-bit code-size
mode is disabled by software, it cannot be reenabled
except by resetting the Military 1860 XR microproc-
essor.

3.3 Testability

The Military i860 XR microprocessor has a boundary
scan mode that may be used in component- or
board-level testing to test the signal traces leading
to and from the Military i860 XR microprocessor.
Boundary scan mode provides a simple serial inter-

face that makes it possible to test all signal traces”

with only a few probes. Probes need be connected
only to CLK, BSCN, SCAN, SHI, BREQ, RESET, and
HOLD.

The pins BSCN and SCAN control the boundary
scan mode {refer to Table 3.5). When BSCN s as-
serted, the Military 1860 XR microprocessor enters
boundary scan mode on the next rising clock edge.
Boundary scan mode can be activated even while
RESET 1s active. When BSCN is deasserted while in
boundary scan mode, the Military 1860 XR micro-
processor leaves boundary scan mode on the next
nsing clock edge. After leaving boundary scan
mode, the internal state is undefined; therefore, RE-
SET should be asserted.

Table 3.5 Test Mode Selection

BSCN | SCAN Testability Mode
LO LO No testability mode selected
LO Hi (Reserved for Intel)
Hi LO Boundary scan mode, normal
Hi HI Boundary scan mode, shift

SHI as input; BREQ as

output J

For testing purposes, each signal pin has associated
with 1t an internal latch. Table 3.6 indentifies these
latches by name and classifies them as input, out-
put, or control The input and output latches carry
the name of the corresponding pins.

9-37

MILITARY i860™ XR MICROPROCESSOR

Table 3.6 Test Mode Latches

Input Output Associated
Latch Latch Control
Latch

SHI -

BSCN

SCAN

RESET

D0-D63 D0-D63 DATAt

CC1-Cco
A31-A3 ADDRt
NENE NENEt
PTB PTBt
W/R W/Rt
ADS ADSt
HLDA
LOCK LOCKt

READY

KEN

NA

INT/CS8

HOLD
BE7-BED BEt
BREQ

Within boundary scan mede the Military i860 XR mi-
Croprocessor operates in one of twa submodes: nor-
mal mode or shift mode, depending on the value of
the SCAN input. A typical test sequence is . . .

1. Enter shift mode to assign values to the latches
that correspond with the pins.

2. Enter normal mode. In normal mode the Military
i860 XR microprocessor transfers the latched val-
ues to the output pins and latches the values that
are being driven onto the input pins.

3. Reenter shift mode to read the new values of the
input pins.

3.3.1 NORMAL MODE

When SCAN is deasserted, with BSCN asserted the
normal mode s selected. For each input pin (RE-
SET, HOLD, INT/CS8, NA, READY, KEN, SHI,
BSCN, SCAN, CC1 and CCO), the corresponding
latch is loaded with the value that is being driven
onto the pin.

The three-state output pins (A31-A3, BE7-BEQ,
W/R, NENE, ADS, LOCK and PTB) are enabled by
the control latches ADDRt (for A31 -A3), BEt, W/Rt,
NENEt, ADSt, LOCKt and PTBt. If a contro! latch IS
set, the corresponding output latches drive therr out-
put pins; otherwise the pins are not driven.

9-38

B 482L175 0137378 432 M

[]

intgl.
The 170 pins (D63-~D0) are enabled by the control
latch DATAL, which is similar to the other control
latches. In addition, when DATAt is not set, the data

pins are treated as input pins and their values are
latched.

3.3.2 SHIFT MODE

When SCAN is asserted, with BSCN asserted the
shift mode is selected. In shift mode, the pins are
organized into a boundary scan chain. The scan
chain is configured as a shift register that is shifted
on the rising edge of CLK. The SHI pin is connected
to the input of one end of the boundary scan chain.
The value of the most significant bit of the scan
chain is output on the BREQ pin. To avoid glitches
while the values are being shifted along the chain,
the tester should assert both the RESET and HOLD
pins. Then all three-state outputs are disabled
(placed in a HI-Z state). The order of the pins within
the chain is shown in Figure 3.1.

A tester causes entry into this mode for one of two
purposes:

1. To assign values to output latches to be driven
onto output pins upon subsequent entry into nor-
mal mode.

2. To read the values of input pins previously latched
in normal mode.

4.0 BUS OPERATION

A bus cycle begins when ADS is asserted and ends
when READY is sampled active. READY is sampled
one clock after assertion of ADS and thereafter until
it becomes active. New cycles can start as often as
every other clock until three cycles are outstanding.
A bus cycle is considered outstanding as long as
READY has not been asserted to terminate that cy-
cle. After READY becomes active, it is not sampled
again for the following (outstanding) cycle until the
second clock after the one during which it became
active. READY is assumed to be tnactive when it is
not sampled.

With regard to how a bus cycle Is generated by the
Military i860 XR microprocessor, there are two types
of cycles: pipelined and nonpipelined. Both types of
cycles can be either read or write cycles. A pipetined
cycle 1s one that starts while one or two other bus
cycles are outstanding. A nonpipelined cycle is one
that starts when no other bus cycles are outstand-
ing.

PRELIMINARY I

intal.

4.1 Pipelining

A m-n read or write cycle is a cycle with a total cycle
time of m clocks and a cycle-to-cycle time of n
clocks (m > n). Total cycle time extends from the
clock in which ADS is activated to the clock in which
READY becomes active, whereas, cycle-to-cycle
time extends from the time that READY is sampled
active for the previous cycle to the time that it is
sampled active again for the current cycle. When m
= n, a nonpipelined cycle is implied; m > n implies
a pipelined cycle.

Pipelining may occur for the next bus cycle any time
the current bus cycle requires more than two clock
periods to finish (m > 2). The next cycle can be
initiated when NA (next address) is sampled active,
even if the current cycle has not terminated. In this
case, pipelining occurs. NA is not recognized until
after ADS has become inactive.

To allow high transfer rates in large memory sys-
tems, two-level pipelining is supported (i.e., there
may be up to three cycles in progress at one time).
Pipelining enables a new word of data to be trans-
ferred every two clocks, even though the total cycle
time may be up to six clocks.

4.2 Bus State Machine

The operation of the bus is described in terms of a
bus state machine using a state transition diagram.
Figure 4.1 illustrates the Military i860 XR microproc-
essor bus state machine. A bus cycle is composed
of two or more states. Each bus state lasts for one
CLK period.

The Military 1860 XR microprocessor supports up to
two levels of address pipelining. Once it has started
the first bus cycle, it can generate up to two more
cycles as long as READY remains inactive. To start
a new bus cycle while other cycles are still outstand-
ing, NA must be active for at least one clock cycle
starting with the clock after the previous ADS. NA is
latched internally.

MILITARY i860™ XR MICROPROCESSOR

States Tjand Ty, forj = 11,2,3} and k = {1,2}, are
used to describe the state of the Military iB60 XR
microprocessor Bus State Machine. Index | indicates
the number of outstanding bus cycles while index k
distinguishes the intermediate states for the j-th out-
standing cycle.

Therefore there can be up to three outstanding cy-
cles, and there are two possible intermediate states
for each level of pipelining. T;q is the next state after
T, as long as | cycles are outstanding. T)p is entered
when NA is active but the Military i860 XR micro-
processor is not ready to start a new cycle.

Five conditions have to be met to start a new cycle
while one or more cycles are already pending:

1. READY inactive

2. NA having been active

3. An internal request pending (BREQ active)
4. HOLD not active

5. Fewer than three cycles outstanding

Note that BREQ is asserted on the clock after the
Military i860 XR microprocessor realizes an internal
request for the bus.

Upon hardware RESET, the bus control logic enters
the idle state Tj and awaits an internal request for a
bus cycle. If a bus cycle is requested while there is
no hold request from the system, a bus cycle begins,
advancing to state Ty. On the next cycle, the state
machine automatically advances to state Tyq. If
READY is active in state Tq1, the bus control logic
returns either to T, if no new cycle is started, or to
T4, if a new cycle request is pending internally. if an
internal bus request is pending each time READY is
active, the state machine continues to cycle be-
tween Tq1 and Ty.

However, if READY is not active but the next ad-
dress request is pending (as indicated by an active
NA), the state machine advances either to state Tp
(if an internal bus request is pending, signifying that
two bus cycles are now outstanding), or to state Tqo

1 2 3 4 5 6 69
— SH! — BSCN b d SCAN — RESET — DATAt —» oo - —» D63 o d
70 ha 72 100 101 102 103 104
cct — CCo — A3l - i A3 — ADDRt — NENEt - NENE — PTBt —
105 106 107 108 109 110 111 112 113
PFTB — W/Rt — W/R — ADSt — ADS — HLDA —+ LOCKt — LOCK — READY —
114 115 116 17 118 119 126 127
KEN — NA — iNT/CS8 - HOLD — BEt — BET — . — BE0O — BREQ —

Figure 3.1 Order of Boundary Scan Chain

PRELIMINARY 9-39

B 482b175 0137379 379 N

MILITARY i860™ XR MICROPROCESSOR

In

READY DEASSERTED
(NO REQUEST
HOLD ASSERTED)

READY DEASSERTED
— ¥ REQUEST PENDING
READY DEASSERTED HOLD DEASSERTED
{NO REQUEST+
HOLD ASSERTED)

READY DEASSERTED
NA ASSERTED
(NO REQUEST+

HOLD ASSERTED

READY DEASSERTED
A DEASSERTED

READY ASSERTED
NO REQUEST
HOLD DEASSERTED

READY ASSERTED

REQUEST PENDING
HOLD DEASSERTED

HOLD DEASSERTED
NO REQUEST

REQUEST PENDING
HOLD DEASSERTED

o
e ™)
W -
@ ®3
0 29
< Sa
a ax
s & 3 a2
0% ES 3
5, = &
TS e&é?
XN oy
X [

HOLD ASSERTED

READY DEASSERTED
NA ASSERTED
REQUEST PENDING-
HOLD DEASSERTED

X REAGY ASSERTED

READY DEASSERTED READY DEASSERTED:

NA DEASSERTED

READY DEASSERTED
NA ASSERTED

READY ASSERTED -

HOLD DEASSERTED

NA ASSERTED
REQUEST PENDING-

READY DEASSERTED

READY DEASSERTED
NA ASSERTED -
REQUEST PENDING
HOLD DEASSERTED

READY ASSERTED

NA ASSERTED

READY ASSERTED

REQUEST PENDING:
HOLD DEASSERTED

READY DEASSERTED

NOTES:

READY Assumed deasserted one clock after the ac-
tive clock

NA Not sampled during ADS active clock

ADS Active n Ty, To and Ty

HLDA Active in Ty

HOLD Synchronized internally and masked by bus
lock request

REQUEST Internal Bus Request Pending (BREQ assert-

ed)

271121-15

Figure 4.1 Bus State Machine

(if no bus internal request is pending, signifying NA
has been found active). Transitions from state T2
are similar to those from Ty4.

if there are two outstanding bus cycles (as indicated
by To for k = {1,2}) and NA is latched active but
READY 1s not active, one more bus request causes
entry into state Tq. Transitions from this state are
similar to those from To.

9-40

B 4426175 0137380 D90 WA

In general, if there is an internal bus request each
time both READY and NA are active, the state ma-
chine continues to oscillate between Tjp and T, for
j= (2,31

When NA is sampled active while there is a pending
bus request, ADS 1s activated in the next clock peri-
od (provided no more than two cycles are already
outstanding).

PRELIMINARY

a2

mtd R

Internal pending bus requests start new bus cycles
only if no HOLD request has been recognized. T 1s
entered from the idle state T, T11 and Tq5. HLDA is
active in this state. There is a one clock delay to
synchronize the HOLD input when the signal meets
the respective minimum setup and hotd time require-
ments. The state machine uses the synchronized
HOLD to move from state to state.

4.3 Bus Cycles

Figures 4.2 through 4.10 illustrate combinations of
bus cycles.

MILITARY i860™ XR MICROPROCESSOR

4.3.1 NONPIPELINED READ CYCLES

A read cycle begins with the clock in which ADS is
asserted. The Military i860 XR microprocessor be-
gins drving the address during this clock. it samples
READY for active state every clock after the first
clock. A minimum of two clocks are required per cy-
cle. Data is latched when READY is found active
when sampled at the end of a clock period. Figure
4.2 illustrates nonpipelined read cycles with zero
walit states.

