

# DECADE COUNTER; DIVIDE-BY-TWELVE COUNTER; 4-BIT BINARY COUNTER

The SN54/74LS90, SN54/74LS92 and SN54/74LS93 are high-speed 4-bit ripple type counters partitioned into two sections. Each counter has a divide-by-two section and either a divide-by-five (LS90), divide-by-six (LS92) or divide-by-eight (LS93) section which are triggered by a HIGH-to-LOW transition on the clock inputs. Each section can be used separately or tied together (Q to  $\overline{\text{CP}}$ ) to form BCD, bi-quinary, modulo-12, or modulo-16 counters. All of the counters have a 2-input gated Master Reset (Clear), and the LS90 also has a 2-input gated Master Set (Preset 9).

- Low Power Consumption . . . Typically 45 mW
- High Count Rates . . . Typically 42 MHz
- Choice of Counting Modes . . . BCD, Bi-Quinary, Divide-by-Twelve, Binary
- Input Clamp Diodes Limit High Speed Termination Effects

| PIN NAMES                                        |                                                                                | LOADIN   | G (Note a)   |
|--------------------------------------------------|--------------------------------------------------------------------------------|----------|--------------|
|                                                  |                                                                                | HIGH     | LOW          |
| CP <sub>0</sub>                                  | Clock (Active LOW going edge) Input to<br>÷2 Section                           | 0.5 U.L. | 1.5 U.L.     |
| CP <sub>1</sub>                                  | Clock (Active LOW going edge) Input to<br>+5 Section (LS90), +6 Section (LS92) | 0.5 U.L. | 2.0 U.L.     |
| CP₁                                              | Clock (Active LOW going edge) Input to<br>÷8 Section (LS93)                    | 0.5 U.L. | 1.0 U.L.     |
| $MR_1, MR_2$                                     | Master Reset (Clear) Inputs                                                    | 0.5 U.L. | 0.25 U.L.    |
| $MS_1, MS_2$                                     | Master Set (Preset-9, LS90) Inputs                                             | 0.5 U.L. | 0.25 U.L.    |
| $Q_0$                                            | Output from +2 Section (Notes b & c)                                           | 10 U.L.  | 5 (2.5) U.L. |
| Q <sub>1</sub> , Q <sub>2</sub> , Q <sub>3</sub> | Outputs from +5 (LS90), +6 (LS92),<br>+8 (LS93) Sections (Note b)              | 10 U.L.  | 5 (2.5) U.L. |

#### NOTES

- a. 1 TTL Unit Load (U.L.) = 40  $\mu$ A HIGH/1.6 mA LOW.
- b. The Output LOW drive factor is 2.5 U.L. for Military, (54) and 5 U.L. for commercial (74) Temperature Ranges.
- c. The Q $_0$  Outputs are guaranteed to drive the full fan-out plus the  $\overline{\text{CP}}_1$  input of the device.
- d. To insure proper operation the rise  $(t_f)$  and fall time  $(t_f)$  of the clock must be less than 100 ns.

