Quad Analog Switch/ Multiplexer/Demultiplexer with Separate Analog and Digital Power Supplies # **High-Performance Silicon-Gate CMOS** The MC74HC4316A utilizes silicon–gate CMOS technology to achieve fast propagation delays, low ON resistances, and low OFF–channel leakage current. This bilateral switch/multiplexer/demultiplexer controls analog and digital voltages that may vary across the full analog power–supply range (from V_{CC} to V_{EE}). The HC4316A is similar in function to the metal–gate CMOS MC14016 and MC14066, and to the High–Speed CMOS HC4066A. Each device has four independent switches. The device control and Enable inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs. The device has been designed so that the ON resistances (RON) are much more linear over input voltage than RON of metal–gate CMOS analog switches. Logic–level translators are provided so that the On/Off Control and Enable logic–level voltages need only be VCC and GND, while the switch is passing signals ranging between VCC and VEE. When the Enable pin (active–low) is high, all four analog switches are turned off. - Logic-Level Translator for On/Off Control and Enable Inputs - Fast Switching and Propagation Speeds - High ON/OFF Output Voltage Ratio - Diode Protection on All Inputs/Outputs - Analog Power–Supply Voltage Range $(V_{CC} V_{EE}) = 2.0$ to 12.0 V - Digital (Control) Power–Supply Voltage Range (V_{CC} GND) = 2.0 V to 6.0 V, Independent of V_{EE} - Improved Linearity of ON Resistance - Chip Complexity: 66 FETs or 16.5 Equivalent Gates - Pb-Free Packages are Available* http://onsemi.com MARKING DIAGRAMS PDIP-16 N SUFFIX CASE 648 SOIC-16 D SUFFIX CASE 751B SOEIAJ-16 F SUFFIX CASE 966 A = Assembly Location WL or L = Wafer Lot YY or Y = Year WW or W = Work Week #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |----------------|----------------------|-----------------------| | MC74HC4316AN | PDIP-16 | 2000 / Box | | MC74HC4316ANG | PDIP-16
(Pb-Free) | 2000 / Box | | MC74HC4316AFEL | SOEIAJ-16 | 2000 / Reel | | MC74HC4316AD | SOIC-16 | 48 / Rail | | MC74HC4316ADR2 | SOIC-16 | 2500 / Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. Figure 1. Pin Assignment ### **FUNCTION TABLE** | Inpu | Inputs | | | | |-------------|----------------|---------------------------|--|--| | Enable | On/Off Control | State of Analog
Switch | | | | L
L
H | H
L
X | On
Off
Off | | | X = Don't Care. Figure 2. Logic Diagram #### **MAXIMUM RATINGS** | Symbol | Parameter | Value | Unit | |------------------|---|---|------| | VCC | Positive DC Supply Voltage (Ref. to GND) (Ref. to VEE) | - 0.5 to + 7.0
- 0.5 to + 14.0 | V | | VEE | Negative DC Supply Voltage (Ref. to GND) | - 7.0 to + 0.5 | V | | VIS | Analog Input Voltage | V _{EE} - 0.5
to V _{CC} + 0.5 | V | | V _{in} | DC Input Voltage (Ref. to GND) | -0.5 to V _{CC} + 0.5 | V | | I | DC Current Into or Out of Any Pin | ± 25 | mA | | PD | Power Dissipation in Still Air Plastic DIP* EIAJ/SOIC Package* TSSOP Package* | 750
500
450 | mW | | T _{stg} | Storage Temperature | - 65 to + 150 | °C | | TL | Lead Temperature, 1 mm from Case for 10 Seconds