CYCLE 1

READ
(2-2)

Ty Ty
CLK | |
A0s “

A31-A3, W/R,

NON-PIPELINED NON-PIPELINED NON-PIPELINED

CYCLE 2 CYCLE 3

READ READ
(2-2) (2-2)

Ty T

7NN

gigligl
fls

w)

ARG

READY 1

gl
AR
BEn, N—ﬁ ' XXX 2 XXX
/]
L/

2 /777 3

) NG a) s ¥ a

271121-16

Figure 4.2 Fastest Read Cycles

PRELIMINARY

9-41

MILITARY i860™ XR MICROPROCESSOR

CYCLE 1 CYCLE 2 CYCLE 3
NON-PIPELINED | NON-PIPELINED | NON-PIPELINED
WRITE WRITE WRITE
(2-2) (2-2) (2-2)
T Ty T T T Ty
= W/ W7 TN
A31-A3, W/R,
BEn,NE:g XXX 1 X><X 2 XXX 3
w LN LD TR
o VLATN L LTTITIN
a0 TR0 [XXRARR [N

271121-17

Figure 4.3 Fastest Write Cycles
4.3.2 NONPIPELINED WRITE CYCLES device being read might still be driving the data bus
during the first clock of the write cycle, there is a
potential for bus contention. To help avoid such con-
tention, the Military 1860 XR microprocessor does
not drive the data bus until the second clock of the
write cycle. The wart state i1s required to provide the
additional time necessary to terminate the write cy-
cle. In other read-write combinations, the Military
i860 XR microprocessor does not require a wait
state.

The ADS and READY activity for write cycles follows
the same logic as that for read cycles, as Figure 4.3
ilustrates for back-to-back, nonpipelined write cy-
cles with zero wait-states.

The fastest write cycle takes only two clocks to com-
plete. However, when a read cycle immediately pre-
cedes a write cycle, the write cycle must contain a
wait state, as illustrated in Figure 4.4. Because the

9-42

PRELIMINARY

B 482b175 0137382 963 M

Intel ® MILITARY i860™ XR MICROPROCESSOR

CYCLE 1 CYCLE 2 CYCLE 3
NON-PIPELINED NON-PIPELINED NON-PIPELINED
READ WRITE READ
(2-2) (3-3) (2-2)

T4 T

SNelgigiginh
= N7\ 27
XXX

A31-A3, W/R,

o e, [X[
s D Iy Ry (K77
o | TN TR
s [yt Dy D) -

DRIVEN L DRIVEN
BY 8y

SYSTEM i860 271121-18

S P -

2

g=
/7]
o)

g

Figure 4.4 Fastest Read/Write Cycles

CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4
NON-PIPELINED PIPELINED PIPEL.NED PIPELINED
READ READ WRITE WRITE
(5-5) (5-2) (6-3) (6-2)

T, T2 T34 Ts

AR
N\ /7

ADS

A31-A3, W/R,
BEN, NENE 1
PTB

VAN
e | 77077
T e I U1) S Y61} S 00 € LA

271121-19

gigiigigiigiipiiniall
TN LT NLT N TN LT
XXX XXX XXX ‘

NEPC

I EE

7
=
2
S
S
-~
o1
)

Figure 4.5 Pipelined Read Followed by Pipelined Write

I PRELIMINARY 9-43

B 44826175 0137383 ATT IR

MILITARY i860™ XR MICROPROCESSOR

intgl.

AR A H AR
w LITTIN LTTRTIN LTTI0N L LTTTON: L T30 LU 7T
o | [T (X T NN\ LLZZITIN L LTTATIN | LTI
os-s0 {XRHRK) §0) S) S ey

271121-20

Figure 4.6 Pipelined Write Followed by Pipelined Read

4.3.3 PIPELINED READ AND WRITE CYCLES

Figures 4.5 and 4.6 Mlustrate combinations of non-
pipelined and pipelined read and write cycles. The
following description applies to both diagrams. While
Cycle 1 is still in progress, two new cycles are initiat-
ed. By the time READY first becomes active, the
state machine has moved through states Ty, Ty,
T2, T2y and Ty. Cycles 3 and 4 show how activating
READY terminates the corresponding outstanding
cycle, and yet activating NA while there 1s an internal
request pending adds a new outstanding cycle.

In Figure 4.5, Cycle 3 is a write cycle following a read
cycle; therefore, one wait state must be inserted.
The Military i860 XR microprocessor does not drive
the data bus until one clock after the read data is
returned from the preceding read cycle. During Cy-
cles 3 and 4, the state machine oscillates between

9-44

B 4826175 0137384 73L WA

states T3 and T31 maintaining full bus capacity (two
levels of pipelining, three cutstanding cycles) Cy-
cles 2, 3 and 4 in Figure 4.6 are 5-2 cycles, i.e. each
requires a total cycle time of five ciocks while the
throughput rate Is one cycle every two clocks

Figure 4 7 illustrates in a more general manner how
the NA signal controls pipelining. Cycle 1 1s a 2-2
cycle, the fastest possible. The next cycle cannot be
started any earlier: therefore, there 1s no need ‘o
activate NA to start the next cycle early. Cycle 2 a
3-3 read, 1s different. Cycle 3 can be started durirg
the third state (a wait state) of Cycle 2, and NA is
asserted to accomplish this.

NA 15 not activated following the ADS clock of Cycle
3, thereby allowing Cycle 3 to terminate before th.o
start of Cycle 4. As a result, Cycle 4 is a nonpips-
lined cycle

PRELIMINARY I

MILITARY i860™ XR MICROPROCESSOR

CLK

ADS

A31-A3, w/R,
BEn, NENE,
PTB

NA

READY

D63-D0

CYCLE 1

NON-PIPELINED
READ
(2-2)

T

=
AR

F_Ti:—‘
/7

CYCLE 2

NON-PIPELINED
—~ READ
(3-3)

T

L

'-—Til—J
N\ /7

s
w
KX

CYCLE 3

PIPELINED
READ
(3-2)

Ti

=

CYCLE 4

NON-PIPELINED
READ
(2-2)

Ty

[L

1DLE IDLE

T

[L

AR

-
77

XXX

1

XXX

2

XX

VAN

LUMIN L

A\

L

(7T LT TN LZZAIN LTI LT T
D) e cl) S I S

Figure 4.7 Pipelining Driven by NA

A31-A3, W/R,
BEN, NENE,

CLK

ADS

T T2 T4

T2

L

T22

T2

=
VAN

INT=

P

PTB

NA

[///

/Az

READY

L

/4

D63-DO

}__.

/2
[/

1

.-C}---

-G

271121-22

Figure 4.8 NA Active with No Internal Bus Request

I PRELIMINARY

B 4825175 0137385 b72 A

9-45

MILITARY i860™ XR MICROPROCESSOR

CYCLE 1

NON-PIPELINED
READ
(2-2)

CYCLE 2 CYCLE 3
NON-PIPELINED | NON-PIPELINED
WRITE WRITE
(2-2) (2-2)

T

« L
AR

A0S

F_HL‘J
vivg

A31-A3, W/R,

BEn, NENE, 1
FTB

=
W77
XXX

gpigigl
flu

. 10X

LK)

) [T

i | [TTI7IN

D63-D0 <><>< 1

)

N LTINS
XX

= [\

/4

271121-23

Figure 4.9 Locked Cycles

When there 1s no internai bus request, activating NA
does not start a new cycle; the Military 1860 XA mi-
croprocessor, however, remembers that NA has
been activated Figure 4.8 illustrates the situation
where NA 1s active but no internal bus request I1s
pending. NA is activated when two cycles are out-
standing. Because there is no internal request pend-
ing until after one (dle state, no new bus cycle is
started during that period.

4.3.4 LOCKED CYCLES

The LOCK signal 1s asserted when the current bus
cycle 1s 10 be locked with the next bus cycle. Asser-
tion of LOCK may be inihated by a program’s setting
the BL bit of the dirbase register using the lock in-
struction (refer to Section 2) or by the Military 1860
XR microprocessor itself during page table updates.

In Figure 4.9, the first read cycle is to be locked with
the following write cycle. if there were idle states
between the cycles, the LOCK signal would remain
asserted. This 1s the case for a read/modify/write
operation Cycle 3 is not iocked because LOCK i1s no
longer asserted when Cycle 2 starts.

9-46

B 4825175 013738L 509 W

4.3.5 HOLD AND BREQ ARBITRATION CYCLES

The HOLD, HLDA, and BREQ signals permit bus ar-
bitration between the Military i860 XR microproces-
sor and another bus master.

See Figure 4.10. When HOLD is asserted, the Mili-
tary 1860 XR microprocessor does not relinquish
control of the bus until all outstanding cycles are
completed. if HOLD were asserted one clock earlier,
the last Military 1860 XR microprocessor bus cycle
before HLDA would not be started.

The outputs (except HLDA and BREQ) float when
HLDA is asserted. HOLD is sampled at the end of
the clock in which it 1s activated. Recommended set-
up and hold times must be met to guarantee sam-
pling one clock after external HOLD activation.
When HOLD 1s sampled active, a one clock delay for
internal synchronization follows. Likewise when
HOLD is deasserted, there is a one-clock delay for
internal synchronization before HLDA 1s deasserted.

PRELIMINARY I

MILITARY i860™ XR MICROPROCESSOR

21 T2 T2, T

CLK

Ty T Ty Tu L

ADS

gigigigigigl
Vig

AR L W S

Sr
5P O
S

-

“‘B-T?..:T% XX)"'”" _____ @(
= VN ST T T AT T TN
s TN LZZIN | [T T TN

es-00 {={_| }---

0

) L

HOLD /

HLDA

1T ™

BREQ AN

; N

271121-24

Figure 4.10 HOLD, HLDA and BREQ

If, during a HOLD cycle, an internal bus request is
generated, BREQ is activated even though HLDA is
asserted. It remains active at least until the clock
after ADS is activated for the requested cycle.

4.4 Bus States During RESET

Figure 4.11 shows how INT/CS8 is sampled during
the clock period just before the falling edge of

RESET. If INT/CS8 is sampled active, the Military
i860 XR microprocessor enters CS8 mode. No in-
puts (except for HOLD and INT/CS8) are sampled
during RESET.

Note that, because HOLD is recognized even while
RESET is active, the HLDA output signal may also
become active during RESET. Refer to Table 3.4
“Output Pin Status During Reset”.

I

> 15 CLKs |

r

L0

RESET

ehay

e LML LU
_/

w/css (XXRK, KX

LG

23 XOOOORRE SO
INPUTS
)

N

271121-25

Figure 4.11 Reset Activities

| PRELIMINARY

B 4825175 D137387 4u5 M

9-47

a
MILITARY i860™ XR MICROPROCESSOR Intel »

5.0 MECHANICAL DATA
Figures 5.1, 5.2 and 5.3 show the locations of pins; Tables 5.1, 5.2, 5.3 and 5.4 help to locate pin identifiers.

s R Q P N [l L K J H 4 3 3 D c 8 A
AN

!) Q) @] (@1) (@] Q) (@] (@] Q)) (@]))) (8]) 1
Yee Vss Vee Ve A2 AT A19 A21 A23 A2 A29 A3d Voo Vsg Yeo Vss Veo

2) ()))))) (@] O (@] (@) (@])) (@])) 2
Yss Yoo VYss AB A0 AI3 AIS ATB A20 AZ4 A27 A28 CCO Vg Vss Voo Vsg

3) (@])))) (8]) (@])) Q)) ()))) 3
Yee Ve A6 A7 A9 Al A14 AIE CLK A22 A26 A30 cct D62 D60 Vss Yee

4) (@]) (@] (@] Q) 4
Vss Yeo AS D63 D59 Yss

5) (@] O (@])) 5
Vee A4 A3 D61 DS8 DS6

& (@] ())) (@] Q) 6
w/R RENE PTB 057 D54 052

7 (%)) () (@] (@) Q) 7
ADS HLDA BREQ 055 053 050

L] () () () (@])) 8
oCk KN READY 051 D49 D48

sl o o o O 0 O |s
INT/CS8 NA HOLD D47 043 D46

10 () () Q) (@] (@] (@) 10
733 34 B8 D43 D42 D44

" Q) () () (@] (@)) 11
BE3 8E2 BE4 D39 D41 D40

12))) (@]) () 12
SHI 8E1 BE0 D37 D36 D38

13) O) (@] O) 13
RESET SCAN BSCN D35 D34 Ve

14))) (@)) 14
Ve 0o o1 D33 Veo Vsg

15) O (@]))) (@)))))) (@) Q) Q) Q)) 15
Yoo Vss D2 o3 05 07 o1 o3 D017 p21 023 027 D29 D31 D32 Vss Vee

16))))))))] Q)) 0) (@]) (9] O) (@] 16
Ve Voo Yss Voo D4 09 08 D15 D14 DI D22 D25 D28 D30 Ve Vee Vsg

71 O))) Q)))) @] O))))))) 17
Yee Vss Voo Va5 Yee 06 DI D12 DI6 D18 D20 D24 D26 Vss Yee Vss Vee
s R Q P N ™ L 3 3 H G F 3 [} c B A