# SN54/74LS90 SN54/74LS92 SN54/74LS93

DECADE COUNTER; DIVIDE-BY-TWELVE COUNTER; 4-BIT BINARY COUNTER

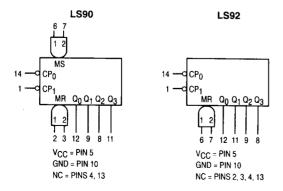
LOW POWER SCHOTTKY



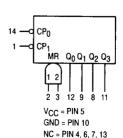
J SUFFIX CERAMIC CASE 632-08

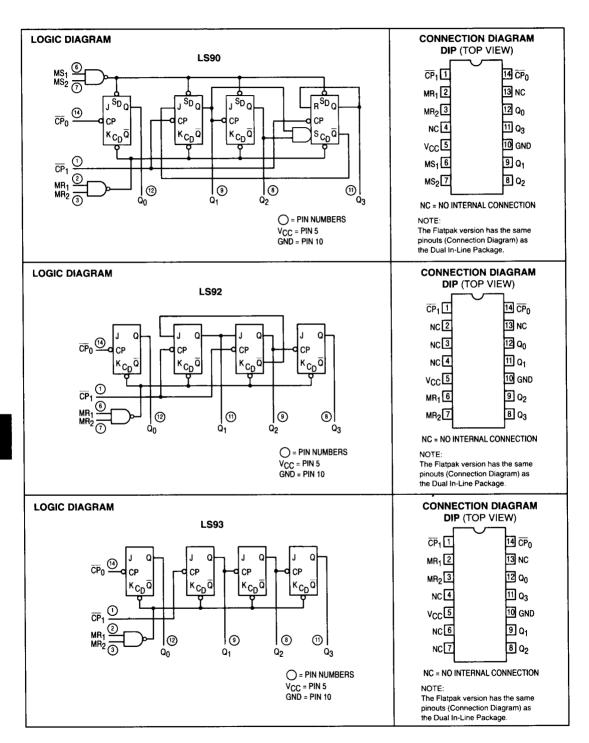


N SUFFIX PLASTIC CASE 646-06




D SUFFIX SOIC CASE 751A-02


### ORDERING INFORMATION


SN54LSXXJ Ceramic SN74LSXXN Plastic SN74LSXXD SOIC

### LOGIC SYMBOL



# LS93





### **FUNCTIONAL DESCRIPTION**

The LS90, LS92, and LS93 are 4-bit ripple type Decade, Divide-By-Twelve, and Binary Counters respectively. Each device consists of four master/slave flip-flops which are internally connected to provide a divide-by-two section and a divide-by-five (LS90), divide-by-six (LS92), or divide-by-eight (LS93) section. Each section has a separate clock input which initiates state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes. The  $Q_0$  output of each device is designed and specified to drive the rated fan-out plus the  $\overline{\rm CP}_1$  input of the device.

A gated AND asynchronous Master Reset (MR<sub>1</sub> • MR<sub>2</sub>) is provided on all counters which overrides and clocks and resets (clears) all the flip-flops. A gated AND asynchronous Master Set (MS<sub>1</sub> • MS<sub>2</sub>) is provided on the LS90 which overrides the clocks and the MR inputs and sets the outputs to nine (HLLH).

Since the output from the divide-by-two section is not internally connected to the succeeding stages, the devices may be operated in various counting modes.

#### LS90

- A. BCD Decade (8421) Counter The CP<sub>1</sub> input must be externally connected to the Q<sub>0</sub> output. The CP<sub>0</sub> input receives the incoming count and a BCD count sequence is produced.
- B. Symmetrical Bi-quinary Divide-By-Ten Counter The  $Q_3$  output must be externally connected to the  $\overline{CP}_0$  input. The input count is then applied to the  $\overline{CP}_1$  input and a divide-byten square wave is obtained at output  $Q_0$ .

C. Divide-By-Two and Divide-By-Five Counter — No external interconnections are required. The first flip-flop is used as a binary element for the divide-by-two function  $(\overline{CP}_0$  as the input and  $Q_0$  as the output). The  $\overline{CP}_1$  input is used to obtain binary divide-by-five operation at the  $Q_3$  output.

### LS92

- A. Modulo 12, Divide-By-Twelve Counter The CP<sub>1</sub> input must be externally connected to the Q<sub>0</sub> output. The CP<sub>0</sub> input receives the incoming count and Q<sub>3</sub> produces a symmetrical divide-by-twelve square wave output.
- B. Divide-By-Two and Divide-By-Six Counter —No external interconnections are required. The first flip-flop is used as a binary element for the divide-by-two function. The CP<sub>1</sub> input is used to obtain divide-by-three operation at the Q<sub>1</sub> and Q<sub>2</sub> outputs and divide-by-six operation at the Q<sub>3</sub> output.

#### LS93

- A. 4-Bit Ripple Counter The output Q<sub>0</sub> must be externally connected to input CP<sub>1</sub>. The input count pulses are applied to input CP<sub>0</sub>. Simultaneous divisions of 2, 4, 8, and 16 are performed at the Q<sub>0</sub>, Q<sub>1</sub>, Q<sub>2</sub>, and Q<sub>3</sub> outputs as shown in the truth table.
- B. 3-Bit Ripple Counter— The input count pulses are applied to input  $\overline{\text{CP}}_1$ . Simultaneous frequency divisions of 2, 4, and 8 are available at the  $Q_1$ ,  $Q_2$ , and  $Q_3$  outputs. Independent use of the first flip-flop is available if the reset function coincides with reset of the 3-bit ripple-through counter.

