National Semiconductor

74VHC04 • 74VHCT04 Hex Inverter

General Description

3

The 74VHC/VHCT04 is an advanced high speed CMOS IN-VERTER fabricated with silicon gate CMOS technology. It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

The internal circuit is composed of 3 stages including buffer output, which provide high noise immunity and stable output. An input protection circuit ensures that 0V-7V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5V to 3V systems and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.

Features

- \blacksquare High noise immunity: VHC V_{NIH} = V_{NIL} = 28% V_{CC} (Min) VHCT V_{IH} = 2.0V, V_{IL} = 0.8V
- Power down protection: VHC inputs only VHCT inputs and outputs
- Low Noise: VHC V_{OLP} = 0.4V (typ) VHCT V_{OLP} = 0.8V (typ)
- Low power dissipation:
 - $I_{CC} = 2 \ \mu A \ (Max) @ T_A = 25^{\circ}C$
- Balanced propagation delays: tpLH ≈ tpHL
- Pin and function compatible with 74HC/HCT04

Ordering Code: See Section 6

Commercial	Package Number	Package Description
74VHC04M	M14A	14-Lead Molded JEDEC SOIC
74VHC04SJ	M14D	14-Lead Molded EIAJ SOIC
74VHC04MSC	MSC14	14-Lead Molded EIAJ Type 1 SSOP
74VHC04MTC	MTC14	14-Lead Molded JEDEC Type 1 TSSOP
74VHC04N	N14A	14-Lead Molded DiP
74VHCT04M	M14A	14-Lead Molded JEDEC SOIC
74VHCT04SJ	M14D	14-Lead Molded EIAJ SOIC
74VHCT04MTC	MTC14	14-Lead Molded JEDEC Type 1 TSSOP
74VHCT04N	N14A	14-Lead Molded DIP

Note: Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. EIAJ Type I SSOP available on Tape and Reel only, order MSCX.

Logic Symbol

Connection Diagram

Absolute Maximum Ratings (Note 1)

Ter mille (note i)
-0.5V to +7.0V
-0.5V to +7.0V
$-0.5V$ to V_{CC} + 0.5V $-0.5V$ to 7.0V
— 20 mA
± 20 mA – 20 mA
\pm 25 mA
± 50 mA
-65°C to +150°C
260°C

Note 1: Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation outside databook specifications.

Recommended Operating Conditions

Supply Voltage (V _{CC})	
VHC	2.0V to +5.5V
VHCT	4.5V to +5.5V
Input Voltage (V _{IN})	0V to + 5.5V
Output Voltage (V _{OUT})	0V to V _{CC}
Operating Temperature (TOPR)	
74VHC/VHCT	40°C to + 85°C
Input Rise and Fall Time (tr, tr)	
$V_{CC} = 3.3V \pm 0.3V$ (VHC only)	0 ~ 100 ns/V
$V_{CC} = 5.0V \pm 0.5V$	$0 \sim 20 \text{ ns/V}$

DC Characteristics for 'VHC Family Devices

				74VHC	;	74V	VHC			
Symbol	Parameter	V _{CC} (V)	T _A = 25°C			T _A = −40°C to +85°C		Units	Conditions	
			Min	Тур	Max	Min	Max			
V _{IH}	High Level Input Voltage	2.0 3.0-5.5	1.50 0.7 V _{CC}			1.50 0.7 V _{CC}		v		
V _{IL}	Low Level Input Voltage	2.0 3.0-5.5			0.50 0.3 V _{CC}		0.50 0.3 V _{CC}	v		
V _{OH}	High Level Output Voltage	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		v	$V_{IN} = V_{IH}$ or V_{IL}	l _{OH} = −50 μA
		3.0 4.5	2.58 3.94			2.48 3.80		v		$I_{OH} = -4 \text{ mA}$ $I_{OH} = -8 \text{ mA}$
V _{OL}	Low Level Output Voltage	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1	v	V _{IN} = V _{IH} or V _{IL}	l _{OL} = +50 μA
		3.0 4.5			0.36 0.36		0.44 0.44	v		l _{OL} = 4 mA l _{OL} = 8 mA
lin	Input Leakage Current	0-5.5			±0.1		±1.0	μΑ	$V_{IN} = 5.5V \text{ or GND}$	
ICC	Quiescent Supply Current	5.5			2.0		20.0	μΑ	$V_{IN} = V_{CC}$	or GND

4

2

DC Characteristics for 'VHC Family Devices: See Section 2 for Waveforms (Continued)