271121-26

Figure 5.1 168-Pin Ceramic Pin Grid Array. Pin Configuration—View from Top Side

9-48 PRELIMINARY I

B 4826175 0137388 381 WA

MILITARY i860™ XR MICROPROCESSOR

A B c [} 3 F [H J K L [N P Q R 5
7
{o 0 O O 0O O O © O O O O o O O O o |
Yo Vss Yec Vss Voo AB1 A29 AZS A23 21 AN AT A2 Vgg Voo Vss Veo
:lo0 o 0O 0 © O O 0O 0O O O O O O O O 0 |-»
Ves Yoo Vss Voo CCO A28 - A27 A2 A20 A1 AI5 A3 AU0 AB Vss VYoo Yss
slo 0o 0 0 O O O O O O O O |
Voo Vss DSO DBZ CCl A3D AZ6 AZZ CLK AIE Al4 Al A9 A7 A8 Yss Yoo
+1 O O O O O O |-«
Ves D59 D63 AS Yoo Vss
METAL LID
510 O O O O |s
DS6 0S8 D6t A3 A Ve
s|lo o o 0O O O |
ps2 DS4 D57 P8 NENE W/R
7 O 0] O Q (o] 7
D50 053 0SS BREQ HLDA ADS
slo 0 © O O O |s
D48 048 DS REAGY KEN [OCK
s1 0 O O O O O |}
046 D45 D47 HOLD NA INT/CS8
wl O ©O O O O O [(w
D44 D42 D43 BE6 BE7 BES
1 O @] Q o O O |
D40 D4t D39 BE4 BEz @E3
12 O O Q 9 Q 12
038 D36 D37 §€0 BEY SHI
3] O Q O 13
Ve D34 035 BSCN SCAN RESET
“l O O O O O |
Ves Vg D33 o1 00 Ves
sl O O O O O O O 0 O O O O O O O |s
Ve Vss D32 D31 029 D27 025 D21 017 O3 0N o7 05 03 D2 Vss Yoo
«|O O O O O O O O O 0 O O O O O O |
Vss Vec Vss D30 D28 025 022 D19 D14 D15 08 09 04 Ve Vss Voo VYss
17 0 0O O O O O o O O O 0] 17
Ve Vss Ve Vss D26 D24 D20 D18 Di6 D1z D10 06 Vee Ves Yoo ¥ss Vee
A B c [3 F [H J I3 L W N P Q R s
271121-27
Figure 5.2 168-Pin Ceramic Pin Grid Array. Pin Configuration—View from Pin Side
9-49

| PRELIMINARY

M 4426175 0137389 214

MILITARY i860™ XR MICROPROCESSOR

.

MQ80860

Top
View

271121-32

Figure 5.3 196-Pin Ceramic Quad Flatpack (CQFP). Pin Configuration—View from Lid Side

9-50

B 4826175 0137390 T3T A

PRELIMINARY I

[]
|n%| , MILITARY i860T™ XR MICROPROCESSOR

Table 5.1 168-Pin Ceramic PGA Pin Assignment by Location

Location Signal Location Signal Location Signal Location Signal
Al Ve Co... ... D47 J16 ..l D17 Qto BE6
. V- Vss C10............ D43 JI6 ... D14 Qtt ... BE4
A3 ..ol Vee [0} | I D39 N7 D16 Q12 ... BEOD
Ad oLl Vgs Clz............ D37 G A21 Q13.......... BSCN
AS. ...l D56 C13..... ... D35 K2............. A18 Qi4............. D1
AB............. D52 Cl4............ D33 | A16 Q5. D2
A7 oo D50 C15............ D32 K15............ D13 Qi6............ Vss
AB............. D48 Cié............ Vss Kig............ D15 Q17 ... Vee
A9l D46 C17............ Ve K17 ..., D12 Rt............. Vss
A1D............ D44 [Vss I A19 R2............. Vee
At D40 D2........ct Voo L2............. A15 [1¢ T Vss
A2, D38 D3...........0 De2 L3 ... A4 RA............. Voe
A3l Vee DI5............ D31 Li5............ D11 RS A4
Atdl Vss D16............ D30 L16 ... D8 R6........... NENE
AlS.......... . Veo D17.... ..ol Vss L17 ...l D10 R7 ..ol HLDA
Al6............ Vss = Voo Mool A17 R8 ... KEN
A7l Veo E2............. CCo M2 A13 RS. NA
Bl1............. Vss E3...... ... cC M3l At R10 BE?7
B2............. Vee E15............ D29 M5 ..ol D7 R11 BE2
B3............. Vsg E16............ D2s M16 D9 Ri2 BE1
B4............. D59 E17............ D26 MI7 oo D6 R13.......... SCAN
B5............. D58 F1.o.oooo .. A31 Nt A2 R14............. Do
B6............. D54 F2 A28 N2............. A10 R15............ Vss
B7............. D53 F3....o.oinit A30 1 A9 R16............ Vee
B8............. D49 F15............ D27 N15.. ... D5 R17............ Vss
BO........... D45 F16............ D25 N16............. D4 St Veo
B10............ D42 [S D24 N17. oo Vee L Vss
Bit............ D41 Gl.......oul A29 [Vss S3......l. Vee
B12............ D36 G2............. A27 P2 ...l A8 S4...... Vss
B13............ D34 G3............. A26 P3 ...l A7 S5, Veo
Bi4............ Veo G15 D23 PISY. ... D3 S6............ W/R
B15............ Vss G186 D22 P16............ Voo S7 .o ADS
B16............ Vee G17 ..o D20 P17 Vgs S8 ... LOCK
B17............ Vss Hi............. A25 (@ I Vee S9 INT/CS8
Cr. o Vce H2............. A24 Q2............. Vss S10............ BES
C2............. Vss H3...oooioii A22 Q3. A6 S11........ ... BE3
C3....... D60 H16............ D21 Q4.............. A5 St12 SHi
Ca.. ... D63 H16............ D19 Q5... ... A3 S13......... RESET
Co5.. i D61 H17. D18 Q6 PTB St4............ Vss
C6....oovvenen D57 JU oo A23 Q7. BREQ Si15............ Vee
C7.ooviinn D55 J2 oo, A20 Q8 READY S16............ Vssg
C8.........l D51 B3 CLK Q9........... HOLD S17............ Vee
PRELIMINARY 9-51

B 432b175 0137391 97 W

MILITARY i1860™ XR MICROPROCESSOR

Tabie 5.2 168-Pin Ceramic PGA Pin Assignment by Function

i Address

Data Data Control Vee Vss

Signal Location;Signal Location|Signal Location|Signal Location|Signal Location|Signal Location
Al Q5[D0... R14i{D32........ C15|ADS S7|Vegeoovnnnn. AllVgg......... A2
Ad.......... RS{D1 Q14{D33........ C14|{BED Q12|Veg.oooennn A3|Vgg......... A4
A5.......... Q4iD2 Qi5[D34........ B13|BET R12{Veg.oo.. ... A13|Vsg........ A4
A6......... Q3(D3......... P15|D35........ C13|BE2 R1t{Veg. ...t A15(Vgg........ A16
A7 .o P3|D4......... N16{D36........ B12|BE3........ S11|Veg. oo nt e A17[Veg......... B1
AB P2{ps N15ID37.. C12{BE4 Qi|Veg- o oennt B2|Vsg......... B3
A9 ..N3|D6 M17|D38........ A12|BES........ S10{Vegevennn e B14|Vss........ B15
A0 N2(D7 M15|D39 .C11|BE6 Qi0fVee- et B16|Vgg........ B17
A1t oL M3[(D8......... L16{D40........ A11|BE7 R10|Veg. o vttt C1{Vgg.eevn.n.. c2
A12......... N1[D9 M16{D41. B11|BREQ....... Q7|\Voge-evnnn C17|Vgg.-.-.... c16
A3 ...l M2|D10........ L17|D42........ B10|BSCN...... Q13{Vgg-oevnnnn. D2(Vgg......... D1
Ald L3011 L15|D43........ cto{CCo......... E2\Vog-o--nnn.. E1|lVss D17
A5 L2|p12........ K17|D44........ A10|CC1......... E3|Veg --v.. .. N17{Vgs P1
Af6...... .. K3jo13........ K15|D45......... BOICLK......... J3|\Veg- oo P16|Vgs..... .. P17
A17 ... M1[D14........ J16|D46......... AQ[HLDA R7|Vegeooonnns Q1|Vss..... ... Q2
A18......... K2|D15........ K16/D47......... C9{HOLD....... Q9IVeg -o-- - Q17{Vss........ Q16
A1S......... L1|D16........ J17|D48......... A8IINT/CS889(Vce. oo R2!Vgg......... R1
A20 J2|D17 ..., J15|D4g......... BS|KEN R8[Veg.vovn . R4|Vss......... R3
A2t K1{D18 H17|D50......... A7|LOCK S8|Veg .. R16(Vsg........ R15
A22......... H3{D19 H16|DS1......... C8INA RO[Veg.ovenn... S1{Vsg.-...... R17
A23 J1|D20 Gt17|Ds2......... AB{NENE....... R6{VeG. o ovnnts S3{Vgg . einunn. s2
A24 H2{D21 H15|D53......... B7|PTB QB6IVeg--avvnnn S5(Vgg......... S4
A25......... H1{D22 G16|D54......... B6|READY Q8Veg. o vv - e S15|Vsg........ S14
A26 ..., G3|D23 G15(D55......... C7|{RESET..... S13|Veg. oot S$17|Vsg........ Si6
A27......... G2|D24........ F17|D56......... ABISCAN...... R13
A8 F2|D25........ F16/D57......... CB(SHI S12
A29. ..., G1|D26........ E17\D58......... BS|W/H S6
A30......... F3{D27........ F15(D59......... B4
A3l ... F1(D28........ E16/D60......... C3

D2g........ E15/D61......... cs

D30 D16{D62......... D3

D31 D15/063......... Ca
9-52

E u432k17?5 0137392 402 W

PRELIMINARY I

MILITARY i860™ XR MICROPROCESSOR

Table 5.3 196-Pin Ceramic Quad Flatpack (CQFP) Pin Assignment by Location

Pin Signal Pin Signat Pin Signal Pin Signal
1. D60 50 ...l D27 99......... SCAN 148 A9
2 D59 51 ...l D26 100 BSCN 149 ... A10
3 D58 52 ...l D25 101........e SHI 150 A1
4 ..o Ds7 53 ...l D24 102 BED 151 ...l A12
5 ... D56 54 ... D23 103 BE1 152 ..ol A13
6 ...l D55 85..l Vss 104 Vss 153Vss
7 i D54 56 D22 105 BE2 154 ..., CLK
- J D53 57 ciiiiiii Vee 106 Vee 185 Ve
9 ... D52 58 ...l D21 107 ..ol BE3 156 Al4

10 ...l D5t 59.. .. el Vss 108 Vss 157 ... Vsg

1 Voo (510 D20 109 BE4 158 A15

12 ..o D50 [Veo 110 Veo 189 Vee

10 Vss 62 ...l D19 1M1 BES 160 Al16

14 ... D49 63............ Vss M2 ...l Vss 161 ... Vss

15 oo Vee 64 D18 L 1< J BES 162 A7

16 ..ot D48 65 Vee 114 ...l Veo 163 Vee

R I Vss 66 D17 M5 ... BE7 164 A18

18 D47 67.....inl. Vss 116 Vss 165 Vss

19 .ol Vee 68 D16 117 .o HOLD 166 A19

20 ...l D46 69 Vee 118 Vee 167 Veo

21l Vss 70 .l D15 119...... INT/CS8 168 A20

22 ..o D45 /4 I Vss 120 Vsg 169 Vss

- I Vee 72 o D14 2 -3 I NA 170 ..ot A21

24 ... D44 73 ... Vee 122 ... Veo 1771 ..l Voo

5. Vss 74 ...l D13 1230 KEN 172 ..l A22

26 D43 5. .00l Vss 124 Vss 173 ... Vss

27 Ve 76 ..o D12 125....... READY 174 A23

28 ... D42 77 i Vee 126 ..., Vee 175 ... Ve

29, Vss 8 D11 12700 LOCK 176 A24

30 ... D41 79. ...t Vss 128 Vss 177 .ol Vss

3t . Vce 80 D10 129......... HLDA 178 ..ol A25

32 ... D40 81 ... Veo 130 ... Vee 179 .ol Vee

3. Vss 82 ...l D9 131 ... ADS 180 A26

34 ...l D39 83............ Vss 132 ..ol Vss 181 ... Vss

35 Vee 84 D8 133 BREQ 182 A27

6 ... D38 85 Vee 134 Veo 183 Vee

37t Vss 86 b7 135.......... W/R 184 A28

38 ... D37 87l Vss 136 Vss 185 Vss

39 ... Vee 88o.un D6 137 .ol PTB 186 A29

40 D36 89 Voe 138 Vee 187 Ve

atoo Vss 90 ... D5 139 NENE 188 A30

42 ... D35 2 IR Vss 140 Vss 189 ..., Vgs

43 ...l D34 92 ... D4 141 ... A3 190 A31

44 ...l D33 93 Ve 142 Ve 191 ... Voo

45 (... D32 94 ... D3 143 ...l A4 192.......... CCo

46 D31 95 ..ol D2 144 ... A5 193.......... CC1

47 ... D30 96 ...l D1 145 ... A6 194 D63

48 ... D29 97 ...l DO 146 A7 195 ... D62

49 ... D28 98 RESET 147 ...l A8 196 D61

PRELIMINARY 9-53

B 4426175 0137393 749 WA

MILITARY i860™ XR MICROPROCESSOR lntel .