LS90
MODE SELECTION

| RES             | ET/SE           |                 | OUTP            | UTS            |                                              |     |   |  |  |
|-----------------|-----------------|-----------------|-----------------|----------------|----------------------------------------------|-----|---|--|--|
| MR <sub>1</sub> | MR <sub>2</sub> | MS <sub>1</sub> | MS <sub>2</sub> | Q <sub>0</sub> | Q <sub>0</sub> Q <sub>1</sub> Q <sub>2</sub> |     |   |  |  |
| Н               | Н               | L               | Х               | L              | L                                            | L   | L |  |  |
| Н               | H               | Х               | L               | L              | L                                            | L   | L |  |  |
| X               | Х               | н               | н               | Н              | L                                            | L   | Н |  |  |
| L               | X               | L               | x               | i              | Cou                                          | unt |   |  |  |
| l x             | L               | Х               | L               | Count          |                                              |     |   |  |  |
| L               | l x             | Х               | L               | Count          |                                              |     |   |  |  |
| l x             | L               | L               | x               | 1              | Cou                                          | unt |   |  |  |

H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care

# LS92 AND LS93 MODE SELECTION

|                 | SET<br>UTS      | OUTPUTS        |                                              |     |                |  |  |  |
|-----------------|-----------------|----------------|----------------------------------------------|-----|----------------|--|--|--|
| MR <sub>1</sub> | MR <sub>2</sub> | Q <sub>0</sub> | Q <sub>0</sub> Q <sub>1</sub> Q <sub>2</sub> |     | Q <sub>3</sub> |  |  |  |
| н               | Н               | L              | L                                            | Ļ   | L              |  |  |  |
| L               | н               | ı              | Co                                           | unt |                |  |  |  |
| Н               | L               |                | Count                                        |     |                |  |  |  |
| L               | L               |                | Co                                           | unt |                |  |  |  |

H = HIGH Voltage Level L = LOW Voltage Level

X = Don't Care

### LS90 BCD COUNT SEQUENCE

| COUNT | OUTPUT         |                |                |                |  |  |  |
|-------|----------------|----------------|----------------|----------------|--|--|--|
| COUNT | Q <sub>0</sub> | Q <sub>1</sub> | Q <sub>2</sub> | Q <sub>3</sub> |  |  |  |
| 0     | _              | L              | L              | L              |  |  |  |
| 1 1   | н              | L              | L              | L              |  |  |  |
| 2     | L              | Н              | L              | L              |  |  |  |
| 3     | н              | н              | L              | L              |  |  |  |
| 4     | L              | L              | Н              | L              |  |  |  |
| 5     | Н              | L              | Н              | L              |  |  |  |
| 6     | L              | Н              | Н              | L              |  |  |  |
| 7     | Н              | Н              | Н              | L              |  |  |  |
| 8     | L              | L              | L              | Н              |  |  |  |
| 9     | Н              | L              | L              | Н              |  |  |  |

### LS92 TRUTH TABLE

| COUNT |                | OUTPUT         |                |       |  |  |  |  |
|-------|----------------|----------------|----------------|-------|--|--|--|--|
| COUNT | Q <sub>0</sub> | Q <sub>1</sub> | Q <sub>2</sub> | $Q_3$ |  |  |  |  |
| 0     | L              | L              | L              | L     |  |  |  |  |
| 1     | Н              | L              | L              | ᅵᅵ    |  |  |  |  |
| 2     | L              | н              | L              | L     |  |  |  |  |
| 3     | Н              | Н              | L              | L     |  |  |  |  |
| 4     | L              | L              | Н              | L     |  |  |  |  |
| 5     | Н              | L              | Н              | Ł     |  |  |  |  |
| 6     | L              | L              | L              | н     |  |  |  |  |
| 7     | Н              | L              | L              | н     |  |  |  |  |
| 8     | L              | Н              | L              | н     |  |  |  |  |
| 9     | Н              | Н              | L.             | н     |  |  |  |  |
| 10    | L              | L              | Н              | н     |  |  |  |  |
| 11    | н              | L              | Н              | Н     |  |  |  |  |

NOTE: Output  $Q_0$  is connected to Input  $\overline{CP}_1$ .

### LS93 TRUTH TABLE

| COUNT |                | OUT            | PUT            |                |
|-------|----------------|----------------|----------------|----------------|
| COUNT | Q <sub>0</sub> | Q <sub>1</sub> | Q <sub>2</sub> | Q <sub>3</sub> |
| 0     | L              | L              | L              | L              |
| 1     | Н              | L              | Ł              | L              |
| 2     | L              | Н              | L              | L              |
| 3     | Н              | Н              | L              | L              |
| 4     | L              | L              | Н              | L              |
| 5     | HLH            | L              | Н              | 111111         |
| 6     | L              | Н              | Н              | L              |
| 7     | Н              | Н              | Н              | L              |
| 8     | L              | L              | L              | H              |
| 9     | н              | L              | L<br>L<br>L    | Н              |
| 10    | L              | н              | L              | Н              |
| 11    | н              | Н              |                | Н              |
| 12    | L              | L              | Н              | Н              |
| 13    | Н              | L              | Н              | Н              |
| 14    | L              | Н              | Н              | Н              |
| 15    | Н              | Н              | Н              | Н              |

NOTE: Output  $Q_0$  is connected to Input  $\overline{CP}_1$ .