			74	VHC			
Symbol	Parameter	V _{CC} (V)	T _A =	= 25°C	Units	Conditions	Fig. No.
			Тур	Limits			
**V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	5.0	0.4	0.8	v	C _L = 50 pF	2-11, 12
**V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	5.0	0.4	-0.8	v	C _L = 50 pF	2-11, 12
**V _{IHD}	Minimum High Level Dynamic Input Voltage	5.0		3.5	v	C _L = 50 pF	2-11, 12
**V _{ILD}	Maximum Low Level Dynamic Input Voltage	5.0		1.5	v	C _L = 50 pF	2-11, 12

**Parameter guaranteed by design.

DC Characteristics for 'VHCT Family Devices

			74VHCT T _A = 25°C			74V	74VHCT			
Symbol	Parameter	V _{CC} (V)				T _A = -40°C to +85°C		Units	Conditions	
			Min	Тур	Max	Min	Max			
VIH	High Level Input Voltage	4.5 5.5	2.0 2.0			2.0 2.0		v		
VIL	Low Level Input Voltage	4.5 5.5			0.8 0.8		0.8 0.8	v		
V _{OH}	High Level Output Voltage	4.5	3.15	3.65		3.15		V	V _{IN} = V _{IH} or V _{IL}	l _{OH} = −50 μA
			2.5			2.4		V		$I_{OH} = -8 \mathrm{mA}$
V _{OL}	Low Level Output Voltage	4.5		0.0	0.1		0.1	V	V _{IN} = V _{IH}	l _{OL} = 50 μA
					0.36		0.44	v	or V _{IL}	l _{OL} = 8 mA
1 _{IN}	Input Leakage Current	0-5.5			±0.1		± 1.0	μA	V _{IN} = 5.5V	or GND
lcc	Quiescent Supply Current	5.5			2.0		20.0	μA	$V_{IN} = V_{CC}$	or GND
ICCT	Maximum I _{CC} /Input	5.5			1.35		1.50	mA	V _{IN} = 3.4V Other Input	s = V _{CC} or GND
IOPD	Output Leakage Current (Power Down State)	0.0			+ 0.5		+ 5.0	μA	V _{OUT} = 5.5	5V

DC Characteristics for 'VHCT Family Devices: See Section 2 for Waveforms

			74\	/НСТ				
Symbol	Parameter	V _{CC} (V)	T _A =	= 25°C	Units	Conditions	Fig. No.	
			Тур	Limits				
**VOLP	Quiet Output Maximum Dynamic V _{OL}	5.0	0.8	1.0	v	С _L = 50 рF	2-11, 12	
**Volv	Quiet Output Minimum Dynamic V _{OL}	5.0	0.8	1.0	v	C _L = 50 pF	2-11, 12	
**V _{IHD}	Minimum High Level Dynamic Input Voltage	5.0		2.0	v	C _L = 50 pF	2-11, 12	
**V _{ILD}	Maximum Low Level Dynamic Input Voltage	5.0		0.8	v	C _L = 50 pF	2-11, 12	

**Parameter guaranteed by design.

				74VHC		74	/НС									
Symbol	Parameter	V _{CC} (V)	T _A = 25°C			T _A = −40°C to +85°C		Units	Conditions	Fig. No.						
			Min	Тур	Max	Min	Max									
t _{PHL} , Propagatio	Propagation Delay	3.3 ± 0.3		5.0	7.1	1.0	8.5		C _L = 15 pF	2-5						
				7.5	10.6	1.0	12.0	ns	C _L = 50 pF							
								5.0 ±0.5		3.8	5.5	1.0	6.5		C _L = 15 pF	2-5
				5.3	7.5	1.0	8.5	ns ns	C _L = 50 pF	2-5						
C _{IN}	Input Capacitance			4	10		10	pF	$V_{CC} = OPEN$							
C _{PD}	Power Dissipation Capacitance			18				pF	(Note 1)							

Note 1: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (opr.) = $C_{PD} + V_{CC} + f_{IN} + I_{CC}/6$ (per gate).

AC Electrical Characteristics for 'VHCT Family Devices: See Section 2 for Waveforms

			74VHCT T _A = 25°C			$74VHCT$ $T_{A} = -40^{\circ}C$ to + 85^{\circ}C				
Symbol	Parameter	V _{CC} (V)						Units	Conditions	Fig. No.
			Min	Тур	Max	Min	Max			
t _{PHL} ,	Propagation Delay	5.0 ±0.5		4.7	6.7	1.0	7.5		C _L = 15 pF	2-5
t _{PLH}				5.5	7.7	1.0	8.5	ns	$C_L = 50 pF$]
CIN	Input Capacitance			4	10		10	рF	V _{CC} = OPEN	
C _{PD}	Power Dissipation Capacitance			14				pF	(Note 1)	

Note 1: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $|_{CC}$ (opr.) = $C_{PD} + V_{CC} + f_{|N|} + |_{CC}/6$ (per gate).

2