Table 5.4 196-Pin Ceramic Quad Flatpack (CQFP) Pin Assignment by Function

Signal Pin Signal Pin Signal Pin Signal Pin
A3 141 D20 60 BEa.......... 109 VEG «ooeeennn 142
Ad ... 143 D21 ...t 58 BES.......... 11 VEG cevnrennnn 155
A5 ... 144 D22 56 BE6.......... 113 VEC - eveeenes 159
AB 145 D23 54 BE7 115 VEE e 163
A7 146 D24 53 BREQ 133 VoG e 167
A8 147 D25 52 BSCN 100 VGE e 171
A9 ... 148 D26 51 CCO.......... 192 Veg cveeinnnn 175
A0 ... 149 D27 50 CCt.......... 193 VEG coeeennnns 179
Al ... 150 D28 49 CLK.......... 154 VGG e 183
A12 ... 151 D29 48 HLDA......... 129 VEG e 187
A13 ... 152 D30 47 HOLD 117 VEG e 191
A4 156 D31, 46 INT/CS8 118 VGG oo 13
A5 ... 158 D32 45 KEN.......... 123 VS oo 17
A6 160 D33 44 LOCK......... 127 VS o eerinnns 21
A7 162 D34 43 NA 121 1 T, 25
A8 ... 164 D35 42 NENE 139 VS et 29
A9l 166 D36 40 PTB.......... 137 VS e 33
A20 168 D37 ..oonnnnn, 38 READY 125 VS8 e 37
A2t ...l 170 D38 36 RESET 98 VS it 41
A22 172 D39 34 SCAN.......... 99 VS o ieriinnns 55
A23 ... 174 D40 32 SHI........... 101 VGG et 59
A24 176 D4t 30 WHR......... 135 T 63
A25 178 D42 28 Ve e 11 VSS.iereiinnns 67
A26 180 D43 26 VEG veeeennn, 15 VS oot 71
V-7 S 182 D44 24 VEG veeenn s, 19 VGG e rv i aeennns 75
A28 184 D45 22 VEC veeeiann 23 VSS o vvaennnn. 79
A29 186 D46 20 VEC veereennn, 27 VS oot 83
A3D 188 D47 18 VEC coeeennn, 31 VGG v oeeinn 87
A31 190 D4g 16 Veg - e 35 Vgg. o iviiien 91
Do ... 97 D49 14 VGG voeeeennnnn 39 O 104
D1 ...l 96 D50 12 Vg - 57 Vag ool 108
D2 ... 95 D51 10 VOG oot 61 VSS coevennnns 112
D3 94 D52 9 Ve oot 65 Vgg .. ovnn 116
D4 92 D53 8 VEG veeeeenn s, 69 VSS cvervnnnn. 120
D5 90 D54 7 VEC veeieinnn 73 VSS v 124
D6 ..oovvnnnn. 88 D55oovntn. 6 VOC veeveennn, 77 S 128
D7 ...l 86 D56 5 Veg v 81 Vgg -ooiinen 132
D8 ... 84 D57 4 Veg - 85 Vgs ..ol 136
DS 82 D58 3 Veg o 89 Veg rvveiennnn 140
D10 80 D59 2 Voo oo 93 Vgs ... 153
[0 I 78 D60 1 Ve - ovoee et 106 Veg vevivnnnn 157
D12 76 D61 196 Veg cveeiennnn 110 U 161
D13 74 De2 195 VEe e 114 VS it 165
D14 72 D63 194 VEC e 118 T 169
D15 70 ADS.......... 131 Veg cveveennn 122 Vs oo 173
D16 68 BEO 102 VoG covieennnn 126 VES veivnnnn. 177
D17 66 BET.......... 103 VEg - oo 130 Vag ovann.. 181
D18 64 BEZ.......... 105 VeG vt 134 | O 185
D19 62 BES.......... 107 VEC e 138 VSS coieeannns 189

9-54 PRELIMINARY

M 4426175 0137394 bLAS W

intgl.

6.0 ELECTRICAL DATA

inputs and outputs are TTL compatible. All input and
output timings are specified relative to the 1.5 volt
level of the rising edge of CLK and refer to the point
that the signals reach 1.5V.

6.1 Absolute Maximum Ratings

Case Temperature T under Bias —55°C to + 125°C

MILITARY i860™ XR MICROPROCESSOR

NOTICE" This data sheet contains preliminary infor-
mation on new products in production. The specifica-
tions are subject to change without notice. Venfy with
your local Intel Sales office that you have the latest

data sheet before finalizing a design.

*WARNING- Stressing the device beyond the “Absolute
Maximum Ratings" may cause permanent damage.
These are stress ratings onfy. Operation beyond the
“Operating Conditions” 1s not recommended and ex-
tended exposure beyond the “Operaling Conditions”
may affect device reliability.

Storage Temperature —65°Cto +150°C

Voitage on Any Pin

with Respectto Ground ~-0.5t06.5V

6.2 Operating Conditions

Symbol Parameter Min Max Units
T Case Temperature (Instant On) —-55 +125 °C
Vee Digital Supply Voltage 4.75 5.25 v
6.3 DC Characteristics (Over Specified Operating Conditions)
Table 6.1 DC Characteristics
Symbol Parameter Min Max Units Notes
ViL Input LOW Voltage -0.3 +0.8 \
Vin Input HIGH Voltage 2.0 Voo +0.3 \
ViLe CLK Input LOW Voltage -0.3 +0.8 A
ViHe CLK Input HIGH Voltage 30 Ve + 0.3 \
VoL Output LOW Voltage 0.45 V) (Note 1)
Vox Output HIGH Voltage 2.4 \ {Note 2)
Ico Power Supply Current
CLK = 25.0 MHz, 33.3 MHz 600 mA Vee @5V
CLK = 40.0 MHz 650 mA Voo @5V
lu Input Leakage Current 15 KA No pullup
or pulldown
ILo Output Leakage Current +15 nA
Cin Input Capacitance 15 pF (Note 3)
Co 170 or Output Capacitance 15 pF (Note 3)
CeoLk Clock Capacitance 20 pF (Note 3)
A Thermal Resistance (Junction-to-Ambient)
Pin Grid Array NA 17 °C/W
Ceramic Quad Flatpack NA 23 °C/W
9;c Thermal Resistance (Junction-to-Case)
Pin Grid Array NA 1.5 °C/W
Ceramic Quad Flatpack NA 7 °C/W
NOTES:
1. This parameter 1s measured at 4.0 mA for A31-A3, D63-D0, BE7-BED; at 5 0 mA for all other outputs.
2. Thus parameter 1s measured at 1.0 mA for A31-A3, D63-D0, BE7-BED; at 0 9 mA all other outputs.
3. These parameters are not tested They are guaranteed by design characterization.
9-55

l PRELIMINARY

B 4426175 0137395 511 W

MILITARY i860™ XR MICROPROCESSOR

6.4 AC Characteristics (Over Specified Operating Conditions)

Table 6.2 AC Characteristics
All timings measured at CLK = 1.5V unless otherwise specified.

- 25 MHz 33 MHz 40 MHz
Symbol Parameter Min Max Min Max Min Max Notes
(ns) (ns) (ns) (ns) (ns) (ns)

1 CLK Period 40 125 30 125 25 125

t2 CLK High Time 10 at 3V

t3 CLK Low Time 10 5 at0.8v

t4 CLK Fall Time 7 3v-0.8v

t5 CLK Rise Time 7 0.8v-3v

t6a A31-A3, PTB, W/R, NENE 35 43 3.5 23 35 21 50 pF load
Valid Delay

t6b BEn* Valid Delay 35 25 3.5 25 35 23 50 pF load

17 Float Time, All Outputs 35 40 35 30 3.5 25 (Note 1)

t8 ADS, BREQ, LOCK, HLDA 35 29 3.5 20 35 15 50 pF load
Valid Delay

19 D63-D0 Vahd Delay 35 60 3.5 35 3.5 33 50 pF load

t10a Setup Time, All Inputs 16 11 (Note 2)
except DATA

ti1a Hold Time, All Inputs 7 4 3 {Note 2)
except DATA

t10b DATA Setup Time 16 11 10

t11b DATA Hold Time 4

NOTES:

1. Float condition occurs when maximum output current becomes less than I g in magnitude Float delay 1s not tested.

2. INT and HOLD are asynchronous inputs. The setup and hold specifications are given for test purposes or to assure
recognition an a specific nising edge of CLK. INT should remain asserted until software acknowledges the interrupt.
n=20,1,...,7

9-56

B 4826175 0137396 4586 W

PRELIMINARY '

In%l o MILITARY i860™ XR MICROPROCESSOR

—{ {5 f— — t4 e—
3.0v
CLK
1.5 Z 12 13
0.8y 7 7
t1
INPUT INPUT
SETUP HOLD
INPUTS
O tHmin
wmux"smax'igqu
— tsmin'(arrnn'tamin
7 max |
~—» ta— 7min
FLOAT
QUTPUTS >>>>>>> -----
271121-28
Figure 6.1 CLK, Input and Output Timings
PRELIMINARY 9-57

B 4426175 0137397 394 WA

L]
MILITARY i860™ XR MICROPROCESSOR Intel .

7.0 INSTRUCTION SET

Key to abbreviations:

For register operands, the abbreviations that describe the operands are composed of two parts. The first part
describes the type of register:

c - One of the control registers fir, psr, epsr, dirbase, db or fsr
f One of the floating-point registers: f0 through 31
i One of the integer registers: r0 through r31

The second part identifies the field of the machine instruction into which the operand is to be placed:

srct The first of the two source-register designators, which may be either a register or a 16-bit
immediate constant or address offset. The immediate value is zero-extended for logical
operations and is sign-extended for add and subtract operations (including addu and subu)
and for all addressing calculations.

srctni Same as src1 except that no immediate constant or address offset value is permitted.

srcls Same as src? except that the immediate constant is a 5-bit value that is zero-extended to 32
bits.

src2 The second of the two source-register designators.

dest The destination register designator.

Thus, the operand specifier isrc2, for example, means that an integer register is used and that the encoding of
that register must be placed in the src2 field of the machine instruction.

Other {nonregister) operands are specified by a one-part abbreviation that represents both the type of operand
required and the instruction field into which the value of the operand is placed:

#const A 16-bit immediate constant or address offset that the 860 XR microprocessor sign-extends
to 32 bits when computing the effective address.

fbroff A signed, 26-bit, immediate, relative branch offset.

sbroff A signed, 16-bit, immediate, relative branch offset.

brx A function that computes the target address by shifting the offset (either /broff or sbroff) left

by two bits, sign-extending it to 32 bits, and adding the result to the current instruction pointer
plus four. The resulting target address may lie anywhere within the address space.

9-58 PRELIMINARY I

B 4325175 0137398 220 M

Int@l . MILITARY i860™ XR MICROPROCESSOR

Unless otherwise specified, floating-point operations accept single- or double-precision
source operands and produce a result of equal or greater precision. Both input operands
must have the same precision. The source and result precision are specified by a two-letter
suffix to the mnemonic of the operation.

Other abbreviations include:

Precision specification .ss, .sd or .dd (.ds not permitted). Refer to Table 7.1.
Precision specification .ss, .sd, .ds or .dd. Refer to Table 7.1.

.sd or .dd. Refer to Table 7.1.

.ss or .dd. Refer to Table 7.1.

.b (8 bits), .8 (16 bits), or .1 (32 bits)

. (32 bits), .d (64 bits), or .q (128 bits)

.1 (32 bits), or .d (64 bits)

mem.x{address) The contents of the memory location indicated by address with a size of x.

PM The pixel mask, which is considered as an array of eight bits PM([7]..PM[0], where PMI0] is
the least significant bit.