### **GUARANTEED OPERATING RANGES**

| Symbol         | Parameter                           |          | Min         | Тур        | Max         | Unit |
|----------------|-------------------------------------|----------|-------------|------------|-------------|------|
| VCC            | Supply Voltage                      | 54<br>74 | 4.5<br>4.75 | 5.0<br>5.0 | 5.5<br>5.25 | ٧    |
| T <sub>A</sub> | Operating Ambient Temperature Range | 54<br>74 | -55<br>0    | 25<br>25   | 125<br>70   | °C   |
| ЮН             | Output Current — High               | 54, 74   |             |            | -0.4        | mA   |
| lol            | Output Current — Low                | 54<br>74 |             |            | 4.0<br>8.0  | mA   |

# DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

|                 | Parameter                                                                                       |        |     | Limits |                              |      |                                                                   |                                                                                                |
|-----------------|-------------------------------------------------------------------------------------------------|--------|-----|--------|------------------------------|------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Symbol          |                                                                                                 |        | Min | Тур    | Max                          | Unit | Test Co                                                           | onditions                                                                                      |
| VIΗ             | Input HIGH Voltage                                                                              |        | 2.0 |        |                              | ٧    | Guaranteed Input<br>All Inputs                                    | HIGH Voltage for                                                                               |
| VIL             | Input LOW Voltage                                                                               | 54     |     |        | 0.7                          | v    | Guaranteed Input                                                  | LOW Voltage for                                                                                |
| VIL.            | Imput 2004 Voltage                                                                              | 74     |     |        | 0.8                          | •    | All Inputs                                                        |                                                                                                |
| V <sub>IK</sub> | Input Clamp Diode Voltage                                                                       |        |     | -0.65  | -1.5                         | ٧    | V <sub>CC</sub> = MIN, I <sub>IN</sub> = -18 mA                   |                                                                                                |
| Vou             | Output HIGH Voltage                                                                             | 54     | 2.5 | 3.5    |                              | ٧    | V <sub>CC</sub> = MIN, I <sub>OH</sub> = MAX, V <sub>IN</sub> = V |                                                                                                |
| VOH             | Output High voltage                                                                             | 74     | 2.7 | 3.5    |                              | ٧    | or V <sub>IL</sub> per Truth T                                    | able                                                                                           |
| Voi             | Output LOW Voltage                                                                              | 54, 74 |     | 0.25   | 0.4                          | ٧    | I <sub>OL</sub> = 4.0 mA                                          | V <sub>CC</sub> = V <sub>CC</sub> MIN,<br>V <sub>IN</sub> = V <sub>IL</sub> or V <sub>IH</sub> |
| *OL             | VOL Output LOW Voltage                                                                          | 74     |     | 0.35   | 0.5                          | ٧    | I <sub>OL</sub> = 8.0 mA                                          | per Truth Table                                                                                |
| \iн             | Input HIGH Current                                                                              |        |     |        | 20                           | μА   | V <sub>CC</sub> = MAX, V <sub>IN</sub>                            | = 2.7 V                                                                                        |
| 'IH             | input richt curent                                                                              |        |     |        | 0.1                          | mA   | V <sub>CC</sub> = MAX, V <sub>IN</sub>                            | = 7.0 V                                                                                        |
| ηL              | Input LOW Current  MS, MR  CP <sub>0</sub> CP <sub>1</sub> (LS90, LS92)  CP <sub>1</sub> (LS93) |        |     |        | -0.4<br>-2.4<br>-3.2<br>-1.6 | mA   | V <sub>CC</sub> = MAX, V <sub>IN</sub>                            | = 0.4 V                                                                                        |
| los             | Short Circuit Current (Note 1)                                                                  |        | -20 |        | -100                         | mA   | V <sub>CC</sub> = MAX                                             | 1                                                                                              |
| lcc             | Power Supply Current                                                                            |        |     |        | 15                           | mA   | V <sub>CC</sub> = MAX                                             |                                                                                                |