(Plastic DIP, SOIC or TSSOP Package) | 260 | °C | This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} . Unused inputs must always be Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open. I/O pins must be connected to a properly terminated line or bus. Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. *Derating - Plastic DIP: - 10 mW/°C from 65° to 125°C EIAJ/SOIC Package: - 7 mW/°C from 65° to 125°C TSSOP Package: – 6.1 mW/°C from 65° to 125°C For high frequency or heavy load considerations, see Chapter 2 of the ON Semiconductor High–Speed CMOS Data Book (DL129/D). #### RECOMMENDED OPERATING CONDITIONS | Symbol | Parameter | Min | Max | Unit | |---------------------------------|---|------------------|---------------------------|------| | VCC | Positive DC Supply Voltage (Ref. to GND) | 2.0 | 6.0 | V | | VEE | Negative DC Supply Voltage (Ref. to GND) | - 6.0 | GND | V | | VIS | Analog Input Voltage | VEE | VCC | V | | V _{in} | Digital Input Voltage (Ref. to GND) | GND | VCC | V | | V _{IO} * | Static or Dynamic Voltage Across Switch | - | 1.2 | V | | TA | Operating Temperature, All Package Types | – 55 | + 125 | °C | | t _r , t _f | Input Rise and Fall Time $ \begin{array}{c} \text{V}_{\text{CC}} = 2.0 \text{ V} \\ \text{(Control or Enable Inputs)} \\ \text{(Figure 10)} \\ \end{array} \qquad \begin{array}{c} \text{V}_{\text{CC}} = 3.0 \text{ V} \\ \text{V}_{\text{CC}} = 4.5 \text{ V} \\ \text{V}_{\text{CC}} = 6.0 \text{ V} \end{array} $ | 0
0
0
0 | 1000
600
500
400 | ns | ^{*}For voltage drops across the switch greater than 1.2 V (switch on), excessive V_{CC} current may be drawn; i.e., the current out of the switch may contain both V_{CC} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded. DC ELECTRICAL CHARACTERISTICS Digital Section (Voltages Referenced to GND) VEE = GND Except Where Noted | | | | | | Guaranteed Limit | | | | |-----------------|---|--|---|--------------------------|---------------------------|---------------------------|---------------------------|----------| | Symbol | Parameter | Test Condit | ions | V _{CC} | – 55 to
25°C | ≤ 85°C | ≤ 125°C | Unit | | VIH | Minimum High-Level Voltage,
Control or Enable Inputs | R _{on} = Per Spec | | 2.0
3.0
4.5
6.0 | 1.5
2.1
3.15
4.2 | 1.5
2.1
3.15
4.2 | 1.5
2.1
3.15
4.2 | V | | V _{IL} | Maximum Low–Level Voltage,
Control or Enable Inputs | R _{on} = Per Spec | | 2.0
3.0
4.5
6.0 | 0.5
0.9
1.35
1.8 | 0.5
0.9
1.35
1.8 | 0.5
0.9
1.35
1.8 | V | | lin | Maximum Input Leakage
Current, Control or Enable
Inputs | $V_{\text{in}} = V_{\text{CC}} \text{ or GND}$
$V_{\text{EE}} = -6.0 \text{ V}$ | | 6.0 | ± 0.1 | ± 1.0 | ± 1.0 | μΑ | | ICC | Maximum Quiescent Supply
Current (per Package) | V _{in} = V _{CC} or GND
V _{IO} = 0 V | V _{EE} = GND
V _{EE} = -6.0 | 6.0
6.0 | 2
4 | 20
40 | 40
160 | μΑ | NOTE: Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor High–Speed CMOS Data Book (DL129/D). ### DC ELECTRICAL CHARACTERISTICS Analog Section (Voltages Referenced to VEE) | | | | | | Gu | Guaranteed Limit | | | |------------------|--|--|---------------------------|------------------------------|----------------------|------------------------|------------------------|------| | Symbol | Parameter | Test Conditions | v _{CC} | V _{EE}
V | – 55 to
25°C | ≤ 85 °C | ≤ 125°C | Unit | | R _{on} | Maximum "ON" Resistance | $V_{\text{in}} = V_{\text{IH}}$
$V_{\text{IS}} = V_{\text{CC}}$ to V_{EE}
$I_{\text{S}} \le 2.0$ mA (Figures 1, 2) | 2.0*
4 5
4.5
6.0 | 0.0
0.0
- 4.5
- 6.0 | -
160
90
90 | -
200
110
110 | -
240
130
130 | Ω | | | | $V_{\text{IN}} = V_{\text{IH}}$
$V_{\text{IS}} = V_{\text{CC}} \text{ or } V_{\text{EE}} \text{ (Endpoints)}$
$I_{\text{S}} \le 2.0 \text{ mA (Figures 1, 2)}$ | 2.0
4.5
4.5
6.0 | 0.0
0.0
- 4.5
- 6.0 | -
90
70
70 | -
115
90
90 | -
140
105
105 | | | ΔR _{on} | Maximum Difference in "ON" Resistance Between Any Two Channels in the Same Package | $\begin{aligned} &V_{\text{In}} = V_{\text{IH}} \\ &V_{\text{IS}} = 1/2 \left(V_{\text{CC}} - V_{\text{EE}} \right) \\ &I_{\text{S}} \leq 2.0 \text{ mA} \end{aligned}$ | 2.0
4.5
4.5
6.0 | 0.0
0.0
- 4.5
- 6.0 | -
20
15
15 | -
25
20
20 | -
30
25