Table 7.1 Precision Specification

N x g <D

Suffix Source Result
Precision | Precision

.88 single single

.sd single double

.dd double double

.ds double single

7.1 Instruction Definitions in Alphabetical Order

adds ISTCT, ISTC2, IAESE . . v e ettt e e e et e e Add Signed
idest <« isrcl + isrc2
OF <« (bit 31 carry # bit 30 carry)
CC set if isrc2 < —isrcT (signed)
CC clear if isrc2 = —isrc1 (signed)

addu JSICT, ISIC2, ITOSE. . . . o ot it e e e Add Unsigned
idest «— Jsrc1 + isrc2
OF <« bit 31 carry
CC <« bit 31 carry

and ISICT, ISTC2, HHEST . . o o i i e ettt s e e e e e Logical AND
idest <«— isrci and isrc?2
CC set if result is zero, cleared otherwise

andh FCONSE ISIC2, IEST . . . e e Logical AND High
idest «— (#const shifted left 16 bits) and /src2
CC set if result 1s zero, cleared otherwise

andnot JSICT, ISICE, JTESE o o e ettt et e e e Logical AND NOT
idest <— not jsrc! and isrc2
CC set if result is zero, cleared otherwise

andnoth #Const ISIC2, idesSt e Logical AND NOT High
idest <— not (#const shifted left 16 bits) and isrc2
CC set if result is zero, cleared otherwise

bec Yo g £ A Qe Branchon CC
iIF cC =1
THEN continue execution at brx(lbroff}
Fl

l PRELIMINARY 9-59

B 4426375 0137399 1ikL7? A

-
MILITARY i860™ XR MICROPROCESSOR Intel .

be.t OrOff Branch on CC, Taken
IF CcC =1
THEN execute one more sequential instruction
continue execution at brx(lbroff)
ELSE skip next sequential instruction
Fl

bla ISICTn iSrc2, Sbroff Branch on LCC and Add

LCC-temp clear if isrc2 < —isrc1ni (signed)
LCC-temp set if isrc2 > —isrc1ni (signed)

isrc2 <« isrcini + isrc2

Execute one more sequential instruction

IF LCC

THEN LCC <— LCC-temp
continue execution at brx(sbroff)

ELSE LCC <« LCC-temp

Fi

bnc OOl e e Branch on Not CC
IF CC=20
THEN continue execution at brx(/broff)
Fl

bnc.t IOrOff e Branch on Not CC, Taken
iIF CC =0

THEN execute one more sequential instruction
continue execution at brx(ibroff)

ELSE skip next sequential instruction

Fl

br roff . . e Branch Direct Unconditionally
Execute one more sequential instruction.
Continue execution at brx(lbroff).

bri bsretmr}l oo Branch Indirect Unconditionally
Execute one more sequential instruction
IF any trap bit in psr is set

THEN copy PU to U, PIM to IM iIn psr
clear trap bits
IF DS s set and DIM is reset
THEN enter dual-instruction mode after executing one
instruction in single-instruction mode
ELSE IF DS 1s set and DIM is set
THEN enter single-instruction mode after executing one
instruction in dual-instruction mode
ELSE IF DiM is set
THEN enter dual-instruction mode
for next two instructions
ELSE enter single-instruction mode
for next two instructions
Fl
Fi
Fl
Fi
Continue execution at address in isrc 1
{The original contents of /src 77 is used even if the next instruction
modifies jsrc7ni. Does not trap if /srcniis misaligned.)

bte ISICTS, ISIC2, SBroff . ..o Branch If Equal
IF 1srels = isrel
THEN continue execution at brx(sbroff)
Fl

9-60 PRELIMINARY

I 4825175 0137400 709 MW

In@ o . MILITARY i860™ XR MICROPROCESSOR

btne ISTC1S, iSrC2, Shroff . . . oo e Branch If Not Equal
IF isrc1s + 1src2
THEN continue execution at brx(sbroff)
Fi

call /2T 00 O Subroutine Call

r1 <« address of next sequential instruction + 4 (+8 in dual mode)
Execute one more sequential instruction
Continue execution at brx{lbroff)

calli ISrCINi] .« Indirect Subroutine Call
r1 <« address of next sequential instruction + 4 (+8 in dual mode)
Execute one more sequential instruction
Continue execution at address in isre1ni
(The original contents of isrc1ni is used even if the next instruction
modifies isrc7ni. Does not trap if isrc7ni is misaligned.
The register isrc1ni must not be r1.)

fadd.p fSICT, fSC2, fOBSE . . o ettt e ittt st s Floating-Point Add
fdest «— fsrct + fsrc2
faddp FSICT, FSIC2 FABSE. . .\ .\t e ettt i e Add with Pixel Merge

fdest «— fsrcl + fsrc2
Shift and load MERGE register as defined in Table 7.2

faddz FSICT, FSIC2, FOBSE . o v ettt et e e e et s Add with Z Merge
fdest «— fsrcl1 + fsrc2
Shift MERGE right 16 and load fields 31..16 and 63 .48

famov.r FSrCT, Fdest. e Floating-Point Adder Move
fdest «— fsrct
Send fsrc? through the floating-point adder. (Preserves —0 (minus zero) when fsre7 is — 0. fsre2
must be coded as 10 by the assembler.)

fiadd.w FSICT, fSrC2, FUBSE . . . o oo ot e e Long-Integer Add
fdest «— fsrcl + fsrc2

fisub.w fSICT, 1STC2, FABSL. . . o e e Long-integer Subtract
fdest < fsrcl — fsrc2

fix.v forot, fdest .. .o Floating-Point to Integer Conversion

fdest <— 64- bit value with low-order 32 bits equal to integer part of fsrc7 rounded

Floating-Point Load
fid.y ISICT(ISIC2), FIBSE e e (Normal)
fid.y ISICT(iSre2)+ +, FdeSto e (Autoincrement)

fdest <— mem.y (isrc1 + isrcd)
IF autoincrement
THEN ssrc2 <« fsrct + isrc2

Fi
Cache Flush
flush FCONSHUSICE) . - ettt ittt i e T (Normal)
flush FOONSHISICO t 4 o e e (Autoincrement)

Replace block in data cache with address (# const + isrcZ).
Contents of block undefined.

iF autoincrement

THEN Jisrc2 «— #const + 1src2

Fi

fmlow.dd fsrct, fsrc2, fdest. .. o e Fioating-Point Multiply Low
fdest «— low-order 53 bits of fsrc7 mantissa > fsrc2 mantissa
fdest bit 53 <— most significant bit of manussa

I PRELIMINARY 9-61

B 4426175 0137401 bu5 A

a
MILITARY i860™ XR MICROPROCESSOR |nte| .

fmov.r fSret fdest ..o Floating-Point Reg-Reg Move
Assembler pseudo-operation
fmov.ss fsrcl, fdest = fiadd.ss fsrc7, 10, fdest
fmov.dd fsrct, fdest = fiadd.dd fsrct, 10, fdest
fmov.sd fsrct, fdest = tamov.sd fsrc, fdest
tmov.ds fsrct, fdest = famov.ds fsrc?, fdest
fmul.p 1srct, fsrc2, fdesto Floating-Point Muitiply
fdest <— fsrc1 X fsrc2
1.1+ + Floating-Point No Operation
Assembler pseudo-operation
fnop = shrd r0, r0, r0

form FSrod, fOBSE .. OR with MERGE Register
fdest «— fsrc1 OR MERGE
MERGE «— 0

frep.p ISIC2, fdest . ..o e Floating-Point Reciprocal
fdest <— 1/fsrc2 with maximum mantissa error < 2-7

frsqr.p forc2, fdest Floating-Point Reciprocal Square Root

fdest «— 1/SQRT (fsrc2) with maximum mantissa error < 2-7

Floating-Point Store
fst.y fdest, iSTCT{ISIC) ...\ {Normat)
fsty FAESL ISICTUSICA + F oot e (Autoincrement)

mem.y (isrc2 + isrc1) <«— fdest
IF autoincrement
THEN isrc2 <« Jisrct + isrc2

Fi

fsub.p £8re1, FS1C2, fest. ..o oo Floating-Point Subtract
fdest «— fsrc1 — fsrc2

ftruncy fsrel, fdest ... Floating-Point to Integer Conversion
fdest <— 64-bit value with low-order 32 bits equal to integer part of fsrc?

fxtr FSret, dest oo Transfer F-P to Integer Register
fdest «— fsrct

fzchkl fsred, fsrc2, fdest 32-Bit Z-Buffer Check

Consider fsrc1, fsrc2, and fdest as arrays of two 32-bit
fields fsrc7(0)..7src (1), fsrc2(0)..fsrc2(1), and fdesH0)..fdesK(1)
where zero denotes the least-significant field,
PM <«— PM shifted nght by 2 bits
FORi=0to1
DO
PM[i + 8] « fsrc2(i) < fsret(i) (unsigned)
fdesH() «— smaller of fsrc2(i) and fsre1(i)

oD
MERGE <« 0
fzchks FSICT, fSrC2, fAESt . ..o 16-Bit Z-Butfer Check

Consider fsrc1, fsrc2, and fdest as arrays of four 16-bit
fields fsrc7(0)..fsrc 1(3), fsre2(0)..fsrc2(3), and fdes0)..fdesH(3)
where zero denotes the least-significant field.
PM <« PM shifted right by 4 bits
FORi=0t03
DO
PM [i + 4] « fsre2(i) < fsre1(i) (unsigned)
fdest(i) <« smaller of fsrc2(i) and fsrc (i)
oD
MERGE « 0

OVr Software Trap on Integer Overflow
it OF in epsr = 1, generate trap with IT set in psr.

9-62 PRELIMINARY I

B 482L175 0137402 58] WM

-
Intel o MILITARY i860™ XR MICROPROCESSOR

ixfr fSrelni, fdestoiiiii PO Transfer Integer to F-P Register
fdest «— isrcini

id.c B g e e - 1 S Load from Contro! Register
idest < csrc2

ld.x isrcilisrcd), idest. e e e e Load Integer
idest «— mem.x (isrc1 + isrcd)

BOCK vttt e e Begin Interlocked Sequence

Set BL in dirbase. The next load or store that misses the cache locks that location.
Disable interrupts until the bus is unlocked.

mov FSIC2 JABSE . . o ottt et Register-Register Move
Assembler pseudo-operation
mov isrc2, idest = shl 10, jsrc2, idest

mov CONSIZ2, JdESE . . v e e e e Constant-to-Register Move
Assembler pseudo-operation
adds /%const32, r0, idest
... when const32 < 0x8000

orh A %const32, r0, idest
or /%const32, idest, idest
... when const32 > 0x8000

3T + S I R PR Core-Unit No Operation
Assembler pseudo-operation
nop = shir0, r0, r0
or FSICT, ISIC2, JABSE . . .« o et et ettt Logical OR
idest <— isrc1 OR isrc2
CC set if resuit is zero, cleared otherwise

orh FCONSL ISIC2, JOSE .. oottt it Logical OR High
idest <— (#const shifted left 16 bits) OR /sre2
CC set if result is zero, cleared otherwise

pfadd.p fsrcl, fsrc2 fdest ... Pipelined Floating-Point Add
fdest < last stage Adder result
Advance A pipeline one stage
A pipeline first stage <«— fsret + fsrc2

ptaddp fSret, fSrC2, FAESt ..o oo e Pipelined Add with Pixel Merge
fdest < last stage Graphics result
last stage Graphics result «— fsrc? + fsrc2
Shift and load MERGE register from last stage Graphics result as defined in Table 7.2

pfaddz 1SrCT, FSIC2 FUBST. o oo i e e Pipelined Add with Z Merge
fdest <— last stage Graphics result
last stage Graphics result €« fsrc! + fsrc2
Shift MERGE right 16 and load fields 31..16 and 63..48 from last stage Graphics result

ptam.p fsret, fsrc2, fdest ... Pipelined Floating-Point Add and Mulitiply
fdest «— last stage Adder result
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage <— A-op1 + A-op2
M pipeline first stage «— M-op1 X M-op2

pfamov.r fsrcl, fdest Pipelined Floating-Point Adder Move
fdest «— last stage Adder result
Advance A pipeline one stage
A pipeline first stage «— fsrc?