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

### AC CHARACTERISTICS (T<sub>A</sub> = 25°C, V<sub>CC</sub> = 5.0 V, C<sub>L</sub> = 15 pF)

|                                      |                                                                   |     | Limits   |          |     |          |          |     |          |          |      |
|--------------------------------------|-------------------------------------------------------------------|-----|----------|----------|-----|----------|----------|-----|----------|----------|------|
|                                      |                                                                   |     | LS90     |          |     | LS92     |          |     | LS93     |          | 1    |
| Symbol                               | Parameter                                                         | Min | Тур      | Max      | Min | Тур      | Max      | Min | Тур      | Max      | Unit |
| fMAX                                 | CP <sub>0</sub> Input Clock Frequency                             | 32  |          |          | 32  |          |          | 32  |          |          | MHz  |
| fMAX                                 | CP <sub>1</sub> Input Clock Frequency                             | 16  |          |          | 16  |          |          | 16  |          |          | MHz  |
| tPLH<br>tPHL                         | Propagation Delay, CP <sub>0</sub> Input to Q <sub>0</sub> Output |     | 10<br>12 | 16<br>18 |     | 10<br>12 | 16<br>18 | :   | 10<br>12 | 16<br>18 | ns   |
| <sup>t</sup> PLH<br><sup>t</sup> PHL | CP <sub>0</sub> Input to Q <sub>3</sub> Output                    |     | 32<br>34 | 48<br>50 |     | 32<br>34 | 48<br>50 |     | 46<br>46 | 70<br>70 | ns   |
| <sup>t</sup> PLH<br><sup>t</sup> PHL | CP₁ Input to Q₁ Output                                            |     | 10<br>14 | 16<br>21 |     | 10<br>14 | 16<br>21 |     | 10<br>14 | 16<br>21 | ns   |
| tPLH<br>tPHL                         | CP₁ Input to Q₂ Output                                            |     | 21<br>23 | 32<br>35 |     | 10<br>14 | 16<br>21 |     | 21<br>23 | 32<br>35 | ns   |
| tPLH<br>tPHL                         | CP₁ Input to Q₃ Output                                            |     | 21<br>23 | 32<br>35 |     | 21<br>23 | 32<br>35 |     | 34<br>34 | 51<br>51 | ns   |
| <sup>t</sup> PLH                     | MS Input to Q <sub>0</sub> and Q <sub>3</sub> Outputs             |     | 20       | 30       |     |          |          |     |          |          | ns   |
| <sup>t</sup> PHL                     | MS Input to Q <sub>1</sub> and Q <sub>2</sub> Outputs             |     | 26       | 40       |     |          |          |     |          |          | ns   |
| tPHL                                 | MR Input to Any Output                                            |     | 26       | 40       |     | 26       | 40       |     | 26       | 40       | ns   |

### AC SETUP REQUIREMENTS (TA = 25°C, VCC = 5.0 V)

|                  |                             |     | Limits |     |      |     |      |      |  |  |
|------------------|-----------------------------|-----|--------|-----|------|-----|------|------|--|--|
|                  |                             | LS  | LS90   |     | LS92 |     | LS93 |      |  |  |
| Symbol           | Parameter                   | Min | Max    | Min | Max  | Min | Max  | Unit |  |  |
| tw               | CP <sub>0</sub> Pulse Width | 15  |        | 15  |      | 15  |      | ns   |  |  |
| tw               | CP₁ Pulse Width             | 30  |        | 30  |      | 30  |      | ns   |  |  |
| tw               | MS Pulse Width              | 15  |        |     |      |     |      | ns   |  |  |
| tw               | MR Pulse Width              | 15  |        | 15  |      | 15  |      | ns   |  |  |
| t <sub>rec</sub> | Recovery Time MR to CP      | 25  |        | 25  |      | 25  |      | ns   |  |  |

RECOVERY TIME (t<sub>rec</sub>) is defined as the minimum time required between the end of the reset pulse and the clock transition from HIGH-to-LOW in order to recognize and transfer HIGH data to the Q outputs

### **AC WAVEFORMS**

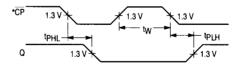
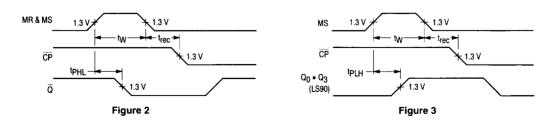




Figure 1

\*The number of Clock Pulses required between the  $t_{PHL}$  and  $t_{PLH}$  measurements can be determined from the appropriate Truth Tables.