25 | Ω | | l _{off} | Maximum Off–Channel
Leakage Current, Any One
Channel | V _{In} = V _{IL}
V _{IO} = V _{CC} or V _{EE}
Switch Off (Figure 3) | 6.0 | - 6.0 | 0.1 | 0.5 | 1.0 | μΑ | | I _{on} | Maximum On-Channel
Leakage Current, Any One
Channel | V _{in} = V _{IH}
V _{IS} = V _{CC} or V _{EE}
(Figure 4) | 6.0 | - 6.0 | 0.1 | 0.5 | 1.0 | μΑ | NOTE: Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor High–Speed CMOS Data Book (DL129/D). ^{*}At supply voltage (V_{CC} – V_{EE}) approaching 2.0 V the analog switch–on resistance becomes extremely non–linear. Therefore, for low–voltage operation, it is recommended that these devices only be used to control digital signals. ### $\textbf{AC ELECTRICAL CHARACTERISTICS} \ (C_L = 50 \ \text{pF, Control or Enable} \ t_f = t_f = 6 \ \text{ns, V}_{EE} = \text{GND})$ | | | | Gu | Guaranteed Limit | | | |---|---|-------------------|-----------------|------------------|-----------------|------| | Symbol | Parameter | v _{CC} | – 55 to
25°C | ≤ 85 °C | ≤ 125°C | Unit | | tPLH,
tPHL | Maximum Propagation Delay, Analog Input to Analog Output (Figures 8 and 9) | 2.0
4.5
6.0 | 40
6
5 | 50
8
7 | 60
9
8 | ns | | tPLZ,
tPHZ | Maximum Propagation Delay, Control or Enable to Analog Output (Figures 10 and 11) | 2.0
4.5
6.0 | 130
40
30 | 160
50
40 | 200
60
50 | ns | | ^t PZL [,]
^t PZH | Maximum Propagation Delay, Control or Enable to Analog Output (Figures 10 and 11) | 2.0
4.5
6.0 | 140
40
30 | 175
50
40 | 250
60
50 | ns | | С | Maximum Capacitance ON/OFF Control and Enable Inputs | - | 10 | 10 | 10 | pF | | | Control Input = GND
Analog I/O
Feedthrough | _
_ | 35
1.0 | 35
1.0 | 35
1.0 | | For propagation delays with loads other than 50 pF, see Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D). Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D). | | | Typical @ 25°C, V _{CC} = 5.0 V | | |----------|---|---|----| | C_{PD} | Power Dissipation Capacitance (Per Switch) (Figure 13)* | 15 | pF | ^{*}Used to determine the no–load dynamic power consumption: $P_D = C_{PD} \ V_{CC}^2 f + I_{CC} \ V_{CC}$. For load considerations, see Chapter 2of the ON Semiconductor High–Speed CMOS Data Book (DL129/D). ### **ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)** | Symbol | Parameter | Test Conditions | v _{CC} | V _{EE}
V | Limit*
25°C | Unit | |--------|---|--|----------------------|----------------------------|----------------------|------| | BW | Maximum On–Channel Bandwidth or
Minimum Frequency Response
(Figure 5) | $\begin{array}{l} f_{in} = 1 \text{ MHz Sine Wave} \\ \text{Adjust } f_{in} \text{ Voltage to Obtain 0 dBm at V}_{OS} \\ \text{Increase } f_{in} \text{ Frequency Until dB Meter} \\ \text{Reads} - 3 \text{ dB} \\ \text{RL} = 50 \ \Omega, \ C_{L} = 10 \ \text{pF} \end{array}$ | 2.25
4.50
6.00 | - 2.25
- 4.50
- 6.00 | 150
160
160 | MHz | | _ | Off-Channel Feedthrough Isolation (Figure 6) | $ \begin{aligned} f_{in} &\equiv \text{Sine Wave} \\ \text{Adjust } f_{in} &\text{ Voltage to Obtain 0 dBm at V}_{IS} \\ f_{in} &= 10 \text{ kHz, R}_{L} = 600 \ \Omega, C_{L} = 50 \text{ pF} \end{aligned} $ | 2.25
4.50
6.00 | - 2.25
- 4.50
- 6.00 | - 50
- 50
- 50 | dB | | | | f_{in} = 1.0 MHz, R_L = 50 Ω , C_L = 10 pF | 2.25
4.50
6.00 | - 2.25
- 4.50
- 6.00 | - 40
- 40
- 40 | | | _ | Feedthrough Noise, Control to
Switch
(Figure 7) | $\begin{split} V_{in} &\leq 1 \text{ MHz Square Wave } (t_f = t_f = 6 \text{ ns}) \\ \text{Adjust R}_L \text{ at Setup so that } I_S = 0 \text{ A} \\ R_L &= 600 \ \Omega, \ C_L = 50 \text{ pF} \end{split}$ | 2.25
4.50
6.00 | - 2.25
- 4.50
- 6.00 | 60
130
200 | mVpp | | | | R_L = 10 kΩ, C_L = 10 pF | 2.25
4.50
6.00 | - 2.25