I PRELIMINARY 9-63

M 4826175 0137403 418 WM

D

]
MILITARY i860™ XR MICROPROCESSOR |n‘te| .

pfeq.p fsret, fsre2, fdest ... i Pipelined Floating-Point Equal Compare
fdest «— last stage Adder result
CC set if fsrc1 = fsrc2, else cleared
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs

ptgt.p fsrct, fsre2, fdest il Pipelined Floating-Point Greather-Than Compare
(Assembler clears R-bit of instruction)
fdest <— last stage Adder result
CC set if fsre? > fsrc2, else cleared
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs
plladd.w fsrct, fsrc2 fdest ... o e Pipelined Long-Integer Add
fdest <— last stage Graphics result
last stage Graphics result «— fsrc? + fsrc2

plisub.w fsret, fsre2 fdest Pipelined Long-Integer Subtract
fdest <«— last stage Graphics result
last stage Graphics result <— fsrc1 — fsrc2

pfix.v fsrcl, fdest i, Pipelined Floating-Point to integer Conversion
fdest <— last stage Adder result
Advance A pipeline one stage
A pipeline first stage <— 64-bit value with low-order 32 bits
equal to integer part of fsrc? rounded

Pipelined Floating-Point Load
pfid.z ISICT(SICE), FABSt . . . e {Normal)
pfld.z ISretlisre2)+ +,fdest ..o e (Autoincrement)

fdest <— mem.z (third previous pfid's (isrc? + isrc2)
(where .z is precision of third previous pfld.z)

If autoincrement

THEN /src2 < Jjsrct + isrc2

Fl

pfle.p fSrCt, fSrc2, fdest Pipelined F-P Less-Than or Equal Compare
Assembler pseudo-operation, identica! to pfgt.p except that
assembler sets R-bit of instruction.
fdest <— last stage Adder result
CC clear if fsrc1 < fsre2, else set
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs

ptmam.p fsrel, fsrc2, fdest ... Pipelined Floating-Point Add and Multiply
fdest <— last stage Multiplier result
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage «— A-op1 — A-op2
M pipeline first stage <— M-op1 X M-op2
ptmov.r fsrel fdest. Pipelined Floating-Point Reg-Reg Move
Assembler pseudo-operation
ptmov.ss fsrct, fdest = pfiadd.ss fsrc?, 10, fdest
pfmov.dd fsrc?, fdest = pfiadd.dd fsrc?, 10, fdest
pfmov.sd fsrct, fdest = ptamov.sd fsrc?, fdest
ptmov.ds fsrc1, fdest = pfamov.ds fsrc?, fdest

ptmsm.p fsrct, fsrc2 fdest e Pipelined Floating-Point Subtract and Multiply
fdest «— last stage Multiplier result
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage «— A-op1 — A-op2
M pipeline first stage «— M-op1 X M-op2
pfmul.p forct, fsre2, fdest Pipelined Floating-Point Multiply
fdest <— last stage Multiplier result
Advance M pipeline one stage
M pipeline first stage «— fsrc7 X fsrc2

9-64 PRELIMINARY l

B u482L175 0137404 354 HWM

inté R MILITARY i860™ XR MICROPROCESSOR

ptmuld.dd fsrct, fsre2 fdest. ... Three-Stage Pipelined Multiply
fdest <— last stage Multiplier resuit
Advance 3-Stage M pipeline one stage
M pipeline first stage <«— fsrct1 X fsrc2

pform fsrel, fdest .o Pipelined OR to MERGE Register
fdest <— last stage Graphics resuit
last stage Graphics result «— fsrc7 OR MERGE
MERGE « 0

ptsm.p fsrel, fsre2, fdest, Pipelined Floating-Point Subtract and Multiply
fdest «— last stage Adder result
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage «— A-op1 — A-op2
M pipeline first stage <— M-op1 X M-op2

PIsub.p forct, fsrc2 fdest Pipelined Floating-Point Subtract
fdest <— last stage Adder result
Advance A pipeline one stage
A pipeline first stage «— fsre? + fsre2

Pftrunc.y fsret fdest Pipelined Floating-Point to Integer Conversion
fdest <— last stage Adder result
Advance A pipeline one stage
A pipeline first stage <— 64-bit value with low-order 32 bits
equal to integer part of fsrc?

pfzchk!} fsret, fsre2 fdest. ..o Pipelined 32-Bit Z-Buffer Check
Consider fsrc1, fsrc2, and fdest, as arrays of two 32-bit
fields fsrc1(0)..fsrc 1(1), fsrc2(0)..fsrc2(1), and fdesK0)..fdest(1)
where zero denotes the least significant field.
PM <«— PM shifted right by 2 bits
FORi=0to1
DO
PM i + 6] « fsre2(i) < fsrc1(i) (unsigned)
fdesH{i) «— last stage Graphics resuit
last stage Graphics result «<— smaller of fsre2()) and fsrc1(i)

MERGE « 0

Pfzchks fsrct, fsre2 fdest. Pipelined 16-Bit Z-Buffer Check
Consider fsrc1, fsre2, and fdest, as arrays of four 16-bit
fields fsrc1(0)..fsrc1(3), fsrc2(0)..fsrc2(3), and fdesKQ)..fdesH(3)
where zero denotes the least significant field.
PM <« PM shifted right by 4 bits
FORI=0to3
DO
PM [i + 4] < fsre2(j) < fsrc?(i) (unsigned)
fdesHy) <«— last stage Graphics result
last stage Graphics result <— smaller of fsrc2() and fsre (i)

MERGE <« 0
pst.d fAESE, #CONSHISICE) oo Pixel Store
pst.d fdest, #constisrc2)+ + ... Pixel Store Autoincrement

Pixels enabled by PM in mem.d (isrc2 + #consl) <«— fdest
Shift PM right by 8/pixel size (in bytes) bits

IF autoincrement

THEN 1src2 «— #const + isrc2

Fl

shi ISICT ISICZ, ITOSEo Shift Left

I PRELIMINARY 9-65

M 4326175 0137405 290 WA

.
MILITARY i860™ XR MICROPROCESSOR lntel R

shr JSFCT, SIC2, JTESE « .+« e e e sa e smete e e e et Shift Right
SC (in psr) <« isrct
idest «— isrc2 shifted right by isrc1 bits

shra JSICT, SIC2, IIESE . . .\ v ncaas s e e e Shift Right Arithmetic
idest «— isrc2 arithmetically shifted right by isrc1 bits

shrd JSICT, JSIC2, JOBSE . o e eetee e s e b s st Shift Right Double
idest < low-order 32 bits of isrc1.isrc2 shifted right by SC bits

st.c JSICTI, CSTC2 .« o\t eea e e ia s et Store to Control Register
csrc2 <« isrclni

st.x JSICTNE, #CONSHISICE) .. v vveeeen it Store Integer
mem.x (isrc2 + #const) <« isrc 1ni

subs JSTCT, ISFC2, IOt . . .« .\ttt s s Subtract Signed

idest «— isrcl — isrc2

OF «— (bit 31 carry # bit 30 carry)
CC set if isre2 > isrct (signed)

CC clear if isrc2 < isrct (signed)

subu JSICT, ISIC2, JOBSE ..o v Subtract Unsigned
idest «— isrcl — isrc2
OF <« NOT {bit 31 carry)
CC <« bit 31 carry
i.e. CCsetifjsrc2 < isrct {unsigned)
CC clear if isrc2 > isrct (unsigned)

trap JSICTN, ISFC2, IESE . .. o\ oo e e e ee e Software Trap
Generate trap with [T set in psr

e R M NSRS End Interlocked Sequence
Clear BL in dirbase. The next load or store unlocks the bus.
Enable interrupts after bus is unlocked.

xor JSICT, ISIC2, JUBSE . oot v ee e rm e Logical Exclusive OR
idest < isrc1 XOR isrc2
CC set if result is zero, cleared otherwise

xorh FOONSE ISIC2, IAESE . ..o Logical Exclusive OR High
idest <— (#const shifted left 16 bit) XOR isrc2
CC set if result is zero, cleared otherwise

9-66 PRELIMINARY I

B 4826175 013740k 127 WA

intgl.

Table 7.2 FADDP MERGE Update

';'l’;i' Fields Loaded From RE:::?;:I:"
(romps)| ResUltintoMERGE | p0\g size)
8 |63.56, 47.40, 31.24, 15.8 8
16 |63.58 47.42 31.26,15.10] 6
32 (63.56, 31.24 8

7.2 Instruction Format and Encoding

All instructions are one word long and begin on a
word boundary. When operands are registers, the
register encodings shown in Table 7.3 are used.
There are two general core-instruction formats,
REG-format and CTRL-format, as well as a separate
format for floating-potnt instructions.

7.2.1 REG-FORMAT INSTRUCTIONS

Within the REG-format are several variations as
shown in Figure 7.1. Table 7.4 gives the encodings
for these instructions. One encoding 1s an escape
code that defines yet another variation: the core es-
cape instructions. Figure 7.2 shows the format of
this group, and Table 7.5 shows the encodings.

In these instructions, the src2 field selects one of
the 32 integer registers (most instructions) or five
control registers (st.c and 1d.c). Dest selects one of
the 32 integer registers (most instructions) or float-

I PRELIMINARY

B 442L175 0137407 ObL] N

MILITARY i860™ XR MICROPROCESSOR

ing-point registers (fid, fst, pfld, pst, ixfr). For in-
structions where src? i1s optionally an immediate val-
ue, bit 26 of the opcode (I-bit) indicates whether src?
is an immediate. If bit 26 is clear, an integer register
is used: if bit 26 1s set, src7 is contained in the low-
order 16 bits, except for bte and btne instructions.
For bte and btne, the five-bit immediate value is
contained in the src field. For st, bte, btne and bla,
the upper five bits of the offset or broffset are con-
tained in the dest field instead of src7, and the lower
11 bits of offset are the lower 11 bits of the instruc-
tion.

Table 7.3 Register Encoding

Register Encoding
0 0
r31 31
fo 0
f31 31
Fauit Instruction 0
Processor Status 1
Directory Base 2
Data Breakpoint 3
Floating-Point Status 4
Extended Process Status 5
9-67

MILITARY i860™ XR MICROPROCESSOR

intgl.

General Format
31 25 20 15 10 0
OPCODE/! SRC2 DEST SRC1 IMMEDIATE, OFFSET, OR NULL
16-Bit Inmediate Variant (except bte and btne)
31 25 20 15 a
OPCODE 1 SRC2 DEST IMMEDIATE
st, bla, bte and btne
31 25 20 15 10 0
OFFSET SRC1
OPCODEA SRC2 HIGH SRCIS OFFSET LOW
bte and btne with 5-Bit Immediate
3 25 20 15 10 0
OPCODE | 1 SRC? O:',:Gsf‘T IMMEDIATE OFFSET LOW

Figure 7.1 REG-Format Variations

For Id and st, bits 28 and zero determine operand

size as follows:

Bit 28 Bit0o Operand Size
0 0 B-bits
0 1 8-bits
1 0 16-bits
1 1 32-bits

When srct is an immediate and bit 28 is set, bit zero
of the immediate value is forced to zero.

9-68

M 442k17?5 0137408 TTT 1A

For fld, fst, pfid, pst and fiush, bit 0 selects autoin-
crement addressing if set. Bits one and two select
the operand size as follows:

Bit 1 Bit 2 Operand Size
0 0 64-bits
o] 1 128-bits
1 0 32-bits
1 1 32-bits

When sre? is an immediate value, bits zero and one
of the immediate value are forced to zero to main-
tain alignment. When bit one of the immediate value

is clear, bit two is also forced to zero.

For flush, bits one and two must be zero.

PRELIMINARY l

-
lntel o MILITARY i860™ XR MICROPROCESSOR

Table 7.4 REG-Format Opcodes

i 26
id.x Load Integer 0 0 o] L 0 |
st.x Store Integer 0 0 0 L 1 1
ixfr Integer to F-P Reg Transfer 0 0 0 0 1 0
(reserved}) 0 0 0 1 1 0
fid.x, fst.x Load/Store F-P 0 0 1 0 LS |
flush Flush 0 0 1 1 0 1
pst.d Pixel Store 0 0 1 1 1 1
Id.c, st.c Load/Store Control Register 0 0 1 1 LS 0
bri Branch Indirect 0 1 0 0 0 0
trap Trap 0 1 0 0 0 1
(Escape for F-P Unit) 0 1 0 0 1 0
(Escape for Core Unit) 0 1 0 0 1 1
bte, btne Branch Equal or Not Equal 0 1 0 1 E I
pfid.y Pipelined F-P Load 0 1 1 0 0 |
(CTRL-Format Instructions) 0 1 1 X X X
adduy, -s, subu, -s, Add/Subtract 1 0 0 SO AS |
shi, shr Logical Shift 1 0 1 0 LR |
shrd Double Shift 1 o] 1 1 0 0
bla Branch LCC Set and Add 1 0 1 1 0 1
shra Arithmetic Shift 1 0 1 1 1 |
and(h) AND 1 1 0 0 H |
andnot(h) ANDNOT 1 1 0 1 H |
or(h) OR 1 1 1 o] H |
xor(h) XOR 1 1 1 1 H |
(reserved) 1 1 X X 1 0
L Integer Length AS Add/Subtract
0 —8bits 0 —Add
1 —18 or 32 bits (seiected by bit 0) 1 —Subtract
.S Load/Store LR Left/Right
0 —Load 0 —Left Shift
1 —Store 1 —Right Shift
SO Signed/Ordinal E Equal
0 —Ordinal 0 —Branch on Not Equal
1 —Signed 1 —Branch on Equal
H High 1 Immediate
0 —and, or, andnot, xor 0 -—srct s register
1 -andh, orh, andnoth, xorh 1 —srectis immediate
I PRELIMINARY 9-69

M y82L175 0137409 93:L WA

MILITARY i860™ XR MICROPROCESSOR

31

26

15

10

0

1

00

1

1

reserved*

SRCt

reserved”® OPCODE

Reserved for future implementations—set all bits = 0

7.2.2 CTRL-FORMAT INSTRUCTIONS

The CTRL instructions do not refer to registers, so instead of the register
branch offset. Figure 7.3 shows the format of these instructions and Table

Figure 7.2 Core Escape Instruction Format

Table 7.5 Core Escape Opcodes

4 0

(reserved) 0 0 0 0] 0

lock Begin Interlocked Sequence | 0 [0 [0 | © 1
calii Indirect Subroutine Call 0 0t{o0 1 0
(reserved) 0 0 0 1 1

intovr Trap on Integer Overflow 0101 0|0
(reserved) o0 1 0 1

(reserved) 0 0 1 1 0

unlock End Interlocked Sequence 010 1 1 1
(reserved) 0 1 X X X

(reserved) 1 0 X X X

(reserved) 1 1 X X X

fields, they have a 26-bit relative
7.6 defines the encodings.

a1

28

25

0

OPC

BROFFSET

BROFFSET 1s a signed 26-bit relative branch offset,

9-70

Figure 7.3 CTRL Instruction Format

Table 7.6 CTRL-Format Opcodes

0 —bc or bne
1 ~—bc.t or bne.t

B 4825175 0137410 b58 WA

28 26
(reserved) 0 0 0
(reserved) 0 0 1
br Branch Direct 0 1 0
call Call 0 1 1
be(.t) Branch on CC Set 1 0 T
bne(.t) | Branch on CC Clear 1 1 T
T Taken

PRELIMINARY I

-
Inté ® MILITARY i860™ XR MICROPROCESSOR

7.2.3 FLOATING-POINT INSTRUCTIONS

The floating-point instructions also constitute an escape series. All these instructions begin with the bit se-
quence 010010. Figure 7.4 shows the format of the floating point instructions, and Table 7.7 gives the encod-
ings. Within the dual-operation instructions is a subcode DPC whose values are given in Table 7.8 along with
the mnemonic that corresponds to each.

31 25 20 15 7 0

c t 0 0 t 0 SRC2 DEST SRC1 PID|S|R OPCODE

SRC1, SRC2 —Source; one of 32 floating-point registers

DEST —Destination register
(instructions other than fxfr) one of 32 floating-point registers
(fxfr) one of 32 integer registers

P Pipelining S Source Precision
1 —Pipelined instruction mode 1 —Double-precision source operands
0 —Scalar instruction mode 0 —Single-precision source operands
D Dual-nstruction Mode R Result Precision
1 —Duakinstruction mode 1 —Double-precision result
0 —Single-instruction mode 0 ~—S8ingle-precision result

Figure 7.4 Floating-Point Instruction Encoding

Table 7.7 Floating-Point Opcodes

6 0
ptam Add and Multiply*
pfmam Multiply with Add* 0 0 0 DPC
pfsm Subtract and Multiply*
pfmsm Multiply with Subtract* 0 0 ! DPC
(p)ytmul Multiply 0 1 0 0 0 0 0
fmlow Multiply Low 0 1 0 0 0 0 1
frcp Reciprocal 0 1 0 0 0 1 0
frsqr Reciprocal Square Root 0 1 Q 0 0 1 1
pfmul3.dd 3-Stage Pipelined Multiply 0 1 0 0 1 0 0
(p)fadd Add 0 1 1 0 0 0 0
(p)fsub Subtract 0 1 1 0 0 0 1
(p)fix Fix 0 1 1 0 0 1 0
(p)famov Adder Move 0 1 1 0 0 1 1
pfgt/pfle** Greater Than 0 1 1 0 1 0 0
pfeq Equal 0 1 1 0 1 0 1
(p)ftrunc Truncate 0 1 1 1 0 1 0
fxtfr Transfer to Integer Register 1 0 0 0 0 0 0
(p)fiadd Long-integer Add 1 0 0 1 0 0 1
(p)fisub Long-Integer Subtract 1 [¢] 0 1 1 0 1
(p)fzchk! Z-Check Long 1 0 1 0 1 1 1
{p)fzchks Z-Check Short 1 0 1 1 1 1 1
{p)faddp Add with Pixel Merge 1 0 1 0 0 0 0
{p)faddz Add with Z Merge 1 0 1 0 (4} 0 1
(p)torm OR with MERGE Register 1 0 1 1 0 1 0

*ptam and pfsm have P-bit set; pfmam and pfmsm have P-bit clear.
**pfgt has R bit cleared, pfle has R bit set.

NOTE:
All opcodes not shown are reserved

PRELIMINARY 9-71

B 4826175 0137411 594 M

MILITARY i860™ XR MICROPROCESSOR

The following table shows the opcode mnemonics that

each encoding.

Table 7.8 DPC Encoding

inteal.

generate the various encodings of DPC and explains

DPC PFAM PFSM M-Unit M-Unit A-Unit A-Unit K
Mnemonic Mnemonic opt op2 op1 op2 Load Load*
0000 r2pt ‘r2si KR src2 srct M result No No
0001 r2pt r2st KR src2 T M result No Yes
0010 r2apt r2asi KR src2 sre A result Yes No
0011 r2apt r2ast KR src2 T A result Yes Yes
0100 i2p1 i2s1 Ki src2 src M result No No
0101 i2pt i2st Kl src2 T M result No Yes
0110 i2ap1 i2as1 Kl src2 srcl A result Yes No
0111 i2apt i2ast Kl src2 T A result Yes Yes
1000 ratip2 ratis2 KR A result srcl src2 Yes No
1001 mi2apm mi2asm src src2 A result M result No No
1010 raip2 rais2 KR A result srct src2 No No
1011 mi2ttpa mi2ttsa srct src2 T A result Yes No
1100 iat1p2 iat1s2 Kl A result srct src2 Yes No
1101 m12tpm mi2tsm srct src2 T M resuit No No
1110 ialp2 ials2 Ki A resuit srct src2 No No
1111 m12tpa m12tsa src sre2 T A result No No
DPC PFMAM PFMSM M-Unit M-Unit A-Unit A-Unit T K
Mnemonic Mnemonic opi op2 op1 op2 Load Load*

0000 | mr2p1 mr2s1 KR src2 srcl M result No No
0001 mr2pt mr2st KR src2 T M result No Yes
0010 mr2mp mr2ms1 KR src2 srct M result Yes No
0011 mr2mpt mr2mst KR src2 T M resuit Yes Yes
0100 mi2p1 mi2s1 Ki src2 srcl M result No No
0101 mi2pt mi2st Ki src2 T M result No Yes
0110 mi2mp1 mi2ms1 Ki src2 sre M result Yes No
0111 mi2mpt mi2mst Kl src2 T M result Yes Yes
1000 mrmtip2 mrmtis2 KR M result srct src2 Yes No
1001 mmi2mpm mm12msm srct src2 M result M result No No
1010 mrm1ip2 mrmis2 KR M resuit src src2 No No
1011 mmi2ttpm mm12ttsm src src2 T A result Yes No
1100 mimtip2 mimtts2 Ki M result srct sre2 Yes No
1101 mmi2tpm mm12tsm src src2 T M result No No
1110 mim1ip2 mimis2 Kl M result srct src2 No No
1111 Intel-Reserved ‘J

*if K-load is set, KR is loaded when operand-1 of the multipher is KR; Kl 1s loaded when operand-1 of the multiplier 1s KI.

9-72

M 4426175 0137412 420 MM

PRELIMINARY I

intgl.

7.3 Instruction Timings

Military 1860 XR microprocessor instructions take
one clock to execute unless a freeze condition is
invoked. Freeze conditions and their associated de-

MILITARY i860™* XR MICROPROCESSOR

lays are shown in the table below. Freezes due to
multiple simultaneous cache misses result in a delay
that is the sum of the delays for processing each
miss by itself. Other multiple freeze conditions usual-
ly add only the delay of the longest individual freeze.

Freeze Condition

Delay

Instruction-cache miss.

Reference to destination of Id instruction that
misses.

fid miss.

call/caili/ixfr/txfr/1d.c/st.c and data cache miss
processing in progress.

1d/st/pfid/fid/fst and data cache miss
processing in progress.

Reference to dest of Id, call, calli, fxfr or Id.c in
the next instruction. (Dest of call and calliis r1.)

Number of clocks to read instruction (from ADS
clock to first READY clock) plus time to last
READY of block when jump or freeze occurs
during miss processing plus two clocks if data-
cache being accessed when instruction-cache
miss OCcurs.

One plus number of clocks to read data (from ADS
clock to first READY clock) minus number of
instructions executed since load (not counting
instruction that references load destination).

One plus number of clocks until first READY
returned (for 32- or 64-bit read cycles) or until
second READY returned (for 128-bit fid.q read
cycles).

One plus number of clocks until first READY
returned (for 64-bit read cycles) or until second
READY returned (for 128-bit tid.q read cycles).

One plus number of clocks until last READY
returned.

One clock.

l PRELIMINARY

B 4426175 0137413 357

9-73

MILITARY i860T™ XR MICROPROCESSOR

Freeze Condition

intgl.

Reference to dest of fld/pfid/ixfr in the next two
instructions

bc/bne/be.t/bne.t following fadd/fsub/pfeg/
pfgt

Sret1 of multiplier operation refers to result of
previous operation

Fioating-point or graphics unit instruction or fst,
and scalar operation in progress other than frcp or
frsqr

Mutltiplier operation preceded by a double-precision
multiply

Multiplier operation with data pattern requiring extra
rounding operation

TLB miss

pfid when three pfid's are outstanding

pfld hits in the data cache

st, pst or fst miss Id miss, or flush with modified
biock when store path full (two stores or one 2586-
bit write-back internally warting for bus plus external
bus pipeline full)

Id, fid, ptid, st, pst or fst when address path full
(one address internally waiting for bus plus external
bus pipeline fuli)

Two clocks in the first instruction; one in the
second instruction

One clock
One clock

If the scalar operation is fadd, fix, fmlow, fmul.ss,
fmul.sd, ftrunc or fsub, two minus the number of
instructions (or dual-mode pairs) already executed
after the scalar operation. If the scalar operation is
fmul.dd, three minus the number of instructions
(or dual-mode pairs) executed after it. Add one if
either or both of these two situations occur:

1. There is an overlap between the result register
of the previous scalar operation and the source
of the floating-point operation, and the
destination precision of the scalar operation is
different than the source precision of the
floating-point operation.

2. The floating-point operation is pipelined and its
destination is not {0.

There is no delay if the result is negative.

One clock
One clock

Five plus the number of clocks to finish two reads
Plus the number of clocks to set A-bits (if
necessary)

One plus the number of clocks to return data from
first pfid

Two pius the number of clocks to finish all
outstanding accesses

One plus the number of clocks until READY active
on next 84-bit write cycle or second READY of next
128-bit write cycle.

Number of clocks until next nonrepeated address
can be issued (i.e., an address that is nat the 2nd-
4th cycle of a cache fill, the 2nd-8th cycle of a CS8
mode instruction fetch, nor the 2nd cycle of a
128-bit write).

1d/fid following st/fst hit One clock
Delayed branch not taken One clock
9-74 PRELIMINARY I
273

B 4326175 0L374lY4

»
In'tel o MILITARY i860™ XR MICROPROCESSOR

Freeze Condition Delay
Nondelayed branch taken:
be, bnc One clock
bte, btne _ Two clocks
Indirect branch bri or call calli] One clock
st.c Two clocks
Resutt of graphics-unit instruction (other than One clock

fmov.dd) used in next instruction when the next
instruction is an adder- or multiplier-unit instruction

Result of graphics-unit instruction used in next One clock
instruction when the next instruction is a graphics-
unit instruction

flush followed by flush Three clocks minus the number of instructions
between the two flush instructions. There is no
delay if the result is negative.

fst or pst followed by pipelined floating-point One clock
operation that overwrites the register being stored

I PRELIMINARY 9-75

B 4826175 0137415 137 M

MILITARY i8607™ XR MICROPROCESSOR

7.4 Instruction Characteristics

The following table lists some of the characteristics
of each instruction. The characteristics are:

¢ What processing unit executes the instruction.
The codes for processing units are:™
A Floating-point adder unit
E Core execution unit
G Graphics unit
M Floating-point multiplier unit

® Whether the instruction is pipelined or not. P indi-
cates that the instruction 1s pipelined.

Whether the instruction is a delayed branch in-
struction. O marks the delayed branches.

¢ Whether the instruction changes the condition
code CC. CC marks those instructions that
change CC.

e Which faults can be caused by the instruction.
The codes used for exceptions are.