- 4.50
- 6.00 | 30
65
100 | | | _ | Crosstalk Between Any Two
Switches
(Figure 12) | $ \begin{aligned} f_{in} &\equiv \text{Sine Wave} \\ \text{Adjust } f_{in} &\text{ Voltage to Obtain 0 dBm at V}_{IS} \\ f_{in} &= 10 \text{ kHz}, \text{ R}_{L} = 600 \ \Omega, \text{ C}_{L} = 50 \text{ pF} \end{aligned} $ | 2.25
4.50
6.00 | - 2.25
- 4.50
- 6.00 | - 70
- 70
- 70 | dB | | | | f_{in} = 1.0 MHz, R_L = 50 Ω , C_L = 10 pF | 2.25
4.50
6.00 | - 2.25
- 4.50
- 6.00 | - 80
- 80
- 80 | | | THD | Total Harmonic Distortion
(Figure 14) | $f_{in} = 1 \text{ kHz}, \ R_L = 10 \text{ k}\Omega, \ C_L = 50 \text{ pF}$ $\text{THD} = \text{THD}_{Measured} - \text{THD}_{Source}$ $V_{IS} = 4.0 \text{ Vpp sine wave}$ $V_{IS} = 8.0 \text{ Vpp sine wave}$ $V_{IS} = 11.0 \text{ Vpp sine wave}$ | 2.25
4.50
6.00 | - 2.25
- 4.50
- 6.00 | 0.10
0.06
0.04 | % | ^{*}Limits not tested. Determined by design and verified by qualification. Figure 1e. Typical On Resistance, $V_{CC} - V_{EE} = 12.0 \text{ V}$ Figure 2. On Resistance Test Set-Up Figure 3. Maximum Off Channel Leakage Current, Any One Channel, Test Set-Up Figure 4. Maximum On Channel Leakage Current, Test Set-Up ^{*}Includes all probe and jig capacitance. Figure 5. Maximum On-Channel Bandwidth Test Set-Up *Includes all probe and jig capacitance. Figure 6. Off-Channel Feedthrough Isolation, Test Set-Up Figure 7. Feedthrough Noise, Control to Analog Out, Test Set-Up Figure 8. Propagation Delays, Analog In to Analog Out *Includes all probe and jig capacitance. Figure 9. Propagation Delay Test Set-Up *Includes all probe and jig capacitance. Figure 11. Propagation Delay Test Set-Up Figure 13. Power Dissipation Capacitance Test Set-Up Figure 10. Propagation Delay, ON/OFF Control to Analog Out *Includes all probe and jig capacitance. Figure 12. Crosstalk Between Any Two Switches, Test Set-Up (Adjacent Channels Used) *Includes all probe and jig capacitance. Figure 14. Total Harmonic Distortion, Test Set-Up ### **APPLICATIONS INFORMATION** Figure 15. Plot, Harmonic Distortion The Enable and Control pins should be at V_{CC} or GND logic levels, V_{CC} being recognized as logic high and GND being recognized as a logic low. Unused analog inputs/outputs may be left floating (not connected). However, it is advisable to tie unused analog inputs and outputs to V_{CC} or V_{EE} through a low value resistor. This minimizes crosstalk and feedthrough noise that may be picked up by the unused I/O pins. The maximum analog voltage swings are determined by the supply voltages V_{CC} and V_{EE} . The positive peak analog voltage should not exceed V_{CC} . Similarly, the negative peak analog voltage should not go below V_{EE} . In the example below, the difference between V_{CC} and V_{EE} is 12 V. Therefore, using the configuration in Figure 16, a maximum analog signal of twelve volts peak-to-peak can be controlled. When voltage transients above V_{CC} and/or below V_{EE} are anticipated on the analog channels, external diodes (Dx) are recommended as shown in Figure 17. These diodes should be small signal, fast turn—on types able to absorb the maximum anticipated current surges during clipping. An alternate method would be to replace the Dx diodes with MOSORBs (MOSORBTM is an acronym for high current surge protectors). MOSORBs are fast turn—on devices ideally suited for precise dc protection with no inherent wear out mechanism. Figure 16. Figure 17. Transient Suppressor Application Figure 18. LSTTL/NMOS to HCMOS Interface Figure 19. Switching a 0-to-12 V Signal Using a Single Power Supply (GND ≠ 0 V) Figure 20. 4-Input Multiplexer Figure 21. Sample/Hold Amplifier