IT Instruction Fault

SE Floating-Point Source Exception

RE Floating-Point Result Exception, including
overfiow, underflow, inexact result

DAT Data Access Fault

Note that this is not the same as specifying at
which instructions faults may be reported. A re-
sult exception is reported on the subseguent
floating-point instruction, pst, fst or sometimes
fid, pfid and ixfr

The instruction access fault IAT and the interrupt
trap IN are not shown in the table because they
can occur for any instruction.

* Performance notes. These comments regarding
optimum performance are recommendations
only. If these recommendations are not followed,
the Mititary i860 XR microprocessor automatically
waits the necessary number of clocks to satisfy
internal hardware requirements. The following
notes define the numeric codes that appear in
the instructon table:

1 The following instruction should not be a con-
ditional branch (be, bne, be.t or bne.t).

2 The destination shouid not be a source oper-
and of the next two instructions.

8-76

B 48265175 013741k 076 HE

L]

intgl.

3. A load should not directly follow a store that is
expected to hit in the data cache.

4. When the prior instruction is scalar, fsrc?
should not be the same as the fdest of the
prior operation.

5. The fdest should not reference the destination
of the next instruction if that instruction is a
pipelined floating-point operation.

- 6. The destination should not be a source oper-

and of the next instruction. (For call and calli,
the destination is r1.)

7. When the prior operation is scalar and multipli-
er oplis srct, src2 should not be the same as
the rdest of the prior operation.

8. When the prior operation is scalar, fsrc? and
fsrc2 of the current operation should not be the
same as fdest of the prior operation.

9. A pfid should not iImmediately follow a pfid.

Programming restrictions. These indicate combi-
nations of conditions that must be avoided by
programmers, assemblers and compilers. The
following notes define the alphabetic codes that
appear in the instruction table:

a. The sequential instruction following a delayed
control-transfer instruction may not be another
control-transfer instruction (except in the case
of external interrupts), nor a trap instruction,
nor the target of a control-transfer instruction.

b. When using a bri to return from a trap hanv-2r,
programmers should take care to prevent traps
from occurring on that or on the next sequen-
tial instruction. IM should be zero (interrupts
disabied) when the bri is executed.

c. If fdest is not zero, fsrc1 must not be the same
as fdest.

d. When fsrc? goes to the multiplier op?, KR, or
Kl, fsrce1 must not be the same as fdest.

If fdest is not zero, fsrct and fsrc2 must not be
the same as fdest.

. isrc1 must not be the same as isrc2 for the
autoincrementing form of this instruction.

g. /src1 must not be the same as /src2.

o

-

PRELIMINARY I

intgl.

MILITARY i860™ XR MICROPROCESSOR

Table 7.9 instruction Characteristics

Instruction

Execution
Unit

Pipelined?
Delayed?

Sets
cec?

Faults

Performance
Notes

Programming
Restrictions

adds
addu
and
andh
andnot

1
1

andnoth
be

be.t

bla

bnc

bnc.t
br
bri
bte
btne

call
calli
fadd.p
faddp
faddz

SE, RE

famov.r
fiadd.z
fisub.z
fix.p
fid.y

SE, RE

SE, RE
DAT

2,3

flush
fmlow.p
fmul.p
form

frep.p

SE, RE

SE, RE

ENE

frsqr.p
fsty
fsub.p
ftrunc.v
fxfr

SE, RE
DAT
SE, RE
SE, RE

fzchkl
fzchks
intovr
ixfr
Id.c

1d.x

or

orh
pfadd.p
pfaddp

OrmMMMMMMEOO OFP>PMIT|(ZTEIIMMPOO> OOFMM|MmMmMmmMmm mmmmm|mmmmm

CC
CcC

DAT

SE, RE

| PRELIMINARY

B 482bL175 01L37u4l? TOZ IN

9-77

MILITARY i860™ XR MICROPROCESSOR

intal.

Instruction Execution Pipelined? Sets Faults Performance Programming
Unit Delayed? ccC? Notes Restrictions

pfaddz G P 8 8
pfam.p A&M P SE,RE 7 d
pfamov.r A P SE, RE
pteq.p A P cC SE 1
pfat.p A P CcC SE 1
pfiadd.z G P 8
pfisub.z G P 8 e
pfix.p A P SE, RE
pfid.z E P DAT 2,9 f
pfmam.p A&M P SE, RE 7 d
ptmsm.p A&M P SE, RE 7 d
pfmul.p M P SE, RE 4 c
pfmul3.dd M P SE, RE 4 c
pform G P 8 e
pfsm.p A&M P SE, RE 7 d
pfsub.p A P SE, RE
pftrunc.v A P SE,RE
pfzchki G P 8
pfzchks G P 8
pst.d E DAT f
shi E
shr E
shra E
shrd E
st.c E
st.x E DAT
subs E cCc 1
subu E cC 1
trap E T
xor E cc
xorh E cC

9-78

M 482L175

0137418 949 M

PRELIMINARY I

INTEL CORP (UF‘/PRPHLS)

31E D WM 482L175 D08LAYL & HM

in e
DOMESTIC SERVICE OFFICES |

ALABAMA

*Inte! Corp,

5015 Bradford Dr., Sulte 2
Huntsville 35805

Tel: (205) 830-4010

ALASKA

Inte! Corp.

cfo TransAlaska Data Systems
300 Old Steese Hwy.
Fairbanks 99701-3120

Tel: (807) 452-4401

Intet Corp.

cfo TransAlaska Data Systems
1651 Lore Roa

Anchorage 99507

Tel: (907) §22-1776

ARIZONA

*Intel Corp.

11225 N. 28th Dr.
Suite D- 214
Phoenix 8

Tek: (602) 869~4980

*Intel Corp.

500 E. Fry Bivd., Suite M-15
Siarra Vista 85635

Tel: (602) 459-5010

CALIFORNIA

tintel Corp.

21515 Vanowen St Ste. 116
Canoga Park 9131

Tel: (818) 704- esoo

*intel Corp.

2250 E. Imperial Hwy., Ste. 218
€] Segundo 80245

Tel: (213) 640-6040

*Intel Corp.
‘1:9?0 Prams Clty Hd

‘olsom 95630-0!
Tel: (916) 351 6143
68-3548

Inte! Corp.

9665 Cheasapeake Or., Suite 325
San Diego 92123-1326

Tel: (619) 202-8086

**Intel Corp.
400 N Tustin Avenue

450
Sanla Ana 92705
Tel: (714) 835-9642

CALIFORNIA

2700 San Tomas Expressway

Santa Clara 95051

Te!: (408) 970-1700
1-800-421-0386

**finte! Corp.

San Tomas 4

2700 San Tomas Exp., 2nd Floor
Santa Clara 95051

Tel: (408) 986-8086

COLORABO

*Intel Corp.
650 S Cherry §t., Suite 915

er 80222
Tel: (303) 321-8086

CONNECTICUT

*Inte| Cor I~P
301 Lee Farm Corporale Park
a3 Woos(er Heights R

Danbury 06810
Tel: (203) 748-3130

FLORIDA

**Intel Corp.

6363 N.W. 6th Way, Ste. 100
Ft. Lauderdale 33309

Tel; (305) 774-0600

*Intel

5850 T G Lee Bivd., Ste. 340
Orlando 32822

Tel: (407) 240-8000

GEORGIA

*Inte! Cotp.

3280 Polnle Pkwy., Ste. 200
Norcross 30092

Tel: {404) 449-0541

HAWAII

*ntel Corp.
U.S.1.5.C. Signat Batt,
Building T-1521
Shafter Plats

after

ILLINOIS

"ﬂnlel arIP

ngala Rd Ste, 400
Schaumburg 60173
Tel: (312) 605-8031

INDIANA

*Inte! Corp.

8777 Purdue Rd., Ste. 125
Indianapolis 46268

Tel: (317) 875-0623

KANSAS

*Intel Corp.

10985 Cody, Suite 140
Overland Park 66210
Tel: (913) 345-2727

MARYLAND

**{intel Corp.

10010 Junction Dr., Sulte 200
Annapolis Junction 20701
Tel: (301} 206-2860

FAX: 301-206-3677

MASSACHUSETTS

**{Intel Corp.

3 Carliste Rd., 2nd Floor
Westford 01886

Tel: (508) 682-1060

MICHIGAN

*tInte! Corp.

7071 Orchard Lake Rd., Ste. 100
West Bloomfield 48322

Tel: (313) 851-8905

MINNESOTA

*tInte! Corp.

3500 W. 80th St., Suite 360
Bloomington 55431

Tel: (612) 835-6722

MISSOURI

*(nte! Co ﬁ
4203 Earl cny Exp Ste. 131

045
Tel (313291 1990

NEW JERSEY

**|ntel Corp.

300 Syivan Avenue
Englevood Clitfs 07632
Tel: (201) 567-0821

*Intel Corp.

Parkway 109 Office Center
328 Newman Springs Road

Red Bank 07701
Tel: (201) 747-2233

*Inte{ Corp.

280 Corporale Center

75 lemgslon Ave., 1st Floor
Roseland 071

Tel: (201) 740-0111

NEW YORK
*fintel Corp.

. 2950 Express;vay Dr. South

Islandla 1172
Tel: (516) 231-3300

*Intel Cor, g

Westage Business Center
Bldg. 300, Route 9
Fishkill 12524

Tel: (914) 897-3860

NORTH CAROLINA

*Intei Corp,

5800 Executive Dr., Ste. 105
Charlotte 28212

Tel: (704) 568-8966

**Intel Corp.

2700 Wycliff Road
Suite 102

Raleigh 27607

Tel; {919) 781-8022

OHIO

"‘I'InleIC é)
01 Park onter Dr., Ste. 220

45414
2 (513) 890-5350

*fintel Carp.

25700 Science Park Dr., Ste. 100
Beachwood 44122

Tel: (216) 464-2736

OREGON

intel Corp.

15254 N.W, Greenbrier Parkway
Building B

Boaverton 97005

Tel: (503) 645-8051

*Inte! Corp.

5200 N.E. Elam Young Parkway
Hillsboro 97123

Tel: (503) 681-8080

PENNSYLVANIA

*$Intel Corp

455 Pennsy'vanla Ave,, Ste. 230
Fort Washington 19034

Tel: (215) 641-1000

tintel Corp.

400 Penn Center Blvd., Ste. 610
Pittsburgh 15235

Tel: (412) 823-4970

CUSTOMER TRAINING CENTERS

ILLINOIS

300 N, Martingale Road
Su1 C]
Schaumburg 60173
Tel: (708) 708-5700
1-800-421-0386

MASSACHUSETTS
3 Carlisle Road, First Floor

Westford 0188
Tel: (301) 220-3380
1-800-328-03686

MARYLAND

10010 Junction Dr.

Suite 200

Annapolis Junction 20701

Tel: (301) 206-2860
1-800-328-0386

Intel Corp.

1513 Cﬁdar Cliff Dr.
ill

Tel 717) 761 0860

PUERTO RICO

Inte! Corp.

Soulh Industrial Park
P.O. Box 910

Las Piedras 00671
Tel: (809) 733-8616

TEXAS

Intel Corp.

8815 Dyer St.,"Suite 225

El Paso 79904

Tel: (915) 751-0186

*Intel Corp.

313 E. Anderson Lane, Suite 314
Austin 78762

Tel: (512) 454-3628

**tIntel Corp.

12000 Ford Rd., Suite 401
Dallas 76234

Tel: (214) 241-8087

*Intel Corp.

7322 S.W. Freeway, Ste. 1490
Houston 77074

Tel: (713) 988-8086

UTAH

Intet Corp.

428 East 6400 South, Ste. 104
Murray 84107

Tel: (801) 263-8051

VlRGINlA

*intel

1504 Santa Rosa Rd., Ste. 108
Richmond 23288

Tel: (804) 282-5668

WASHINGTON

*Intel Corp.

155 108th Avenue N.E., Ste. 386
Bellevue 98004

Tel: (206) 453-8086

CANADA

ONTARIO

Inte! Semiconductor of
Canada, Ltd.

2650 Queensview Or., Ste. 250
Ottawa K2B 8H6

Tel: (613) 8299714

FAX: 613-820-5936

Inte! Sermiconductor of
Canada, Ltd.

190 Attwell Dr., Ste, 102
Rexdale MOW 6H8

Tel: (416) 675-2105
FAX: 416-675-2438

SYSTEMS ENGINEERING MANAGERS OFFICES

MINNESOTA

3500 W, 80th Street
Suite 360

Bloomington 55431
Tel: (612) 835-6722

1System Englneering locations
*Carry-in locations
**Carry-In/mail-in locations

NEW YORK

2950 Expressway Dr., South
Istandia 11722
Tel: (506) 231-3300

D-/0

CG/SALE/101789

